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Abstract: Chemical heterogeneity significantly influences the dynamics of phytoplankton and
zooplankton interactions through its effects on phytoplankton carrying capacity and zooplankton
ingestion rates. Our central objective of this study was to develop and examine a nonautonomous model
of phytoplankton-zooplankton growth, which incorporates season-driven variations in light intensity
and chemical heterogeneity. The dynamics of the system is characterized by positive invariance,
dissipativity, boundary dynamics, and internal dynamics. Subsequently, numerical simulations were
conducted to validate the theoretical findings and to elucidate the effects of seasonal light intensity,
nutrient availability, and zooplankton loss rates on phytoplankton dynamics. The outcomes of our
model and analysis offer a potential explanation for seasonal phytoplankton blooms.
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1. Introduction

Phytoplankton stands as a pivotal group of primary producers within aquatic ecosystems. Through
photosynthesis, phytoplankton generate ample oxygen for marine organisms, while assuming a vital
role in energy flow, material cycling, and information dissemination within aquatic
environments [1, 2]. Nonetheless, over the past few decades, incidents of phytoplankton blooms have
become increasingly prevalent globally [3–6]. Although only 2% of phytoplankton species are
considered harmful [7], these blooms disrupt the equilibrium of aquatic ecosystems and pose risks to
human health. Concurrently, the mechanisms governing phytoplankton blooms remain largely
elusive, and the anticipation and mitigation of such occurrences have posed challenges for
contemporary researchers.

Researchers have convincingly demonstrated that phytoplankton blooms result from intricate
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interactions among various biotic factors [8–10] and abiotic factors [11–14]. Among these factors are
nutrients, pivotal components for the sustenance of phytoplankton growth. Many nutrients,
encompassing nitrogen and phosphorus, find their way into water bodies through diverse pathways,
elevating nutrient levels or inducing eutrophication within aquatic ecosystems [11]. Accordingly,
aquatic ecosystem eutrophication emerges as a pivotal trigger for phytoplankton blooms. However, it
is noteworthy that phytoplankton blooms are not solely confined to eutrophic aquatic environments;
occurrences have been documented even in nutrient-poor lake ecosystems [15–18] and marine
ecosystems [19–21]. Consequently, the intricate relationship between nutrient concentrations and
phytoplankton growth remains an ongoing investigation and discourse area.

Seasonal fluctuations exert a pervasive influence on natural ecosystems. These cyclic variations,
omnipresent in nature, impact diverse abiotic facets, such as temperature and light intensity, thereby
intricately intertwining with the dynamics of organisms. Empirical studies have underscored the
pronounced impact of seasonal oscillations on phytoplankton proliferation. For instance, Thackeray et
al. [22] investigated the ramifications of long-term climatic alterations on phytoplankton growth
through a blend of field experimentation and statistical modeling techniques. Their findings unveiled
a profound correlation between the periodic fluctuations in phytoplankton density and the
corresponding seasonal periodic variation. Wang et al. [23] delved into the sway of climatic
seasonality on the proliferation of harmful phytoplankton, elucidating that the rhythmic pulse of
seasonal changes holds a pivotal role in shaping the dynamics of detrimental phytoplankton.
Huppert [24] studied the impact of seasonal periodicity in climate on phytoplankton growth using
simple non-autonomous dynamic models. Chen et al. [25] examined the effects of temperature and
seasonal periodicity by developing a nutrient-phytoplankton dynamic model, which showed good
agreement with the measured data from Lake Taihu. Their study indicated that seasonal temperature
variations drive periodic oscillations in phytoplankton density, with the intensity of phytoplankton
blooms strongly correlated with the seasonal mean temperature, peak temperature variations, and the
duration of high temperatures. Researchers looking at the impact of seasonal periodicity on
phytoplankton growth mainly focus on the effects of seasonal temperature variations on
phytoplankton growth. Notably, phytoplankton utilize solar energy to drive photosynthesis and
generate oxygen, underscoring the critical role of light in their life cycle. Given the sway of seasonal
cycles, variations in light intensity follow suit. Consequently, it becomes imperative to investigate the
repercussions of season-driven light intensity on the growth patterns of phytoplankton.

In aquatic ecosystems, zooplankton play a significant role as mediators of material cycles and
conduits for energy transfer, bridging primary producers to higher trophic levels [26–31]. Their
influence extends to impacting the geochemical cycles of marine organisms through direct and
indirect interactions [32–34]. This centrality of zooplankton in aquatic systems has spurred significant
scientific interest. For instance, Luo [31] scrutinized the interplay between seasonally-driven
temperature variations and zooplankton density in shaping phytoplankton growth. The resultant
theoretical insights showcased the influential regulatory role of zooplankton in curbing excessive
phytoplankton proliferation, thereby thwarting the onset of red tide phenomena. Elser and Urabe [35]
discussed how Daphnia controls the biomass of Chlorophyta through selective grazing in freshwater
ecosystems, which significantly influences nutrient cycling and the structure of phytoplankton
communities. Irigoien et al. [36] investigated how Copepod grazing affects Diatom populations and
influences the overall structure of phytoplankton communities in marine ecosystems. They
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highlighted that Copepod predation could create a ‘loophole’ that allows certain phytoplankton
species to bloom, significantly impacting the dynamics and composition of marine ecosystems.
Therefore, an inclusive understanding of phytoplankton population dynamics necessitates
incorporating zooplankton-driven top-down control mechanisms.

In the real world, organisms require various nutrients to maintain their growth and
reproduction [37], among which the most three common nutrients are carbon, nitrogen, and
phosphorus [38]. Nevertheless, it has long been known that the between-species composition of
chemical elements is different; moreover, the heterogeneity of chemical elements affects the mass
transfer between trophic levels [39]. The scientific study of the balance among multiple chemical
elements in ecological interactions is referred to as stoichiometry, and it can be applied to explore
energy balance, nutrient cycling, and nutrient restrictions. One of the key advantages of using
stoichiometry in ecological models is its ability to provide a more realistic representation of nutrient
limitations and elemental imbalances, which are crucial for accurately predicting population
dynamics and ecosystem processes. Loladze et al. [40] used the form of a minimum function to
characterize the effect of prey quality on the food production rate of predators and improved the
traditional Rosenzweig-McArthur type model to present the LKE model, which reveals that prey
quality also plays a crucial role in the density variation of predators. In order to reveal the mechanism
of nutrient content on the growth of phytoplankton and zooplankton in aquatic ecosystems, it is
realistic to incorporate chemical heterogeneity into the model.

Inspired by the preceding discourse, we endeavor to construct a stoichiometric
phytoplankton-zooplankton model that encompasses the influence of general season-driven light
intensity. Our fundamental objectives are twofold: 1) To scrutinize the intricate interaction dynamics
between phytoplankton and zooplankton in the context of stoichiometric limitations and time-varying
parameters. 2) To establish sufficient conditions for phytoplankton proliferation and subsequently
propose strategic interventions to mitigate the occurrence of phytoplankton outbreaks.

This article is structured as follows. In Section 2, we introduce the development of a
stoichiometric phytoplankton-zooplankton model augmented with the incorporation of season-driven
light intensity. In Section 3, the dynamics of the model are delineated, encompassing aspects such as
positive invariance, dissipativity, boundary dynamics, and internal dynamics. In Section 4, we
showcase the application of numerical simulations to vividly validate our proposed theoretical
findings. Furthermore, we explore the impacts of seasonal light intensity, nutrient availability, and
zooplankton on phytoplankton growth in this section. Finally, our conclusions are succinctly
encapsulated in Section 5.

2. Model formulation

In this study, we focus on elucidating the influence of two pivotal constituents, carbon (C) and
phosphorus (P), while presupposing the copious abundance of all other elements within the ambient
environment. The proportional relationship between these fundamental chemical constituents,
particularly the phosphorus-to-carbon ratio, stands as an illustrative gauge of producer quality.
Furthermore, the assimilation of carbon by the producer is circumscribed by its photosynthetic
prowess. In conditions of ample luminosity, it is anticipated that carbon (C) availability constraints
are less pronounced compared to phosphorus (P).
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In [40], Loladze et al. investigated the following stoichiometric LKE model
dx
dt
=rx

(
1 −

x
min{K, (P − θy)/q}

)
− f (x)y,

dy
dt
=ê min

{
1,

(P − θy)/x
θ

}
f (x)y − dy.

(2.1)

Here, x and y are the carbon concentration of phytoplankton and zooplankton respectively, r
represents the maximal growth rate of phytoplankton, K is the constant carrying capacity of
phytoplankton that depends on light intensity, f (x) is the zooplankton’s ingestion rate, which is a
bounded smooth function, ê describes the production efficiency in carbon terms for zooplankton, d
presents the loss rate of zooplankton [41], P is the total phosphorus content, and θ stands for fixed cell
quota of zooplankton. The model is based on the following three assumptions:

Assumption 1. The total phosphorus content P in the system is fixed.

Assumption 2. Phosphorus to carbon ratio (P : C) in the phytoplankton varies, but it never falls
below a minimum q (mg P/mg C); the zooplankton maintains a constant (P : C), θ (mg P/mg C).

Assumption 3. The total phosphorus content P is divided into two pools: nutrient in the phytoplankton
and zooplankton.

Remark 1. The zooplankton’s ingestion rate f (x) satisfies the following assumptions:

f (0) = 0, f ′(x) > 0, f ′(0) < ∞, f ′′(x) < 0, for x ≥ 0.

In addition, under these assumptions for f (x), it follows that f (x)/x has the following properties:

lim
x→0

f (x)
x
= f ′(0) < ∞,

(
f (x)

x

)′
< 0 for x > 0.

Remark 2. Based on [42], Assumption 2, often referred to as “strict homeostasis”, posits that
heterotrophs (such as zooplankton) maintain a constant nutrient composition despite variations in
their diet. This is based on the understanding that the stoichiometric variability of heterotrophs is
generally much lower than that of autotrophs.

Environmental fluctuations exhibit a characteristic dependence on time, with seasonal periodicity
being a prevalent temporal pattern in ecosystems, exerting substantial influence on the dynamics of
organisms. Consequently, an authentic model should duly consider this seasonal effect. Building upon
the Lotka-Volterra type LKE model, we incorporate K(t) as the carrying capacity of phytoplankton,
which is contingent upon the season-driven light intensity. Therefore, the augmented realism in our
model, encompassing the influence of season-driven light intensity, is delineated by

dx
dt
=rx

(
1 −

x
min{K(t), (P − θy)/q}

)
− f (x)y,

dy
dt
=min

{
ê,

(P − θy)/x
θ

}
f (x)y − dy,

(2.2)

where K(t) is assumed to be a periodic function with period one year. The parameters and their
biological significance are listed in Table 1.
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Table 1. The parameters of system (2.2) and their values.

Parameter Description Value Unit
K(t) Phytoplankton carrying capacity limited by light 0–2 (mg C)/L
P Total phosphorus in the system 0.12 (mg P)/L
θ Zooplankton constant P:C ratio 0.03 (mg P)/(mg C)
r Maximal growth rate of the phytoplankton 1.2 day−1

q Phytoplankton minimal P:C ratio 0.0038 (mg P)/(mg C)
α Maximum ingestion rate of zooplankton 0.81 day−1

c Half-saturating of zooplankton 0.25 (mg C)/L
ê Production efficiency in carbon terms for zooplankton 0.8 no unit
d Loss rate of zooplankton 0.25 day−1

Note: The parameter values are selected from [43] and [44].

Remark 3. [40] There are two minimum functions in (2.2). The first minimum function is

min
{

K(t),
P − θy

q

}
,

which expresses that the maximum biomass of phytoplankton is limited by two factors, light limitation
(represented by K(t), the carrying capacity influenced by season-driven light intensity) and
phosphorus limitation (specifically, the availability of phosphorus in the environment). The second
minimum function is

min
{

ê,
(P − θy)/x
θ

}
,

which indicates that the quality of their food influences the conversion efficiency of zooplankton.

In order to facilitate the discussion below, we introduce the following transformation

P/θ → P, q/θ → q

to scale (2.2) into more concise form
dx
dt
=rx

(
1 −

x
min{K(t), (P − y)/q}

)
− f (x)y := xF(x, y, t),

dy
dt
=min

{
ê,

P − y
x

}
f (x)y − dy := yG(x, y),

(2.3)

where

F(x, y, t) = r
(
1 −

x
min{K(t), (P − y)/q}

)
−

f (x)
x

y,

G(x, y) = min
{
ê,

P − y
x

}
f (x) − d.

Mathematical Biosciences and Engineering Volume 21, Issue 8, 6870–6897.



6875

3. Dynamics of (2.3)

In this section, the dynamics of (2.3) are analyzed, including boundary dynamics and internal
dynamics. We introduce the following notations,

K̄ =
1
ω

∫ ω

0
K(t)dt, Kmax = max

t∈[0,ω]
K(t), Kmin = min

t∈[0,ω]
K(t).

Theorem 1. The set
Ω = {(x, y) : 0 < x < k, 0 < y < P, qx + y < P}

is positively invariant with respect to (2.3), where k = min{Kmax, P/q}.

Proof. To prove this theorem, we need only examine that the solution (x(t), y(t)) of (2.3) with initial
conditions (x(0), y(0)) ∈ Ω remains in Ω for t ≥ 0.

Assume that there exists a t1 > 0 at which (x(t1), y(t1)) first crosses the boundary of Ω.
Case 1. On the left boundary {(x, y) : x = 0, 0 < y < P}, let y1 = maxt∈[0,t1] y(t) < P, and assume that
x(t1) = 0, then we have

dx
dt
=rx

(
1 −

x
min{K(t), (P − y)/q}

)
− f (x)y

≥rx
(
1 −

x
min{Kmin, (P − y1)/q}

)
− f (x)y

≥

(
r
(
1 −

k
min{Kmin, (P − y1)/q}

)
− f ′(0)y1

)
x := αx,

where α is a constant. Thus, x(t) ≥ x(0) exp{αt1} > 0, which contradicts x(t1) = 0. Hence, no trajectory
starting in Ω can across the left boundary of Ω.
Case 2. On the right boundary {(x, y) : x = k, 0 < qx + y < P}, we assume x(t1) = k, then

dx
dt
≤ rx

(
1 −

x
min{K(t), (P − y)/q}

)
≤ rx

(
1 −

x
k

)
.

A standard comparison argument reveals that x(t) < k, t ∈ [0, t1] and hence, no trajectory touches the
right boundary of Ω.
Case 3. On the bottom boundary {(x, y) : 0 < x < k, y = 0}, assume that y(t1) = 0, then

dy
dt
= min {êx, P − y} y − dy ≥ −dy,

thus y(t) ≥ y(0) exp{−dt} > 0, which contradicts y(t1) = 0. Therefore, all orbits starting in Ω cannot
escape from the bottom boundary of Ω.
Case 4. On the top boundary {(x, y) : 0 < x < k, qx + y = P} of Ω, suppose that

qx(t1) + y(t1) = P. (3.1)

Note that t1 > 0 is the first time that the trajectory touched the top boundary, thus for any t ∈ [0, t1),
qx(t) + y(t) < P, and then, it yields that

qx′(t1) + y′(t1) ≥ 0. (3.2)
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By (3.1), we obtain x(t1) = (P − y(t1))/q, and substitute it into (2.3), it follows that

x′(t1) =rx(t1)
(
1 −

x(t1)
min{K(t1), (P − y(t1))/q}

)
− f (x(t1))y(t1)

≤rx(t1)
(
1 −

x(t1)
(P − y(t1))/q

)
− f (x(t1))y(t1) = − f (x(t1))y(t1). (3.3)

For (3.1), it follows that q = (P − y(t1))/x(t1). Then

y′(t1) =min
{

ê,
P − y(t1)

x(t1)

}
f (x(t1))y(t1) − dy(t1)

<
P − y(t1)

x(t1)
f (x(t1))y(t1) = q f (x(t1))y(t1). (3.4)

From (3.3) and (3.4), it follows that

qx′(t1) + y′(t1) < −qx(t1)y(t1) + qx(t1)y(t1) = 0,

which contradicts (3.2). The proof is complete. □

Theorem 2. Let (x(t), y(t)) be the solution of (2.3) through x(t0) > 0 and y(t0) > 0, then

lim inf
t→∞

x(t) ≥ 0, lim sup
t→∞

x(t) ≤ k,

lim inf
t→∞

y(t) ≥ 0, lim sup
t→∞

y(t) ≤ P,

that is, (2.3) is dissipative.

Proof. By a standard comparison argument, it is trivial to obtain that lim inft→∞ x(t) ≥ 0,
lim supt→∞ x(t) ≤ k, and lim inft→∞ y(t) ≥ 0.

By (2.3), note that
dy
dt
= min {êx, P − y}

f (x)
x

y − dy ≤ f ′(0)(P − y)y,

then we have lim supt→∞ y(t) ≤ P. Therefore, (2.3) is dissipative. □

Theorem 3. The extinction equilibrium E0 = (0, 0) always exists, and when P ≤ qKmin, there exists
a phytoplankton-only equilibrium E1 = (k, 0). Furthermore, if P ≤ qKmin, then E0 is an unstable
saddle. If P ≤ qKmin and min{ê, q} f (P/q) < d, then E1 is locally asymptotically stable. Moreover, if
ê f (P/q) < d, then E1 is globally asymptotically stable.

Proof. When P ≤ qKmin, one has k = min{Kmax, P/q} = P/q, and (2.3) can be transformed into
dx
dt
=rx

(
1 −

qx
P − y

)
− f (x)y = xF(x, y),

dy
dt
=min

{
ê,

P − y
x

}
f (x)y − dy = yG(x, y),

(3.5)
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where

F(x, y) = r −
rqx

P − y
−

f (x)
x

y,

G(x, y) =


ê f (x) − d, êx + y ≤ P,

(P − y)
f (x)

x
− d, êx + y > P.

In order to derive the equilibria, we need to solve

xF(x, y) = 0, yG(x, y) = 0.

Obviously, the boundary equilibria are E0 = (0, 0) and E1 = (k, 0), see Figure 1.
Consider the Jacobian matrix of (3.5),

J(x, y) =
(

F(x, y) + xFx(x, y) xFy(x, y)
yGx(x, y) G(x, y) + yGx(x, y)

)
.

Then

J(E0) =
(

r 0
0 −d

)
.

It demonstrates that E0 is an unstable saddle.
The Jacobian matrix at E1 reads

J(E1) =
(
−r − f (P/q) − r/q
0 −d +min {ê, q} f (P/q)

)
.

Consequently, when
min {ê, q} f (P/q) < d,

the eigenvalues of J(E1) are both negative, that’s to say E1 is locally asymptotically stable.
Based on (3.5), we deduce

dy
dt
= min

{
ê,

P − y
x

}
f (x)y − dy <

[
ê f

(
P
q

)
− d

]
y < 0.

When ê f (P/q) < d, according to comparison theorem, one can obtain that y(t) → 0 as t → ∞.
According to the theory of asymptotically autonomous systems [45], (3.5) can be simplified to
following limiting system

dx
dt
= rx

(
1 −

x
P/q

)
.

This implies that when t → ∞, x(t)→ P/q. As a result, E1 exhibits global attractivity, indicating E1 is
globally asymptotically stable. □

Theorem 4. Assume that
max{ê, q} f −1(d/ê) < P ≤ qKmin,

then internal equilibrium E2 = (x2, y2) exists. If

r <
y2(P − y2) f ′(x2)
P − y2 − 2qx2

, (3.6)

then E2 is locally asymptotically stable.
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Proof. The internal equilibrium solves

F(x, y) = 0, G(x, y) = 0.

By solving F(x, y) = 0, it produces that

y =
r + f (x)P/x −

√
(r − f (x)P/x)2 + 4rq f (x)
2 f (x)/x

:= g(x).

Based on the expression of y = g(x), it can be characterized as following two cases.

• r < f ′(0)P. It is trivial that g(0) = r/ f ′(0) and g(k) = 0. Then the y = g(x) is a smooth curve
connecting the initial point (0, r/ f ′(0)) and the ending point (k, 0).

• r ≥ f ′(0)P. Similarly, one gets g(0) = P and g(k) = 0. Thus the y = g(x) is a smooth curve which
connects the initial point (0, P) and the ending point (k, 0).

Figure 1. The invariant set, nullclines, and equilibria for P ≤ qKmin. Specifically, the region
enclosed by (0, 0), (P/q, 0), and (P, 0) is the positively invariant set of (2.3), which is an open
triangle area, and phytoplankton carrying capacity is limited by phosphorus in the whole
triangle area. Food quantity limits zooplankton growth in Region I (the shaded area), and in
Region II, food quality constrains zooplankton growth.
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We first consider the case that ê > q, at which G(x, y) = 0 means
x = f −1

(
d
ê

)
, y ∈

[
0, P − ê f −1

(
d
ê

)]
, êx + y ≤ P,

y = P −
dx
f (x)
, x ∈

[
f −1

(
d
ê

)
, f −1

(
d
q

)]
, êx + y > P.

Based on Figure 1 and the analysis above, it is obvious and intuitional that internal equilibrium E2

exists.
If E2 lies below the line êx + y = P, then x2 = f −1(d/ê), y2 = g(x2), and the Jacobian matrix of E2

is

J(E2) =

 r −
2rqx2

P − y2
− f ′(x2)y2 −

rqx2
2

(P − y2)2 − f (x2)

ê f ′(x2)y2 0

 .
The determinant and trace are

DetJ(E2) = ê f ′(x2)y
[

rqx2
2

(P − y2)2 + f (x2)
]
> 0,

TrJ(E2) = r −
2rqx2

P − y2
− f ′(x2)y2.

If (3.6) holds, then TrJ(E2) < 0, therefore, both eigenvalues of J(E2) have negative real parts, and E2

is locally asymptotically stable.
If E2 lies above the line êx + y = P, then x2, y2 satisfy

y2 = g(x2), y2 = P −
dx2

f (x2)
.

In this case, the Jacobian matrix at E2 is

J(E2) =

 r −
2rqx2

P − y2
− f ′(x2)y2 −

rqx2
2

(P − y2)2 − f (x2)

y3(P − y3)
(

f (x2)
x2

)′
−

f (x2)
x2

y2

 .
Note that (3.6), direct calculation yields that TrJ(E2) < 0. Consequently, E2 is locally asymptotically
stable.

Next, we examine the scenario when ê ≤ q. In this particular case, E2 always lies below the line
êx+y = P. By employing similar arguments as preseneted above, it can be concluded that E2 is locally
asymptotically stable. □

In order to explore the existence and global asymptotically stability of the positive periodic solution
of (2.3), we introduce some concepts and results from [46] that are basic for the following discussion.

