Research article Special Issues

Dynamics of a stoichiometric phytoplankton-zooplankton model with season-driven light intensity

  • Received: 05 March 2024 Revised: 10 July 2024 Accepted: 06 August 2024 Published: 20 August 2024
  • Chemical heterogeneity significantly influences the dynamics of phytoplankton and zooplankton interactions through its effects on phytoplankton carrying capacity and zooplankton ingestion rates. Our central objective of this study was to develop and examine a nonautonomous model of phytoplankton-zooplankton growth, which incorporates season-driven variations in light intensity and chemical heterogeneity. The dynamics of the system is characterized by positive invariance, dissipativity, boundary dynamics, and internal dynamics. Subsequently, numerical simulations were conducted to validate the theoretical findings and to elucidate the effects of seasonal light intensity, nutrient availability, and zooplankton loss rates on phytoplankton dynamics. The outcomes of our model and analysis offer a potential explanation for seasonal phytoplankton blooms.

    Citation: Zhenyao Sun, Da Song, Meng Fan. Dynamics of a stoichiometric phytoplankton-zooplankton model with season-driven light intensity[J]. Mathematical Biosciences and Engineering, 2024, 21(8): 6870-6897. doi: 10.3934/mbe.2024301

    Related Papers:

  • Chemical heterogeneity significantly influences the dynamics of phytoplankton and zooplankton interactions through its effects on phytoplankton carrying capacity and zooplankton ingestion rates. Our central objective of this study was to develop and examine a nonautonomous model of phytoplankton-zooplankton growth, which incorporates season-driven variations in light intensity and chemical heterogeneity. The dynamics of the system is characterized by positive invariance, dissipativity, boundary dynamics, and internal dynamics. Subsequently, numerical simulations were conducted to validate the theoretical findings and to elucidate the effects of seasonal light intensity, nutrient availability, and zooplankton loss rates on phytoplankton dynamics. The outcomes of our model and analysis offer a potential explanation for seasonal phytoplankton blooms.



    加载中


    [1] C. M. Lalli, T. R. Parsons, Biological oceanography: An introduction, Butterworth-Heinemann, Oxford, 1997.
    [2] S. J. Brentnall, K. J. Richards, J. Brindley, E. Murphy, Plankton patchiness and its effect on larger-scale productivity, J. Plankton Res., 25 (2003), 121–140. https://doi.org/10.1093/plankt/25.2.121 doi: 10.1093/plankt/25.2.121
    [3] H. W. Paerl, N. S. Hall, E. S. Calandrino, Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change, Sci. Total Environ., 409 (2011), 1739–45. https://doi.org/10.1016/j.scitotenv.2011.02.001 doi: 10.1016/j.scitotenv.2011.02.001
    [4] H. W. Paerl, T. G. Otten, Harmful cyanobacterial blooms: causes, consequences, and controls, Microb. Ecol., 65 (2013), 995–1010. https://doi.org/10.1007/s00248-012-0159-y doi: 10.1007/s00248-012-0159-y
    [5] D. L. Roelke, J. P. Grover, B. W. Brooks, J. Glass, D. Buzan, G. M. Southard, et al., A decade of fish-killing prymnesium parvum blooms in texas: roles of inflow and salinity, J. Plankton Res., 33 (2010), 243–253. https://doi.org/10.1093/plankt/fbq079 doi: 10.1093/plankt/fbq079
    [6] M. J. Ulloa, P. Alvarez-Torres, K. P. Horak-Romo, R. Ortega-Izaguirre, Harmful algal blooms and eutrophication along the mexican coast of the gulf of mexico large marine ecosystem, Environ. Dev., 22 (2017), 120–128. https://doi.org/10.1016/j.envdev.2016.10.007 doi: 10.1016/j.envdev.2016.10.007
    [7] J. H. Landsberg, The effects of harmful algal blooms on aquatic organisms, Rev. Fish Sci., 10 (2002), 113–390. https://doi.org/10.1080/20026491051695 doi: 10.1080/20026491051695
    [8] K. W. Crane, J. P. Grover, Coexistence of mixotrophs, autotrophs, and heterotrophs in planktonic microbial communities, J. Theor. Biol., 262 (2010), 517–527. https://doi.org/10.1016/j.jtbi.2009.10.027 doi: 10.1016/j.jtbi.2009.10.027
    [9] H. Stickney, R. Hood, D. Stoecker, The impact of mixotrophy on planktonic marine ecosystems, Ecol. Modell., 125 (2000), 203–230. https://doi.org/10.1016/S0304-3800(99)00181-7 doi: 10.1016/S0304-3800(99)00181-7
    [10] J. Zhang, J. D. Kong, J. Shi, H. Wang, Phytoplankton competition for nutrients and light in a stratified lake: A mathematical model connecting epilimnion and hypolimnion, J. Nonlinear Sci., 31 (2021), 35. https://doi.org/10.1007/s00332-021-09693-6 doi: 10.1007/s00332-021-09693-6
    [11] M. Chen, M. Fan, R. Liu, X. Wang, X. Yuan, H. Zhu, The dynamics of temperature and light on the growth of phytoplankton, J. Theor. Biol., 385 (2015), 8–19. https://doi.org/10.1016/j.jtbi.2015.07.039 doi: 10.1016/j.jtbi.2015.07.039
    [12] K. Yoshiyama, H. Nakajima, Catastrophic transition in vertical distributions of phytoplankton: Alternative equilibria in a water column, J. Theor. Biol., 216 (2002), 397–408., https://doi.org/10.1006/jtbi.2002.3007 doi: 10.1006/jtbi.2002.3007
    [13] X. Zhao, L. Liu, H. Wang, M. Fan, Ecological effects of predator harvesting and environmental noises on oceanic coral reefs, Bull. Math. Biol., 85 (2023), 59. https://doi.org/10.1007/s11538-023-01166-z doi: 10.1007/s11538-023-01166-z
    [14] X. Zhao, L. Liu, M. Liu, M. Fan, Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish, Chaos Solitons Fractals, 181 (2024), 1–23. https://doi.org/10.1016/j.chaos.2024.114629 doi: 10.1016/j.chaos.2024.114629
    [15] C. C. Carey, K. L. Cottingham, K. C. Weathers, J. A. Brentrup, N. M. Ruppertsberger, H. A. Ewing, Experimental blooms of the cyanobacterium gloeotrichia echinulata increase phytoplankton biomass, richness and diversity in an oligotrophic lake, J. Plankton Res., 36 (2014), 364–377. https://doi.org/10.1093/plankt/fbt105 doi: 10.1093/plankt/fbt105
    [16] Y. Lehahn, I. Koren, S. Sharoni, F. d'Ovidio, A. Vardi, E. Boss, Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters, Nat. Commun., 8 (2017), 14868. https://doi.org/10.1038/ncomms14868 doi: 10.1038/ncomms14868
    [17] R. W. Sterner, K. L. Reinl, B. M. Lafrancois, S. Brovold, T. R. Miller, A first assessment of cyanobacterial blooms in oligotrophic lake superior, Limnol. Oceanogr., 65 (2020), 2984–2998. https://doi.org/10.1002/lno.11569 doi: 10.1002/lno.11569
    [18] J. Zhang, J. Shi, X. Chang, A mathematical model of algae growth in a pelagic-benthic coupled shallow aquatic ecosystem, J. Math. Biol., 76 (2018), 1159–1193. https://doi.org/10.1007/s00285-017-1168-8 doi: 10.1007/s00285-017-1168-8
    [19] J. N. Boyer, S. K. Dailey, P. J. Gibson, M. T. Rogers, D. Mir-Gonzalez, The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in florida bay, Hydrobiologia, 569 (2006), 71–85. https://doi.org/10.1007/s10750-006-0123-2 doi: 10.1007/s10750-006-0123-2
    [20] C. H. Chow, W. Cheah, J. H. Tai, A rare and extensive summer bloom enhanced by ocean eddies in the oligotrophic western north pacific subtropical gyre, Sci. Rep., 7 (2017), 6199. https://doi.org/10.1038/s41598-017-06584-3 doi: 10.1038/s41598-017-06584-3
    [21] V. Ligorini, N. Malet, M. Garrido, V. Derolez, M. Amand, B. Bec, et al., Phytoplankton dynamics and bloom events in oligotrophic mediterranean lagoons: seasonal patterns but hazardous trends, Hydrobiologia, 849 (2022), 2353–2375. https://doi.org/10.1007/s10750-022-04874-0 doi: 10.1007/s10750-022-04874-0
    [22] S. J. Thackeray, I. Maberly, Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change, J. Ecol., 96 (2008), 523–535. https://doi.org/10.1111/j.1365-2745.2008.01355.x doi: 10.1111/j.1365-2745.2008.01355.x
    [23] F. B. Wang, S. B. Hsu, W. Wang, Dynamics of harmful algae with seasonal temperature variations in the cove-main lake, Discr. Contin. Dyn. Syst. B, 21 (2016), 313–335. https://doi.org/10.3934/dcdsb.2016.21.313 doi: 10.3934/dcdsb.2016.21.313
    [24] A. Huppert, B. Blasius, R. Olinky, L. Stone, A model for seasonal phytoplankton blooms, J. Theor. Biol., 236 (2005), 276–290. https://doi.org/10.1016/j.jtbi.2005.03.012 doi: 10.1016/j.jtbi.2005.03.012
    [25] M. Chen, M. Fan, X. Yuan, R. Liu, X. Wang, H. Zhu, Effect of seasonal changing temperature on the growth of phytoplankton, Math. Biosci. Eng., 14 (2017), 1091. https://doi.org/10.3934/mbe.2017057 doi: 10.3934/mbe.2017057
    [26] L. Ratnarajah, R. Abu-Alhaija, A. Atkinson, S. Batten, N. J. Bax, K. S. Bernard, et al., Monitoring and modelling marine zooplankton in a changing climate, Nat. Commun., 14 (2023), 564. https://doi.org/10.1038/s41467-023-36241-5 doi: 10.1038/s41467-023-36241-5
    [27] S. G. Pitois, C. P. Lynam, T. Jansen, N. Halliday, M. Edwards, Bottom-up effects of climate on fish populations: data from the continuous plankton recorder, Mar. Ecol. Prog. Ser., 456 (2012), 169–186. https://doi.org/10.3354/meps09710 doi: 10.3354/meps09710
    [28] J. J. Ruzicka, R. D. Brodeur, R. L. Emmett, J. H. Steele, J. E. Zamon, C. A. Morgan, et al., Interannual variability in the northern california current food web structure: Changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish, Prog. Oceanogr., 102 (2012), 19–41. https://doi.org/10.1016/j.pocean.2012.02.002 doi: 10.1016/j.pocean.2012.02.002
    [29] V. Lauria, M. J. Attrill, A. Brown, M. Edwards, S. C. Votier, Regional variation in the impact of climate change: evidence that bottom-up regulation from plankton to seabirds is weak in parts of the Northeast Atlantic, Mar. Ecol. Prog. Ser., 488 (2013), 11–22. https://doi.org/10.3354/meps10401 doi: 10.3354/meps10401
    [30] R. F. Heneghan, J. D. Everett, J. L. Blanchard, A. J. Richardson, Zooplankton are not fish: Improving zooplankton realism in size-spectrum models mediates energy transfer in food webs, Front. Mar. Sci., 3 (2016). https://doi.org/10.3389/fmars.2016.00201
    [31] J. Luo, Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication, Math. Biosci., 245 (2013), 126–136. https://doi.org/10.1016/j.mbs.2013.06.002 doi: 10.1016/j.mbs.2013.06.002
    [32] P. Lehette, A. Tovar-Sanchez, C. M. Duarte, S. Hernandez-Leon, Krill excretion and its effect on primary production, Mar. Ecol. Prog. Ser., 459 (2012), 29–38. https://doi.org/10.3354/meps09746 doi: 10.3354/meps09746
    [33] E. L. Cavan, A. Belcher, A. Atkinson, S. L. Hill, S. Kawaguchi, S. McCormack, et al., The importance of antarctic krill in biogeochemical cycles, Nat. Commun., 10 (2019), 4742. https://doi.org/10.1038/s41467-019-12668-7 doi: 10.1038/s41467-019-12668-7
    [34] K. Schmidt, C. Schlosser, A. Atkinson, S. Fielding, H. J. Venables, C. M. Waluda, et al., Zooplankton gut passage mobilizes lithogenic iron for ocean productivity, Curr. Biol., 26 (2016), 2667–2673. https://doi.org/10.1016/j.cub.2016.07.058 doi: 10.1016/j.cub.2016.07.058
    [35] J. J. Elser, J. Urabe, The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences, Ecology, 80 (1999), 735–751. https://doi.org/10.1890/0012-9658(1999)080 doi: 10.1890/0012-9658(1999)080
    [36] X. Irigoien, K. J. Flynn, R. P. Harris, Phytoplankton blooms: a 'loophole' in microzooplankton grazing impact?, J. Plankton Res., 27 (2005), 313–321. https://doi.org/10.1093/plankt/fbi011 doi: 10.1093/plankt/fbi011
    [37] J. Ji, R. Milne, H. Wang, Stoichiometry and environmental change drive dynamical complexity and unpredictable switches in an intraguild predation model, J. Math. Biol., 86 (2023), 31. https://doi.org/10.1007/s00285-023-01866-z doi: 10.1007/s00285-023-01866-z
    [38] P. D. Jeyasingh, J. M. Goos, S. K. Thompson, C. M. Godwin, J. B. Cotner, Ecological stoichiometry beyond redfield : An ionomic perspective on elemental homeostasis, Front. Microbiol., 8. https://doi.org/10.3389/fmicb.2017.00722
    [39] A. Peace, Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models, Ecol. Modell., 312 (2015), 125–135. https://doi.org/10.1016/j.ecolmodel.2015.05.019 doi: 10.1016/j.ecolmodel.2015.05.019
    [40] I. Loladze, Y. Kuang, J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow with element cycling, Bull. Math. Biol., 62 (2000), 1137–1162. https://doi.org/10.1006/bulm.2000.0201 doi: 10.1006/bulm.2000.0201
    [41] A. Edwards, J. Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models, Bull. Math. Biol., 61 (1999), 303–339. https://doi.org/10.1006/bulm.1998.0082 doi: 10.1006/bulm.1998.0082
    [42] H. Wang, R. W. Sterner, J. J. Elser, On the 'strict homeostasis' assumption in ecological stoichiometry, Ecol. Model., 243 (2012), 81–88. https://doi.org/10.1016/j.ecolmodel.2012.06.003 doi: 10.1016/j.ecolmodel.2012.06.003
    [43] M. Chen, M. Fan, Y. Kuang, Global dynamics in a stoichiometric food chain model with two limiting nutrients, Math. Biosci., 289 (2017), 9–19. https://doi.org/10.1016/j.mbs.2017.04.004 doi: 10.1016/j.mbs.2017.04.004
    [44] D. Song, M. Fan, M. Chen, H. Wang, Dynamics of a periodic stoichiometric model with application in predicting and controlling algal bloom in bohai sea off china, Math. Biosci. Eng., 16 (2019), 119–138. https://doi.org/10.3934/mbe.2019006 doi: 10.3934/mbe.2019006
    [45] K. Mischaikow, H. Smith, H. R. Thieme, Asymptotically autonomous semiflows: chain recurrence and lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669–1685. https://doi.org/10.1090/S0002-9947-1995-1290727-7 doi: 10.1090/S0002-9947-1995-1290727-7
    [46] R. E. Gaines, J. L. Mawhin, Coincidence degree and nonlinear differential equations, Springer, 1977.
    [47] I. Barhalat, Systems d'equations differential d'oscillations nonlinearies, Rev. Roum. Math. Pures. Appl., 4 (1959), 267–270.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(163) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog