Environmental stochasticity and toxin-producing phytoplankton (TPP) are the key factors that affect the aquatic ecosystems. To investigate the effects of environmental stochasticity and TPP on the dynamics of plankton populations, a stochastic phytoplankton-zooplankton system with two TPP is studied theoretically and numerically in this paper. Theoretically, we first prove that the system possesses a unique and global positive solution with positive initial values, and then derive some sufficient conditions guaranteeing the extinction and persistence in the mean of the system. Significantly, it is shown that the system has a stationary distribution when toxin liberation rate reaches some a critical value. Additionally, numerical analysis shows that the white noise can affect the survival of plankton populations directly. Furthermore, it has been observed that the increasing one toxin liberation rate can increase the survival chance of phytoplankton and reduce the biomass of zooplankton, but the combined effects of two liberation rates on the changes in plankton populations are stronger than that of controlling any one of the two TPP.
Citation: He Liu, Chuanjun Dai, Hengguo Yu, Qing Guo, Jianbing Li, Aimin Hao, Jun Kikuchi, Min Zhao. Dynamics induced by environmental stochasticity in a phytoplankton-zooplankton system with toxic phytoplankton[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4101-4126. doi: 10.3934/mbe.2021206
Environmental stochasticity and toxin-producing phytoplankton (TPP) are the key factors that affect the aquatic ecosystems. To investigate the effects of environmental stochasticity and TPP on the dynamics of plankton populations, a stochastic phytoplankton-zooplankton system with two TPP is studied theoretically and numerically in this paper. Theoretically, we first prove that the system possesses a unique and global positive solution with positive initial values, and then derive some sufficient conditions guaranteeing the extinction and persistence in the mean of the system. Significantly, it is shown that the system has a stationary distribution when toxin liberation rate reaches some a critical value. Additionally, numerical analysis shows that the white noise can affect the survival of plankton populations directly. Furthermore, it has been observed that the increasing one toxin liberation rate can increase the survival chance of phytoplankton and reduce the biomass of zooplankton, but the combined effects of two liberation rates on the changes in plankton populations are stronger than that of controlling any one of the two TPP.
[1] | A. Huppert, B. Blasius, L. Stone, A model of phytoplankton blooms, Am. Nat., 159 (2002), 156-171. doi: 10.1086/324789 |
[2] | M. Behrenfeld, P. Falkowski, A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42 (1997), 1479-1491. doi: 10.4319/lo.1997.42.7.1479 |
[3] | H. Hoppe, K. Gocke, R. Koppe, C. Beglar, Bacterial growth and primary production along a north-south transect of the Atlantic Ocean, Nature, 416 (2002), 168-171. doi: 10.1038/416168a |
[4] | G. Riley, H. Stommel, D. Burrpus, Qualitative ecology of the plankton of the Western North Atlantic, Bull. Bingham Oceanogr. Collect., 12 (1949), 1-169. |
[5] | C. Dai, M. Zhao, H. Yu, Dynamics induced by delay in a nutrient-phytoplankton model with diffusion, Ecol. Complexity, 26 (2016), 29-36. doi: 10.1016/j.ecocom.2016.03.001 |
[6] | J. Caperon, Time lag in population growth response of Isochrysis Galbana to a variable nitrate environment, Ecology, 50 (1969), 188-192. doi: 10.2307/1934845 |
[7] | Q. Guo, C. Dai, H. Yu, H. Liu, X. Sun, J. Li, et al., Stability and bifurcation analysis of a nutrient-phytoplankton model with time delay, Math. Method Appl. Sci., 46 (2019), 1-22. |
[8] | J. Lin, O. Schofield, P. Falkowski, Adaptive evolution of phytoplankton cell size, Am. Nat., 166 (2005), 496-505. doi: 10.1086/444442 |
[9] | T. Liao, H. Yu, C. Dai, M. Zhao, Impact of noise in phytoplankton-zooplankton system, J. Appl. Ana. Comput., 10 (2020), 1878-1896. |
[10] | Q. Zhao, S. Liu, X. Niu, Effect of water temperature on the dynamic behavior of phytoplankton-zooplankton model, Appl. Math. Comput., 378 (2020), 125211. |
[11] | Z. Zhao, C. Luo, L. Pang, C. Ying, Nonlinear modelling of the interaction between phytoplankton and zooplankton with impulsive feedback control, Chaos Solution Fract., 87 (2016), 255-261. doi: 10.1016/j.chaos.2016.04.011 |
[12] | R. Han, B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal.: Real World Appl., 45 (2019), 822-853. doi: 10.1016/j.nonrwa.2018.05.018 |
[13] | T. Hallam, J. Luna, Effects of toxicants on populations: a qualitative: approach III. Environmental and food chain pathways, J. Math. Biol., 109 (1984), 411-429. |
[14] | T. Hallam, C. Clark, G. Jordan, Effects of toxicants on populations: a qualitative approach II. First order kinetics, J. Math. Biol., 18 (1983), 25-37. doi: 10.1007/BF00275908 |
[15] | M. Huntley, P. Sykes, S. Rohan, V. Marin, Chemically mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurence and significance, Mar. Ecol. Prog., 28 (1986), 105-120. doi: 10.3354/meps028105 |
[16] | J. Nejstgaard, P. Solberg, Repreesion of copepod feeding and fecundity by the toxic haptophyte Prymnesium patelliferum, Sarsia, 81 (1996), 339-344. doi: 10.1080/00364827.1996.10413631 |
[17] | K. Estep, J. Nejstgaard, H. Skjolda, F. Rey, Predation by copepods upon natural populations of Phaeocystis pouchetii as a function of the physiological state of the prey, Mar. Ecol. Prog. Ser., 67 (1990), 333-344. |
[18] | T. Scotti, M. Mimura, J. Wakano, Avoiding toxic prey may promote harmful algal blooms, Ecol. Complexity, 21 (2015), 157-165. doi: 10.1016/j.ecocom.2014.07.004 |
[19] | M. Banerjee, E. Venturino, A phytoplankton-toxic phytoplankton-zooplankton model, Ecol. Complexity, 8 (2011), 239-248. doi: 10.1016/j.ecocom.2011.04.001 |
[20] | S. Khare, O. Misra, J. Dharb, Role of toxin producing phytoplankton on a plankton ecosystem, Nonlinear Anal.: Hybrid Syst., 4 (2010), 496-502. doi: 10.1016/j.nahs.2009.11.006 |
[21] | J. Chattopadhyay, R. Sarkar, R. Mandal, Toxin-producing plankton may act as a biological control for the termination of planktonic blooms-field study and mathematical modeling, J. Theore. Biol., 215 (2002), 333-344. doi: 10.1006/jtbi.2001.2510 |
[22] | J. Chattopadhyay, R. Sarkar, A. Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol., 19 (2002), 137-161. doi: 10.1093/imammb/19.2.137 |
[23] | R. Sarkar, J. Chattopadhyay, Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism-mathematical model and experimental observations, J. Theore. Biol., 224 (2003), 501-516. doi: 10.1016/S0022-5193(03)00200-5 |
[24] | J. Chattopadhyay, R. Sarkar, S. Pal, Mathematical model of harmful algal blooms supported by experimental findings, Ecol. Complexity, 1 (2004), 225-235. doi: 10.1016/j.ecocom.2004.04.001 |
[25] | R. Sarkar, S. Pal, J. Chattopadhyay, Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system-a mathematical model supported by experimental findings, Biosystems, 80 (2005), 11-23. doi: 10.1016/j.biosystems.2004.09.029 |
[26] | E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, Cambridge, 1991. |
[27] | Y. Sun, L. Liu, X. Liu, Exponential synchronization of neural networks with time-varying delays and stochastic impulses, Neural Networks, 132 (2020), 342-352. doi: 10.1016/j.neunet.2020.09.014 |
[28] | Y. Deng, M. Liu, Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations, Appl. Math. Model., 78 (2020), 482-504. doi: 10.1016/j.apm.2019.10.010 |
[29] | X. Jiang, L. Zu, D. Jiang, D. O'Regan, Analysis of a stochastic Holling type II predator-prey model under regime switching, B. Malays. Math. Sci. So., 43 (2020), 2171-2197. doi: 10.1007/s40840-019-00798-6 |
[30] | X. Yu, S. Yuan, T. Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal.: Hybrid Syst., 34 (2019), 209-225. doi: 10.1016/j.nahs.2019.06.005 |
[31] | H. Gao, Y. Wang, Stochastic mutualism model under regime switching with L$\acute{e}$vy jumps, Physica A, 515 (2019), 355-375. doi: 10.1016/j.physa.2018.09.189 |
[32] | Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stochastic mutualism model with L$\acute{e}$vy jumps, Commun. Nonlinear Sci., 43 (2017), 78-90. doi: 10.1016/j.cnsns.2016.05.003 |
[33] | C. Liu, M. Liu, Stochastic dynamics in a non-autonomous prey-predator system with impulsive perturbations and L$\acute{e}$vy jumps, Commun. Nonlinear Sci., 78 (2019), 104851. doi: 10.1016/j.cnsns.2019.104851 |
[34] | R. Sarkar, J. Chattopadhayay, The role of environmental stochasticity in a toxic phytoplankton-non-toxic phytoplankton-zooplankton system, Environmetrics, 14 (2003), 775-792. doi: 10.1002/env.621 |
[35] | Y. Zhao, S. Yuan, T. Zhang, Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation, Commun. Nonlinear Sci., 44 (2017), 266-276. doi: 10.1016/j.cnsns.2016.08.013 |
[36] | Z. Chen, R. Zhang, J. Li, S. Zhang, C. Wei, A stochastic nutrient-phytoplankton model with viral infection and Markov switching, Chaos Soliton Fract., 140 (2020), 110109. doi: 10.1016/j.chaos.2020.110109 |
[37] | Z. Chen, Z. Tian, S. Zhang, C. Wei, The stationary distribution and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton under regime switching, Physica A, 537 (2020), 122728. doi: 10.1016/j.physa.2019.122728 |
[38] | T. Liao, H. Yu, C. Dai, M. Zhao, Impact of cell size effect on nutrient-phytoplankton dynamics, Complexity, 2019. Available from: https://www.hindawi.com/journals/complexity/2019/8205696/. |
[39] | Y. Xia, W. Zhou, Z. Yang, Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays, Math. Biosci. Eng., 17 (2020), 6149-6180. doi: 10.3934/mbe.2020050 |
[40] | Q. Zhao, S. Liu, X. Niu, Stationary distribution and extinction of a stochastic nutrient-phytoplankton-zooplankton model with cell size, Math. Method Appl. Sci., 43 (2020), 1-17. doi: 10.1002/mma.5729 |
[41] | X. Yu, S. Yuan, T. Zhang, The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms, Nonlinear Dynam., 91 (2018), 1653-1668. doi: 10.1007/s11071-017-3971-6 |
[42] | H. Wang, M. Liu, Stationary distribution of a stochastic hybrid phytoplankton-zooplankton model with toxin-producing phytoplankton, Appl. Math. Lett., 101 (2020), 106077. doi: 10.1016/j.aml.2019.106077 |
[43] | L. Gikhman, A. Skorokhod, The Theory of Stochastic Process-I, Springer, Berlin, 1979. |
[44] | X. Mao, Stochastic Differential Equations and Applications 2nd., Chichester: Horwood Publishing Limited, 1997. |
[45] | R. Khasminskii, Stochastic Stability of Differential Equation. Second ed., Springer-Verlag Berlin Heidelberg, 2012. |
[46] | C. Ji, D. Jiang, N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498. doi: 10.1016/j.jmaa.2009.05.039 |
[47] | M. Liu, K. Wang, Asymptotic properties and simulation of a stochastic logistic model under regime switching, Math. Comput. Model., 54 (2011), 2139-2154. doi: 10.1016/j.mcm.2011.05.023 |
[48] | D. Zhao, Study on the threshold of a stochastic SIR epidemic model with its extensions, Commun. Nonlinear Sci., 38 (2016), 172-177. doi: 10.1016/j.cnsns.2016.02.014 |
[49] | M. Liu, C. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 73 (2016), 597-625. doi: 10.1007/s00285-016-0970-z |
[50] | D. Higham, An algorithmic introduction on numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546. doi: 10.1137/S0036144500378302 |
[51] | R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973. |
[52] | A. Jonsson, U. Wennergren, Approximations of population growth in a noisy environment: on the dichotomy of non-age and age structure, J. Theore. Ecol., 12 (2019), 99-110. doi: 10.1007/s12080-018-0391-2 |
[53] | R. Hasminskii, Stochastic Stability of Differential Equations, Springer Science & Business Media, 2011. |
[54] | X. Mao, M. Glenn, R. Eric, Environmental brownian noise suppresses explosion in populatin dynamics, Stoch. Proc. Appl., 97 (2002), 95-110. doi: 10.1016/S0304-4149(01)00126-0 |
[55] | W. Wang, S. T. Liu, Z. B. Liu, D. Wang, Temporal Forcing Induced Pattern Transitions Near the Turing-Hopf Bifurcation in a Plankton System, Int. J. Bifurcat. Chaos, 30 (2020), 2050136. doi: 10.1142/S0218127420501369 |
[56] | A. Lee, B. Sther, S. Engen, Spatial covariation of competing species in a fluctuating environment, Ecology, 101 (2020), e02901. |
[57] | Y. Zhao, S. Yuan, T. Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching, Commun. Nonlinear Sci., 37 (2016), 131-142. doi: 10.1016/j.cnsns.2016.01.013 |
[58] | J. Chattopadhyay, R. Sarkar, A. Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Math. Appl. Med. Biol., 19 (2002), 137-161. doi: 10.1093/imammb/19.2.137 |