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Abstract: In this paper, our main objective was to investigate the central pattern generator (CPG)
neural network model for quadruped gait with time delay. First, we computed the normal form of
the model on the center manifold, the bifurcation direction, and stability conditions of the bifurcating
periodic solutions. Second, we applied the CPG model for quadruped gait to obtain reference models
for goat’s diagonal trotting gait on the flat ground and walking gait on the 18 degree slope through the
trust region inversion algorithm. Finally, we performed numerical simulations to support theoretical
analysis.
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1. Introduction

Animal gaits are a rhythmic behavior controlled by central pattern generator (CPG), which generates
rhythmic signals to the muscle groups of animals, controls their own rhythmic movements, and pro-
duces various gaits in animal locomotion. From a biological perspective, CPG is a distributed vibration
network composed of neurons in the central nervous system of animals. Human beings get inspiration
from the organizational structure, movement mechanism, and behavior of biological bodies, and con-
stantly learn and imitate the characteristics and functions of certain organisms, thereby improving their
adaptability to nature and making contributions to the development of science and technology. There-
fore, biologists and mathematicians have established some CPG biological and mathematical models
by imitating the neural network patterns of animal CPG. Golubitsky et al. [1] has investigated a com-
position pattern of CPG neurons in quadrupedal gaits and obtained a new primary gait ”jump”. The
animal gait network proposed by Buono et al. [2] can generate six primary gaits: walk, trot, pace,
bound, pronk, and jump. Furthermore, based on the primary gait, the phase patterns of transverse gal-
lop and rotary gallop in quadruped secondary gait were provided [3]. The present authors have studied
CPG neural network models for the primary gait of quadrupeds [4, 5].

Animal gait CPG neural networks have wide applications. Inspired by animal movements, in the
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gait planning of biomimetic robots, a CPG model is set for the robot system by imitating the CPG
network of animals in nature. By utilizing the coupling between oscillators in the CPG model, periodic
oscillation signals are generated to achieve stable rhythmic gait behavior of the robot. For instance,
the CPG network can be used to construct gait networks for hexapod robots gait networks [6, 7] and
quadruped robots gait networks [8–10]. In article [11], a method for designing a robot system controller
was proposed using a CPG control network, and in article [12], the robot gait was produced based on
animal gait. In [13], a CPG animation model was constructed using the CPG network system.

In quadruped mammals, goats have smaller bodies and stronger bones in their limbs, and their
hindlimbs are stronger than their forelimbs specifically. Goats have a brisk and agile gait when walking,
and they can walk freely, flexibly, and quickly on the ground, slopes, steep walls and uneven surfaces.
Moreover, they can also walk long distances and have good road adaptability and obstacle crossing
ability. Goats are less restricted by the environment and, therefore, goat gaits have certain research
value. In literature [14], the author used goats as the research object and conducted kinematic analysis
on the multimode gait of goats on conventional and unconventional roads. In work [15], the author
analyzed the gait of goats from the perspective of structural bionics. At present, there is little research
on mathematical models of goat gaits to our knowledge. In this paper, we deal with this problem and
propose the CPG neural network models of goat gaits from a mathematical perspective. We study the
following model given in [5]



ẋ1(t) = ax1(t) + btanh(x1(t)) + dtanh(x7(t)) + ctanh(x2(t − τ)),
ẋ2(t) = ax2(t) + btanh(x2(t)) + dtanh(x8(t)) + ctanh(x1(t − τ)),
ẋ3(t) = ax3(t) + btanh(x3(t)) + dtanh(x1(t)) + ctanh(x4(t − τ)),
ẋ4(t) = ax4(t) + btanh(x4(t)) + dtanh(x2(t)) + ctanh(x3(t − τ)),
ẋ5(t) = ax5(t) + btanh(x5(t)) + dtanh(x3(t)) + ctanh(x6(t − τ)),
ẋ6(t) = ax6(t) + btanh(x6(t)) + dtanh(x4(t)) + ctanh(x5(t − τ)),
ẋ7(t) = ax7(t) + btanh(x7(t)) + dtanh(x5(t)) + ctanh(x8(t − τ)),
ẋ8(t) = ax8(t) + btanh(x8(t)) + dtanh(x6(t)) + ctanh(x7(t − τ)),

(1.1)

where a, b, c, d are constants and τ ≥ 0 is the time delay. The state variable (x1(t), x2(t), · · · , x8(t)) is
the output signal from the CPG to the legs, where x1(t) and x7(t) are the output signals to the left hind
leg, x3(t) and x5(t) are the output signals to the left fore leg, x2(t) and x8(t) are the output signals to the
right hind leg, and x4(t) and x6(t) are the output signals to the right fore leg. The network diagram of
system (1.1) is shown in Figure 1.
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Figure 1. Schematic diagram of the system (1.1).

In reference [5], the authors give the conditions (H1) : |c| > |a + b + d| i f (a + b)d > 0, (H2) : |c| >
|a + b − d| i f (a + b)d < 0 , and critical values τk

j( j = 1, 2, 3, 4, 5, 6, 7, 8) (see Table 1 in [5]) for the
Hopf bifurcations of the model (1.1) at the zero equilibrium.

The main objective of this paper is to provide further the bifurcation direction and stability condi-
tions of the bifurcating periodic solutions of the model (1.1). Based on the model (1.1), the CPG neural
network models of goat gaits are given by using the parameter inversion algorithm.

2. Normal form for Hopf bifurcation

In this section, we use the method in reference [16] to calculate the normal forms of Hopf bifurca-
tions on the center manifold of the Eq (1.1) at the zero equilibrium. Normalizing the delay τ by the
time-scaling t 7→ t

τ
, Eq (1.1) can be rewritten as a functional differential equation in C = C([−1, 0],R8),

u̇1(t) = τ(au1(t) + btanh(u1(t)) + dtanh(u7(t)) + ctanh(u2(t − 1))),
u̇2(t) = τ(au2(t) + btanh(u2(t)) + dtanh(u8(t)) + ctanh(u1(t − 1))),
u̇3(t) = τ(au3(t) + btanh(u3(t)) + dtanh(u1(t)) + ctanh(u4(t − 1))),
u̇4(t) = τ(au4(t) + btanh(u4(t)) + dtanh(u2(t)) + ctanh(u3(t − 1))),
u̇5(t) = τ(au5(t) + btanh(u5(t)) + dtanh(u3(t)) + ctanh(u6(t − 1))),
u̇6(t) = τ(au6(t) + btanh(u6(t)) + dtanh(u4(t)) + ctanh(u5(t − 1))),
u̇7(t) = τ(au7(t) + btanh(u7(t)) + dtanh(u5(t)) + ctanh(u8(t − 1))),
u̇8(t) = τ(au8(t) + btanh(u8(t)) + dtanh(u6(t)) + ctanh(u7(t − 1))).

(2.1)

Denoting U = (u1, u2, u3, u4, u5, u6, u7, u8)T , Ut = U(t + θ),Ut ∈ C, where θ ∈ [−1, 0]. Let τ =
τ0

2 j + µ ( j = 1, 2, 3, 4), for µ is a bifurcation parameter, then Eq (2.1) can further be written as the
following form:

U̇(t) = L(0)Ut + F(Ut, µ), (2.2)

where
F(Ut, µ) = (L(µ) − L(0))Ut + F0(Ut, µ),
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L(µ)φ = (τ0
2 j + µ)



(a + b)(φ1(0)) + dφ7(0) + cφ2(−1)
(a + b)(φ2(0)) + dφ8(0) + cφ1(−1)
(a + b)(φ3(0)) + dφ1(0) + cφ4(−1)
(a + b)(φ4(0)) + dφ2(0) + cφ3(−1)
(a + b)(φ5(0)) + dφ3(0) + cφ6(−1)
(a + b)(φ6(0)) + dφ4(0) + cφ5(−1)
(a + b)(φ7(0)) + dφ5(0) + cφ8(−1)
(a + b)(φ8(0)) + dφ6(0) + cφ7(−1)


,

and

F0(Ut, µ) = (τ0
2 j + µ)



−b
3φ

3
1(0) − d

3φ
3
7(0) − c

3φ
3
2(−1)

−b
3φ

3
2(0) − d

3φ
3
8(0) − c

3φ
3
1(−1)

−b
3φ

3
3(0) − d

3φ
3
1(0) − c

3φ
3
4(−1)

−b
3φ

3
4(0) − d

3φ
3
2(0) − c

3φ
3
3(−1)

−b
3φ

3
5(0) − d

3φ
3
3(0) − c

3φ
3
6(−1)

−b
3φ

3
6(0) − d

3φ
3
4(0) − c

3φ
3
5(−1)

−b
3φ

3
7(0) − d

3φ
3
5(0) − c

3φ
3
8(−1)

−b
3φ

3
8(0) − d

3φ
3
6(0) − c

3φ
3
7(−1)


+ h.o.t.,

where φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8)T ∈ C. By the Riesz representation theorem, there is η(θ, µ),
such that L(µ)φ =

∫ 0

−1
dη(θ, µ)φ(θ), and we select η(θ, µ) = (τ0

2 j + µ)(Aδ(θ) + Bδ(θ + 1)), where

A =


B0 0 0 D0

D0 B0 0 0
0 D0 B0 0
0 0 D0 B0

 , B =


C0 0 0 0
0 C0 0 0
0 0 C0 0
0 0 0 C0

 ,

B0 =

(
a + b 0

0 a + b

)
,D0 =

(
d 0
0 d

)
,C0 =

(
0 c
c 0

)
.

The Taylor expansion of F(Ut, µ) is denoted as

F(Ut, µ) =
1
2!

F2(φ, µ) +
1
3!

F3(φ, µ) + h.o.t.

with

F2(φ, µ) = µ



(a + b)(φ1(0)) + dφ7(0) + cφ2(−1)
(a + b)(φ2(0)) + dφ8(0) + cφ1(−1)
(a + b)(φ3(0)) + dφ1(0) + cφ4(−1)
(a + b)(φ4(0)) + dφ2(0) + cφ3(−1)
(a + b)(φ5(0)) + dφ3(0) + cφ6(−1)
(a + b)(φ6(0)) + dφ4(0) + cφ5(−1)
(a + b)(φ7(0)) + dφ5(0) + cφ8(−1)
(a + b)(φ8(0)) + dφ6(0) + cφ7(−1)


,
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F3(φ, µ) = τ0
2 j



−b
3φ

3
1(0) − d

3φ
3
7(0) − c

3φ
3
2(−1)

−b
3φ

3
2(0) − d

3φ
3
8(0) − c

3φ
3
1(−1)

−b
3φ

3
3(0) − d

3φ
3
1(0) − c

3φ
3
4(−1)

−b
3φ

3
4(0) − d

3φ
3
2(0) − c

3φ
3
3(−1)

−b
3φ

3
5(0) − d

3φ
3
3(0) − c

3φ
3
6(−1)

−b
3φ

3
6(0) − d

3φ
3
4(0) − c

3φ
3
5(−1)

−b
3φ

3
7(0) − d

3φ
3
5(0) − c

3φ
3
8(−1)

−b
3φ

3
8(0) − d

3φ
3
6(0) − c

3φ
3
7(−1)


.

Expanding space C to BC = {φ : [−1, 0] → C8| φ is continuous on [-1,0) and lim
θ→0−

φ(θ) ∈ C8}. The

element of BC can be expressed as υ = φ + X0ν, φ ∈ C, ν ∈ C8, and

X0(θ) =
{

0, − 1 ≤ θ < 0
I, θ = 0

with I as the identity matrix.
For ϕ ∈ C1 = C1([−1, 0],C8), we define

A0ϕ =

 ϕ̇, − 1 ≤ θ < 0∫ 0

−1
dη(θ, 0)ϕ(θ), θ = 0.

(2.3)

For ψ ∈ C1∗ = C1([−1, 0],C8∗), the adjoint operator of A0 is

A∗0ψ =

 −ψ̇, − 1 ≤ s < 0,∫ 0

−1
ψ(−s)dη(s, 0), s = 0,

(2.4)

and a bilinear inner product is the following:

< ψ, ϕ >= ψ̄(0)ϕ(0) −
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)dη(θ, 0)ϕ(ξ)dξ. (2.5)

Let Φ(θ) and Ψ(s) be the eigenvectors corresponding to the eigenvalues iω jτ
0
2 j and −iω jτ

0
2 j, re-

spectively. Note that Φ(θ) = (ϕ(θ), ϕ̄(θ)), Ψ(s) = (ψ̄(s), ψ(s))T with Φ̇ = Φ(θ)J, Ψ̇(s) = −JΨ(s), <
Ψ(s),Φ(θ) >= I, and J = diag(iω jτ

0
2 j,−iω jτ

0
2 j). It can be easily calculated from (2.3) and (2.4) that

ϕ(θ) = (1,−1, 1,−1, 1,−1, 1,−1)T eiω jτ
0
2 jθ,

ψ(s) = D(−1, 1,−1, 1,−1, 1,−1, 1)eiω jτ
0
2 j s.

Hence, we obtain D = 1

8(−1+ce
iω jτ

0
2 j )

from < ϕ(s), ϕ(θ) >= 1.

Let P be a vector space expanded by ϕ(θ) and ϕ̄(θ), P∗ be a vector space expanded by ϕ(s) and ϕ̄(s),
then C can be decomposed as C = P ⊕ Q, where Q = {ϕ ∈ C :< ψ, ϕ >= 0,∀ψ ∈ P∗}. Define mapping
Π : BC → P as Π(φ + X0ν) = Φ[(ψ, ϕ) + ψ(0)ν] and Q1 = kerπ

⋂
C1.

Using the decomposition of U = Φx + y with x = (x1, x2)T , y = (y1, y2, y3, y4, y5, y6, y7, y8)T , system
(2.1) can be decomposed as {

ẋ = Jx + Ψ(0)F(Φx + y, µ),
ẏ = AQ1y + (I − Π)X0F(Φx + y, µ).

(2.6)

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6898–6914.



6903

We have the Taylor expansion as follows:{
ẋ = Jx + 1

2! f 1
2 (x, y, µ) + 1

3! f 1
3 (x, y, µ) + h.o.t.,

ẏ = AQ1y + 1
2! f 2

2 (x, y, µ) + 1
3! f 2

3 (x, y, µ) + h.o.t.,
(2.7)

where
f 1
2 (x, y, µ) = Ψ(0)F2(Φx + y, µ), f 1

3 (x, y, µ) = Ψ(0)F3(Φx + y, µ),

f 2
2 (x, y, µ) = (I − Π)X0F2(Φx + y, µ), f 2

3 (x, y, µ) = (I − Π)X0F3(Φx + y, µ).

Normal form of Eq (2.7) on the center manifold at the origin is given by

ẋ = Jx +
1
2!

g1
2(x, 0, µ) +

1
3!

g1
3(x, 0, µ) + h.o.t., (2.8)

where
g1

2(x, 0, µ) = Projker(M1
2 ) f 1

2 (x, 0, µ),

g1
3(x, 0, µ) = Projker(M1

3 ) f̃ 1
3 (x, 0, µ),

ker(M1
2) = span{

(
µx1

0

)
,

(
0
µx2

)
},

ker(M1
3) = span{

(
µ2x1

0

)
,

(
x2

1x2

0

)
,

(
0

µ2x2

)
,

(
0

x1x2
2

)
},

f̃ 1
3 (x, 0, µ) = f 1

3 (x, 0, µ) +
3
2

[(Dx f 1
2 )U1

2(x, µ) + [(Dy f 1
2 )h]U2

2(x, µ),

U1
2(x, µ)µ=0 = (M1

2)−1ProjIm(M1
2) f 1

2 (x, 0, 0),M2
2U2

2(x, µ) = f 2
2 (x, 0, µ).

After calculating, we obtain
1
2!

g1
2(x, 0, µ) =

(
ā1µx1

a1µx2

)
,

where a1 = 8D(−a − b − d + ceiω jτ
0
2 j).

In the following, we can compute the cubic terms 1
3!g

1
3(x, 0, µ) as

1
3!

g1
3(x, 0, µ) =

1
3!

Projker(M1
3 ) f̃ 1

3 (x, 0, µ)

=
1
3!

ProjS f̃ 1
3 (x, 0, 0) + O(µ2|x|)

=
1
3!

ProjS f 1
3 (x, 0, µ) +

1
4

ProjS [(Dx f 1
2 )(x, 0, 0)U1

2(x, 0) + (Dy f 1
2 )(x, 0, 0)U2

2(x, 0)]

+ O(µ2|x|),

with

S = span{
(

x2
1x2

0

)
,

(
0

x1x2
2

)
}.

Since f 1
2 (x, 0, 0) = (0, 0)T , f 1

2 (x, y, 0) = (0, 0)T , we obtain U1
2(x, 0) = (0, 0)T , (Dy f 1

2 )(x, 0, 0) = (0, 0)T ,
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thus

1
3!

g1
3(x, 0, µ) =

1
3!

ProjS f 1
3 (x, 0, 0) + O(µ2|x|)

=

(
ā2x2

1x2

a2x1x2
2

)
+ O(µ2|x|),

where a2 = −8τ0
2 jD(−b + ceiωiτ

0
2 j − d).

Then, the normal form (2.8) can be written as

{
ẋ1 = iωiτ

0
2 jx1 + ā1µx1 + ā2x2

1x2 + h.o.t.,
ẋ2 = −iωiτ

0
2 jx2 + a1µx2 + a2x1x2

2 + h.o.t..
(2.9)

By transforming the variables x1 = w1 + iw2, x2 = w1 − iw2 and w1 = rcosξ, w2 = rsinξ, Eq (2.9) can
be written as

{
ṙ = k1µr + k2r3 + h.o.t,
ξ̇ = −ω jτ

0
2 j + h.o.t, (2.10)

where k1 = Re(a1), k2 = Re(a2).

According to [16], we obtain the following results.

Theorem 2.1 When k2 , 0, then
1) If k2 < 0, then the bifurcation periodic solutions of system (1.1) near τ0

2 j( j = 1, 2, 3, 4) are stable; if
k2 > 0, then the bifurcation periodic solutions of system (1.1) are unstable.
2) If k1k2 < 0, then Hopf bifurcations are supercritical; if k1k2 > 0, then Hopf bifurcations are subcriti-
cal.

3. Numerical simulations

In this section, we will provide two numerical examples to validate our theoretical analysis.
Example 1. We consider system (1.1) with a = −4.5, b = 1, c = 6.5, d = −2, which satisfies the
conditions (H1). Using the algorithm in [5], we obtain ω2 = 7.4772, ω3 = 6.325, τ0

4 = 0.2861, τ0
6 =

0.2852. From ω2 = 7.4772, τ0
4 = 0.2861, we get k1 = Re(a1) = 0.4179 > 0, k2 = Re(a2) = −0.2349 <

0, k1k2 = −0.0982 < 0. According to Theorem 2.1, the bifurcation periodic solution of system (1.1)
is stable and supercritical at τ = 0.4 > τ0

4 = 0.2861, as shown in Figure 2. This periodic solution
corresponds to the walking gait of quadrupeds.

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6898–6914.
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Figure 2. Trajectories x1(t), x2(t), x3(t), and x4(t) of system (1.1) when τ = 0.4 > τ0
4 = 0.2861

with initial value (0.1,-0.1,0.1,-0.1,0.2,-0.2,0.2,-0.2).

From ω3 = 6.325, τ0
6 = 0.2852, we know that k1 = Re(a1) = 0.6486, k2 = Re(a2) = −0.2544 <

0, k1k2 = −0.1650 < 0. According to Theorem 2.1, the bifurcation periodic solution of system (1.1) is
stable and supercritical at τ = 0.4 > τ0

6 = 0.2852 (see Figure 3), and this periodic solution corresponds
to the trotting gait of quadrupeds.
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Figure 3. Trajectories x1(t), x2(t), x3(t), and x4(t) of system (1.1) when τ = 0.4 > τ0
6 = 0.2852

with initial value (0.1,-0.1,0.2,-0.2,0.1,-0.1,0.2,-0.2).

Example 2. In system (1.1), we select parameters a = −3, b = 0.1, c = 4, d = 1, which satisfies
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(H2). By calculation, it is obtained that w1 = 3.5119, τ0
2 = 0.5869, k1 = Re(a1) = 0.5957 > 0,

k2 = Re(a2) = −0.5951 < 0, k1k2 = −0.3545 < 0. From Theorem 2.1, the bifurcation periodic solution
of system (1.1) is stable and supercritical at τ = 0.7 > τ0

2 = 0.5869, as shown in Figure 4. This periodic
solution corresponds to the pacing gait of quadrupeds.

