Research article Special Issues

A novel plantar pressure analysis method to signify gait dynamics in Parkinson's disease


  • Received: 17 March 2023 Revised: 29 May 2023 Accepted: 05 June 2023 Published: 13 June 2023
  • Plantar pressure can signify the gait performance of patients with Parkinson's disease (PD). This study proposed a plantar pressure analysis method with the dynamics feature of the sub-regions plantar pressure signals. Specifically, each side's plantar pressure signals were divided into five sub-regions. Moreover, a dynamics feature extractor (DFE) was designed to extract features of the sub-regions signals. The radial basis function neural network (RBFNN) was used to learn and store gait dynamics. And a classification mechanism based on the output error in RBFNN was proposed. The classification accuracy of the proposed method achieved 100.00% in PD diagnosis and 95.89% in severity assessment on the online dataset, and 96.00% in severity assessment on our dataset. The experimental results suggested that the proposed method had the capability to signify the gait dynamics of PD patients.

    Citation: Yubo Sun, Yuanyuan Cheng, Yugen You, Yue Wang, Zhizhong Zhu, Yang Yu, Jianda Han, Jialing Wu, Ningbo Yu. A novel plantar pressure analysis method to signify gait dynamics in Parkinson's disease[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 13474-13490. doi: 10.3934/mbe.2023601

    Related Papers:

  • Plantar pressure can signify the gait performance of patients with Parkinson's disease (PD). This study proposed a plantar pressure analysis method with the dynamics feature of the sub-regions plantar pressure signals. Specifically, each side's plantar pressure signals were divided into five sub-regions. Moreover, a dynamics feature extractor (DFE) was designed to extract features of the sub-regions signals. The radial basis function neural network (RBFNN) was used to learn and store gait dynamics. And a classification mechanism based on the output error in RBFNN was proposed. The classification accuracy of the proposed method achieved 100.00% in PD diagnosis and 95.89% in severity assessment on the online dataset, and 96.00% in severity assessment on our dataset. The experimental results suggested that the proposed method had the capability to signify the gait dynamics of PD patients.



    加载中


    [1] L. M. De Lau, M. M. Breteler, Epidemiology of parkinson's disease, The Lancet Neurol., 5 (2006), 525–535. https://doi.org/10.1016/S1474-4422(06)70471-9 doi: 10.1016/S1474-4422(06)70471-9
    [2] O. B. Tysnes, A. Storstein, Epidemiology of parkinson's disease, J. Neural Transm., 124 (2017), 901–905. https://doi.org/10.1007/s00702-017-1686-y doi: 10.1007/s00702-017-1686-y
    [3] R. Martín-Láez, H. Caballero-Arzapalo, L. Á. López-Menéndez, J. C. Arango-Lasprilla, A. Vázquez-Barquero, Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature, World Neurosurg., 84 (2015), 2002–2009. https://doi.org/10.1016/j.wneu.2015.07.005 doi: 10.1016/j.wneu.2015.07.005
    [4] E. R. Dorsey, A. Elbaz, E. Nichols, N. Abbasi, F. Abd-Allah, A. Abdelalim, et al., Global, regional, and national burden of parkinson's disease, 1990–2016: a systematic analysis for the global burden of disease study 2016, The Lancet Neurol., 17 (2018), 939–953. https://doi.org/10.1016/S1474-4422(18)30295-3 doi: 10.1016/S1474-4422(18)30295-3
    [5] D. Jaraj, K. Rabiei, T. Marlow, C. Jensen, I. Skoog, C. Wikkelsø, Prevalence of idiopathic normal-pressure hydrocephalus, Neurology, 82 (2014), 1449–1454. https://doi.org/10.1212/WNL.0000000000000342 doi: 10.1212/WNL.0000000000000342
    [6] L. V. Kalia, A. E. Lang, Parkinson's disease, The Lancet, 386 (2015), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3 doi: 10.1016/S0140-6736(14)61393-3
    [7] S. Del Din, M. Elshehabi, B. Galna, M. A. Hobert, E. Warmerdam, U. Suenkel, et al., Gait analysis with wearables predicts conversion to parkinson disease, Ann. Neurol., 86 (2019), 357–367. https://doi.org/10.1002/ana.25548 doi: 10.1002/ana.25548
    [8] J. Wilson, L. Alcock, A. J. Yarnall, S. Lord, R. A. Lawson, R. Morris, et al., Gait progression over 6 years in parkinson's disease: Effects of age, medication, and pathology, Front. Aging Neurosci., 12 (2020), 577435. https://doi.org/10.3389/fnagi.2020.577435 doi: 10.3389/fnagi.2020.577435
    [9] B. R. Bloem, M. S. Okun, C. Klein, Parkinson's disease, The Lancet, 397 (2021), 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X doi: 10.1016/S0140-6736(21)00218-X
    [10] E. Tolosa, A. Garrido, S. W. Scholz, W. Poewe, Challenges in the diagnosis of Parkinson's disease, The Lancet Neurol., 20 (2021), 385–397. https://doi.org/10.1016/S1474-4422(21)00030-2 doi: 10.1016/S1474-4422(21)00030-2
    [11] V. Jakob, A. K{ü}derle, F. Kluge, J. Klucken, B. M. Eskofier, J. Winkler, et al., Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson's disease, Sensors, 21 (2021), 7680. https://doi.org/10.3390/s21227680 doi: 10.3390/s21227680
    [12] R. Romijnders, E. Warmerdam, C. Hansen, J. Welzel, G. Schmidt, W. Maetzler, Validation of imu-based gait event detection during curved walking and turning in older adults and Parkinson's disease patients, J. NeuroEng. Rehabil., 18 (2021). https://doi.org/10.1186/s12984-021-00828-0
    [13] T. Exley, S. Moudy, R. M. Patterson, J. Kim, M. V. Albert, Predicting updrs motor symptoms in individuals with Parkinson's disease from force plates using machine learning, IEEE J. Biomed. Health. Inf., 26 (2022), 3486–3494. https://doi.org/10.1109/JBHI.2022.3157518 doi: 10.1109/JBHI.2022.3157518
    [14] C. Chatzaki, V. Skaramagkas, N. Tachos, G. Christodoulakis, E. Maniadi, Z. Kefalopoulou, et al., The smart-insole dataset: Gait analysis using wearable sensors with a focus on elderly and Parkinson's patients, Sensors, 21 (2021), 2821. https://doi.org/10.3390/s21082821 doi: 10.3390/s21082821
    [15] O. C. Yurdakul, M. Subathra, S. T. George, Detection of Parkinson's disease from gait using neighborhood representation local binary patterns, Biomed. Signal Process. Control, 62 (2020), 102070. https://doi.org/10.1016/j.bspc.2020.102070 doi: 10.1016/j.bspc.2020.102070
    [16] S. Veeraragavan, A. A. Gopalai, D. Gouwanda, S. A. Ahmad, Parkinson's disease diagnosis and severity assessment using ground reaction forces and neural networks, Front. Physiol., 11 (2020), 587057. https://doi.org/10.3389/fphys.2020.587057 doi: 10.3389/fphys.2020.587057
    [17] Y. Zhang, Y. Ma, Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia, Comput. Biol. Med., 106 (2019), 33–39. https://doi.org/10.1016/j.compbiomed.2019.01.009 doi: 10.1016/j.compbiomed.2019.01.009
    [18] E. Balaji, D. Brindha, R. Balakrishnan, Supervised machine learning based gait classification system for early detection and stage classification of Parkinson's disease, Appl. Soft Comput., 94 (2020), 106494. https://doi.org/10.1016/j.asoc.2020.106494 doi: 10.1016/j.asoc.2020.106494
    [19] L. Aversano, M. L. Bernardi, M. Cimitile, R. Pecori, Early detection of Parkinson disease using deep neural networks on gait dynamics, in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207380
    [20] Y. Sun, J. Li, J. Liu, C. Chow, B. Sun, R. Wang, Using causal discovery for feature selection in multivariate numerical time series, Mach. Learn., 101 (2015), 377–395. https://doi.org/10.1007/s10994-014-5460-1 doi: 10.1007/s10994-014-5460-1
    [21] W. Zeng, C. Yuan, Q. Wang, F. Liu, Y. Wang, Classification of gait patterns between patients with Parkinson's disease and healthy controls using phase space reconstruction (psr), empirical mode decomposition (emd) and neural networks, Neural Networks, 111 (2019), 64–76. https://doi.org/10.1016/j.neunet.2018.12.012 doi: 10.1016/j.neunet.2018.12.012
    [22] S. H. Lee, J. S. Lim, J. K. Kim, J. Yang, Y. Lee, Classification of normal and epileptic seizure eeg signals using wavelet transform, phase-space reconstruction, and euclidean distance, Comput. Methods Programs Biomed., 116 (2014), 10–25. https://doi.org/10.1016/j.cmpb.2014.04.012 doi: 10.1016/j.cmpb.2014.04.012
    [23] E. T. Lopez, R. Minino, P. Sorrentino, V. Manzo, D. Tafuri, G. Sorrentino, et al., Sensitivity to gait improvement after levodopa intake in Parkinson's disease: A comparison study among synthetic kinematic indices, Plos One, 17 (2022), e0268392. https://doi.org/10.1371/journal.pone.0268392 doi: 10.1371/journal.pone.0268392
    [24] V. Venkataraman, P. Turaga, Shape distributions of nonlinear dynamical systems for video-based inference, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2016), 2531–2543. https://doi.org/10.1109/TPAMI.2016.2533388 doi: 10.1109/TPAMI.2016.2533388
    [25] A. Som, N. Krishnamurthi, V. Venkataraman, P. Turaga, Attractor-shape descriptors for balance impairment assessment in Parkinson's disease, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, 3096–3100. https://doi.org/10.1109/EMBC.2016.7591384
    [26] W. Zeng, J. Yuan, C. Yuan, Q. Wang, F. Liu, Y. Wang, A novel technique for the detection of myocardial dysfunction using ECG signals based on CEEMD, DWT, PSR and neural networks, Artif. Intell. Rev., 56 (2023), 3505–3541. https://doi.org/10.1007/s10462-022-10262-w doi: 10.1007/s10462-022-10262-w
    [27] C. Wang, T. Chen, G. Chen, D. J. Hill, Deterministic learning of nonlinear dynamical systems, Int. J. Bifurcation Chaos, 19 (2009), 1307–1328. https://doi.org/10.1142/S0218127409023640 doi: 10.1142/S0218127409023640
    [28] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. Ivanov, R. Mark, et al., Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals, Circulation, 101 (2000), e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215 doi: 10.1161/01.CIR.101.23.e215
    [29] S. Frenkel-Toledo, N. Giladi, C. Peretz, T. Herman, L. Gruendlinger, J. M. Hausdorff, Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently, J. NeuroEng. Rehabil., 2 (2005). https://doi.org/10.1186/1743-0003-2-23
    [30] I. El Maachi, G. A. Bilodeau, W. Bouachir, Deep 1d-convnet for accurate parkinson disease detection and severity prediction from gait, Expert Syst. Appl., 143 (2020), 113075. https://doi.org/10.1016/j.eswa.2019.113075 doi: 10.1016/j.eswa.2019.113075
    [31] F. Setiawan, C. W. Lin, Implementation of a deep learning algorithm based on vertical ground reaction force time–frequency features for the detection and severity classification of parkinson's disease, Sensors, 21 (2021), 5207. https://doi.org/10.3390/s21155207 doi: 10.3390/s21155207
    [32] M. Ferreira, F. A. Barbieri, V. C. Moreno, T. Penedo, J. Tavares, Machine learning models for parkinson's disease detection and stage classification based on spatial-temporal gait parameters, Gait Posture, 98 (2022), 49–55. https://doi.org/10.1016/j.gaitpost.2022.08.014 doi: 10.1016/j.gaitpost.2022.08.014
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1764) PDF downloads(197) Cited by(3)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog