In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.
Citation: Liqin Liu, Chunrui Zhang. A neural network model for goat gait[J]. Mathematical Biosciences and Engineering, 2024, 21(8): 6898-6914. doi: 10.3934/mbe.2024302
In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.
[1] | M. Golubitsky, I. Stewart, P. Buono, J. Collins, Symmetry in locomotor central pattern generators and animal gaits, Nature, 401 (1999), 693–695. https://doi.org/10.1038/44416 doi: 10.1038/44416 |
[2] | P. Buono, M. Golubitsky, Models of central pattern generators for quadruped locomotion. Ⅰ. Primary gaits, J. Math. Biol., 42 (2001), 291–326. https://doi.org/10.1007/s002850000058 doi: 10.1007/s002850000058 |
[3] | P. Buono, Models of central pattern generators for quadruped locomotion. Ⅱ.Secondary gaits, J. Math. Biol., 42 (2001), 327–346. https://doi.org/10.1007/s002850000073 doi: 10.1007/s002850000073 |
[4] | L. Q. Liu, C. R. Zhang, Dynamic properties of VDP-CPG model in rhythmic movement with delay, Math. Biosci. Eng., 17 (2020), 3190–3202. https://doi.org/10.3934/mbe.2020181 doi: 10.3934/mbe.2020181 |
[5] | L. Q. Liu, X. X. Liu, C. R. Zhang, Realization of neural network for gait characterization of quadruped locomotion, J. Appl. Anal. Comput., 12 (2022), 455–463. https://doi.org/10.11948/20210005 doi: 10.11948/20210005 |
[6] | B. Strohmer, P. Manoonpong, L. B. Larsen, Flexible spiking CPGs for online manipulation during hexapod walking, Front. Neurorobotics, 14 (2020), 1–12. https://doi.org/10.3389/fnbot.2020.00041 doi: 10.3389/fnbot.2020.00041 |
[7] | C. Bal, Neural coupled central pattern generator based smooth gait transition of a biomimetic hexapod robot, Neurocomputing, 420 (2021), 210–226. https://doi.org/10.1016/j.neucom.2020.07.114 doi: 10.1016/j.neucom.2020.07.114 |
[8] | Y. Son, T. Kamano, T. Yasuno, T. Suzuki, H. Harada, Generation of adaptive gait patterns for quadruped robot with CPG network including motor dynamic model, Electr. Eng. Jpn., 155 (2006), 35–43. https://doi.org/10.1002/eej.20225 doi: 10.1002/eej.20225 |
[9] | T. T. Duc, I. M. Koo, Y. H. Lee, H. Moon, S. Park, J. C. Koo, et al., Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network, Robot. Auton. Syst., 62 (2014), 1497–1516. https://doi.org/10.1016/j.robot.2014.05.011 doi: 10.1016/j.robot.2014.05.011 |
[10] | J. Q. Zhang, F. Gao, X. L. Han, X. B. Chen, X. Y. Han, Trot gait design and CPG method for a quadruped robot, J. Bionic. Eng., 11 (2014), 18–25. https://doi.org/10.1016/S1672-6529(14)60016-0 doi: 10.1016/S1672-6529(14)60016-0 |
[11] | J. X. Zhao, T. Iwasaki, CPG control for harmonic motion of assistive robot with human motor control identification, IEEE Trans. Control Syst. Technol., 28 (2020), 1323–1336. https://doi.org/10.1109/TCST.2019.2910160 doi: 10.1109/TCST.2019.2910160 |
[12] | H. Suzuki, H. Nishi, Animal gait generation based on human feeling for quadrupedal robot, Int. J. Innovative Comput., Inf. Control, 4 (2008), 3341–3348. |
[13] | Z. Bhatti, Oscillator driven central pattern generator (CPG) system for procedural animation of quadruped locomotion, Multimedia Tools Appl., 78 (2019), 30485–30502. https://doi.org/10.1007/s11042-019-7641-1 doi: 10.1007/s11042-019-7641-1 |
[14] | Y. J. Xu, Analysis and Simulation of Kinematic Characteristics of Goat's Multi-mode Gait, Masters Thesis, Jilin University, 2021. https://doi.org/10.27162/d.cnki.gjlin.2021.005610 |
[15] | G. Y. Zhang, Research on Bionic Goat Mechanism on Sloping Fields, Masters Thesis, Henan University of Science and Technolog, 2011. |
[16] | T. Faria, L. T. Magalhães, Normal forms for retarded functional differential equation with parameters and applications to hopf bifurcation, J. Differ. Equations, 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144 |
[17] | T. Min, Y. Cheng, M. L. Gu, H. H. You, Parameter estimation of nonlinear dynamic system and sensitivity, Comput. Eng. Appl., 49 (2013), 47–49. https://doi.org/10.3778/j.issn.1002-8331.1110-0488 doi: 10.3778/j.issn.1002-8331.1110-0488 |