0 5 10 15 20 25 30
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0.6

0.8

x 1
,x
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τ =0.7

x
1

x
2

x
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x
4

Figure 4. Trajectories x1(t), x2(t), x3(t), and x4(t) of system (1.1) with the initial values(0.1,-
0.1,0.2,-0.2,0.1,-0.1,0.2,-0.2) when τ = 0.7.

4. Goat gait model

In this section. we employ model (1.1) as the inversion model, and use the trust region algorithm
[17] to give the goat’s diagonal trotting model on flat ground and the walking gait model on the ground
with a slope of 18 degrees.

4.1. Gait model for goat diagonal trotting on flat ground

By analyzing the spatiotemporal characteristic diagram of the goat’s diagonal trot gait (Figure 3.2(b)
in [14]), we obtain that the two legs on the diagonal of the goat are mostly in a supported or airborne
state when trotting diagonally on flat ground, and the four legs airborne and single legs support the
states only account for a small part of the whole gait cycle and can be ignored. So, we assume that
the support state and airborne state of the two legs on the diagonal each account for half of the whole
cycle. In the diagonal trotting joint angle change curve of goats (Figures 3 and 4 in [14]), an average of
20 points are extracted from the pastern joint angles and wrist joint angles curves of the two front legs,
as well as the toe joint angle and tarsal joint angle curves of the two hind legs, respectively (within one
cycle). Next, we translate these points to the vicinity of the origin and convert them into radians as the
true values x̂i(tl)(i = 1, 2, · · · , 8; l = 1, 2, · · · , 20) of CPG oscillators of the corresponding legs of goats.
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Finally, we averagely select 20 values of periodic solutions x1(t) to x8(t) within one cycle of model
(1.1)(a = −2, b = 1, d = −2, τ = 0.25) as the theoretical values xi(tl, c)(i = 1, 2, · · · , 8; l = 1, 2, · · · , 20)
of CPG oscillators, respectively. Using the trust region algorithm [17], the parameter c = 6.4300 is

obtained, as shown in Table 1. The error in Table 1 is f = 1
2

8∑
i=1

20∑
l=1

(x̂i(tl) − xi(tl, c))2.

Table 1. Inversion results when parameter c takes different initial values.

The initial value Iterations error f Numerical solution
6.1 11 11.6591 6.4300
6.3 9 11.6591 6.4300
6.5 5 11.6591 6.4300
7.2 9 11.6591 6.4300

Next, in order to better describe the effect of the simulation, we calculated the synchronization error
between the theoretical value and the real value. That is, we calculated the point-by-point difference
between the 20 pairs of theoretical values and true values of the corresponding joint angles of each leg,
as shown in Figures 5 and 6.
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Figure 5. Schematic diagrams of synchronization error between the simulation and the real
data of joint angle of front leg.
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Figure 6. Schematic diagrams of synchronization error between the simulation and the real
data of joint angle of hind leg.

As can be seen from Figures 5 and 6, the synchronization error ranges of the pastern joint angle and
wrist joint angle of the front leg are [-0.5, 0.6] and [-0.85, 0.08], and the synchronization error ranges
of the toe joint angle and the tarsal joint angle of the back leg are [-0.4, 0.95] and [-0.6, 0.95].

For parameters a = −2, b = 1, c = 6.4300, d = −2, τ = 0.25, the critical value τ0
6 = 0.2227 of

trotting gait and k1 = Re(a1) = 1 > 0, k2 = Re(a2) = −0.2227 < 0, k1k2 = −0.2227 < 0 are calculated.
According to Theorem 2.1, the bifurcation periodic solution of system (1.1) is stable and supercritical
at τ = 0.25 > τ0

6 = 0.2227 (see Figure 7).
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Figure 7. Trajectories x1(t), x2(t), x3(t), and x4(t) of system (1.1) with the initial values (0.1,-
0.1,0.1,-0.1,0.2,-0.2,0.2,-0.2) at τ = 0.25.

Therefore, the model (1.1) (a = −2, b = 1, c = 6.4300, d = −2, τ = 0.25) provides a reference
model for the goat’s diagonal trot gait on flat ground.

4.2. Gait model of goats walking on an 18 degree slope

According to the analysis of the spatiotemporal state diagram of each leg of a goat walking on an
18 degree slope (Figures 3–8 in [15]), it is found that during one gait cycle, each leg of the goat takes
turns to be suspended while the other three legs are in a supported state, and they took almost the same
amount of time. Assuming that within a gait cycle, each leg of the goat is in a suspended state while
the other three legs are in a supported state for the same amount of time.

Similar to Section 4.1, we take 20 data from the joint angle curve of each leg in the Figures 3–9 [15]
(the curve of the wrist joint angle α of each leg and the curve of the angle β between the thighs of
each leg and the forward direction) as the true values x̂i(tl)(i = 1, 2, · · · , 8; l = 1, 2, · · · , 20) of CPG
oscillators, then we select 20 values (within one cycle) from the periodic solutions x1(t) to x8(t) of
the model (1.1)(a = −2, b = 1, c = 6.5, d = −2) as the theoretical values xi(tl, τ)(i = 1, 2, · · · , 8; l =
1, 2, · · · , 20) of CPG oscillators, and the parameter τ = 0.2450 is obtained by the trust region algorithm,
as shown in Table 2. The precision ε in Table 2 is the degree of accuracy that the gradient of the

objective function f = 1
2

8∑
i=1

20∑
l=1

(x̂i(tl)− xi(tl, τ))2 needs to achieve when the objective function f reaches

its optimal solution in the trust region algorithm. Similar to Section 4.1, synchronization error diagrams
between theoretical values and true values are shown in Figures 8 and 9.
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Table 2. Inversion results when parameter τ takes different initial values.

The initial value of τ Iterations precision ε Numerical solution
0.25 5 1.85 0.2450
0.28 8 1.85 0.2450
0.39 16 1.85 0.2450
0.4 13 1.85 0.2450
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Figure 8. Schematic diagrams of synchronization error between simulation and real data of
the wrist joint of legs: (a) left hind leg; (b) right hind leg; (c) left front leg; (d) right front leg.
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Figure 9. Schematic diagrams of synchronization error between simulation and real data of
the joint between the thigh and the forward direction of legs: (e) left front leg; (f) right front
leg; (g) left hind leg; (h) right hind leg.

From the two figures, we see that the synchronization error ranges of the wrist angle of left hind leg,
right hind leg, left front leg, and right front leg are [-1.2, 1.2], [-0.9, 0.95], [-1.2, 0.9], and [-0.9, 1.45].
The synchronization error ranges of the angle between the forward direction of thigh movement and
the left hind leg, right hind leg, left front leg, and right front leg are, respectively, [-0.95, 0.9], [-1.45,
0.6], [-1.3, 1.5], and [-1.6, -0.6].

For parameters a = −2, b = 1, c = 6.5, d = −2, the critical values τ0
4 = 0.2048 of the walking

gait and k1 = Re(a1) = 0.8232 > 0, k2 = Re(a2) = −0.1867 < 0, k1k2 = −0.1537 < 0 are calculated.
According to Theorem 2.1, the bifurcation periodic solution of system (1.1) is stable and supercritical
at τ = 0.2450 > τ0

4 = 0.2048, as shown in Figure 10.
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Figure 10. Trajectories x1(t), x2(t), x3(t), and x4(t) of system (1.1) with the initial values
(0.1,-0.1,0.1,-0.1,0.2,-0.2,0.2,-0.2) at τ = 0.2450.

Figure 10 indicates that the periodic solution obtained by the system (1.1) corresponds to a stable
walking gait when the parameters a = −2, b = 1, c = 6.5, d = −2, τ = 0.2450. Therefore, model (1.1)(
a = −2, b = 1, c = 6.5, d = −2) provides a reference model for the CPG walking gait model of goats
walking uphill on an 18 degree slope when the time delay parameter τ = 0.2450.

5. Conclusions

We employed the normal form theory according to Faria and Magalhães to derive the normal form
for Hopf bifurcation of a quadruped gait CPG model on the center manifold, and the bifurcation direc-
tion and stability of bifurcating periodic solution at the origin are analyzed. The quadruped gait CPG
model was used as an inversion model, and goat gait models were constructed using the trust region
inversion algorithm. The feasibility of using the CPG model as a goat gait model was verified through
simulations.

The neural network model presented in this article can predict the goat gait to contribute to artificial
intelligence. The weakness of this paper is that the synchronization errors of some points are slightly
larger when using our mathematical model to simulate goat gait, especially walking gait. We will
modify this model further in the future.
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