Research article

A neural network model for goat gait

  • Received: 15 May 2024 Revised: 26 July 2024 Accepted: 14 August 2024 Published: 21 August 2024
  • In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.

    Citation: Liqin Liu, Chunrui Zhang. A neural network model for goat gait[J]. Mathematical Biosciences and Engineering, 2024, 21(8): 6898-6914. doi: 10.3934/mbe.2024302

    Related Papers:

  • In this paper, our main objective was to investigate the central pattern generator (CPG) neural network model for quadruped gait with time delay. First, we computed the normal form of the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models for goat's diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical analysis.



    加载中


    [1] M. Golubitsky, I. Stewart, P. Buono, J. Collins, Symmetry in locomotor central pattern generators and animal gaits, Nature, 401 (1999), 693–695. https://doi.org/10.1038/44416 doi: 10.1038/44416
    [2] P. Buono, M. Golubitsky, Models of central pattern generators for quadruped locomotion. Ⅰ. Primary gaits, J. Math. Biol., 42 (2001), 291–326. https://doi.org/10.1007/s002850000058 doi: 10.1007/s002850000058
    [3] P. Buono, Models of central pattern generators for quadruped locomotion. Ⅱ.Secondary gaits, J. Math. Biol., 42 (2001), 327–346. https://doi.org/10.1007/s002850000073 doi: 10.1007/s002850000073
    [4] L. Q. Liu, C. R. Zhang, Dynamic properties of VDP-CPG model in rhythmic movement with delay, Math. Biosci. Eng., 17 (2020), 3190–3202. https://doi.org/10.3934/mbe.2020181 doi: 10.3934/mbe.2020181
    [5] L. Q. Liu, X. X. Liu, C. R. Zhang, Realization of neural network for gait characterization of quadruped locomotion, J. Appl. Anal. Comput., 12 (2022), 455–463. https://doi.org/10.11948/20210005 doi: 10.11948/20210005
    [6] B. Strohmer, P. Manoonpong, L. B. Larsen, Flexible spiking CPGs for online manipulation during hexapod walking, Front. Neurorobotics, 14 (2020), 1–12. https://doi.org/10.3389/fnbot.2020.00041 doi: 10.3389/fnbot.2020.00041
    [7] C. Bal, Neural coupled central pattern generator based smooth gait transition of a biomimetic hexapod robot, Neurocomputing, 420 (2021), 210–226. https://doi.org/10.1016/j.neucom.2020.07.114 doi: 10.1016/j.neucom.2020.07.114
    [8] Y. Son, T. Kamano, T. Yasuno, T. Suzuki, H. Harada, Generation of adaptive gait patterns for quadruped robot with CPG network including motor dynamic model, Electr. Eng. Jpn., 155 (2006), 35–43. https://doi.org/10.1002/eej.20225 doi: 10.1002/eej.20225
    [9] T. T. Duc, I. M. Koo, Y. H. Lee, H. Moon, S. Park, J. C. Koo, et al., Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network, Robot. Auton. Syst., 62 (2014), 1497–1516. https://doi.org/10.1016/j.robot.2014.05.011 doi: 10.1016/j.robot.2014.05.011
    [10] J. Q. Zhang, F. Gao, X. L. Han, X. B. Chen, X. Y. Han, Trot gait design and CPG method for a quadruped robot, J. Bionic. Eng., 11 (2014), 18–25. https://doi.org/10.1016/S1672-6529(14)60016-0 doi: 10.1016/S1672-6529(14)60016-0
    [11] J. X. Zhao, T. Iwasaki, CPG control for harmonic motion of assistive robot with human motor control identification, IEEE Trans. Control Syst. Technol., 28 (2020), 1323–1336. https://doi.org/10.1109/TCST.2019.2910160 doi: 10.1109/TCST.2019.2910160
    [12] H. Suzuki, H. Nishi, Animal gait generation based on human feeling for quadrupedal robot, Int. J. Innovative Comput., Inf. Control, 4 (2008), 3341–3348.
    [13] Z. Bhatti, Oscillator driven central pattern generator (CPG) system for procedural animation of quadruped locomotion, Multimedia Tools Appl., 78 (2019), 30485–30502. https://doi.org/10.1007/s11042-019-7641-1 doi: 10.1007/s11042-019-7641-1
    [14] Y. J. Xu, Analysis and Simulation of Kinematic Characteristics of Goat's Multi-mode Gait, Masters Thesis, Jilin University, 2021. https://doi.org/10.27162/d.cnki.gjlin.2021.005610
    [15] G. Y. Zhang, Research on Bionic Goat Mechanism on Sloping Fields, Masters Thesis, Henan University of Science and Technolog, 2011.
    [16] T. Faria, L. T. Magalhães, Normal forms for retarded functional differential equation with parameters and applications to hopf bifurcation, J. Differ. Equations, 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144
    [17] T. Min, Y. Cheng, M. L. Gu, H. H. You, Parameter estimation of nonlinear dynamic system and sensitivity, Comput. Eng. Appl., 49 (2013), 47–49. https://doi.org/10.3778/j.issn.1002-8331.1110-0488 doi: 10.3778/j.issn.1002-8331.1110-0488
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(142) PDF downloads(9) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog