We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [
Citation: Giacomo Ascione, Daniele Castorina, Giovanni Catino, Carlo Mantegazza. A matrix Harnack inequality for semilinear heat equations[J]. Mathematics in Engineering, 2023, 5(1): 1-15. doi: 10.3934/mine.2023003
We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [
[1] | D. Castorina, G. Catino, C. Mantegazza, Semilinear Li & Yau inequalities, unpublished work. |
[2] | S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Berlin, Heidelberg: Springer, 1990. http://dx.doi.org/10.1007/978-3-642-18855-8 |
[3] | R. S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom., 24 (1986), 153–179. http://dx.doi.org/10.4310/jdg/1214440433 doi: 10.4310/jdg/1214440433 |
[4] | R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37 (1993), 225–243. http://dx.doi.org/10.4310/jdg/1214453430 doi: 10.4310/jdg/1214453430 |
[5] | R. S. Hamilton, A matrix Harnack estimate for the heat equation, Commun. Anal. Geom., 1 (1993), 113–126. http://dx.doi.org/10.4310/CAG.1993.v1.n1.a6 doi: 10.4310/CAG.1993.v1.n1.a6 |
[6] | R. S. Hamilton, The Harnack estimate for the mean curvature flow, J. Differential Geom., 41 (1995), 215–226. http://dx.doi.org/10.4310/jdg/1214456010 doi: 10.4310/jdg/1214456010 |
[7] | P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201. http://dx.doi.org/10.1007/BF02399203 doi: 10.1007/BF02399203 |
[8] | C. Mantegazza, Lecture notes on mean curvature flow, Basel: Springer, 2011. http://dx.doi.org/10.1007/978-3-0348-0145-4 |