Let X, Z be normed vector spaces, L : DomL ⊂ X → Z be a linear mapping, and N : X → Z
be a continuous mapping. The mapping L is called a Fredholm mapping of index zero if dim KerL =
codim ImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index zero, then there exist
continuous projectors R : X → X and Q : Z → Z such that KerR = KerL, ImL = KerQ = Im(I − Q). It
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follows that L|DomL∩KerR : (I−R)X → ImL is invertible. We denote the inverse of that map by KR. If
Ω is an open bounded subset of X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is bounded
and KR(I − Q)N : Ω̄ → X is compact. Since ImQ is isomorphic to KerL, there exist isomorphisms
J : ImQ→ KerL.

Lemma 1. ( [46]) Let L be a Fredholm mapping of index zero and let N be L-compact on Ω̄. Suppose
(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x < ∂Ω;
(b) QNx , 0 for each x ∈ ∂Ω ∩ KerL and deg{JQN,Ω ∩ KerL, 0} , 0. Then the equation Lx = Nx

has at least one solution lying in DomL ∩Ω.

Theorem 5. If exp{2rω}P ≤ ê f −1(d/ê) and d < P f ′(0) < r + d, then (2.3) has at least one strictly
positive ω-periodic solution.

Proof. Considering the biological significance of (2.3), we set x(0) > 0 and y(0) > 0. Let x(t) =
exp{x1(t)} and y(t) = exp{x2(t)}, then (2.3) turns into

dx1

dt
=r

(
1 −

exp{x1(t)}
min{K(t), (P − exp{x2(t)})/q}

)
−

f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)},

dx2

dt
=min

{
ê,

P − exp{x2(t)}
exp{x1(t)}

}
f (exp{x1(t)}) − d.

(3.7)

Define

X = Z =
{
s(t) = (x1(t), x2(t))T ∈ C(R,R2) : s(t + ω) = s(t)

}
,

and ||s|| = ||(x1, x2)T|| = maxt∈[0,ω] |x1(t)| + maxt∈[0,ω] |x2(t)| for any s ∈ X (or Z). It is not difficult to
verify that X and Z are Banach spaces with norm || · ||. Let

Ns =

 r
(
1 −

exp{x1(t)}
min{K(t), (P − exp{x2(t)})/q}

)
−

f (exp{x1(t)})
exp{x1(t)} exp{x2(t)}

min
{
ê, P−exp{x2(t)}

exp{x1(t)}

}
f (exp{x1(t)}) − d

 ,

Ls =
ds(t)

dt
, Rs =

1
ω

∫ ω

0
s(t)dt, s ∈ X, Qz =

1
ω

∫ ω

0
z(t)dt, z ∈ Z.

Then, KerL = R2, ImL =
{
z ∈ Z :

∫ ω
0

z(t)dt = 0
}

is a closed subset of Z, and
dim KerL = 2 = codim ImL. In addition, R and Q are continuous mappings such that ImR = KerL,
KerQ = ImL = Im(I − Q). As a result, the inverse mapping (to L) exists, that is,
KR : ImL→ DomL ∩ KerR and

KR(z) =
∫ t

0
z(s)ds −

1
ω

∫ ω

0

∫ t

0
z(s)dsdt.

From Arzela-Ascoli theorem, it follows that N is L-compact on Ω̄, where Ω ∈ X is an open bounded
set.
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In order to apply Lemma 1, we need to find an appropriate open bounded set Ω. Consider the
operator equation Ls = λNs, λ ∈ (0, 1), that is,

dx1

dt
=λ

{
r
(
1 −

exp{x1(t)}
min{K(t), (P − exp{x2(t)})/q}

)
−

f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}
}
,

dx2

dt
=λ

{
min

{
ê,

P − exp{x2(t)}
exp{x1(t)}

}
f (exp{x1(t)}) − d

}
.

(3.8)

Set s = s(t) ∈ X be the solution of (3.8) for some λ ∈ (0, 1), then integrating (3.8) from 0 to ω yields
that ∫ ω

0

{
r
(
1 −

exp{x1(t)}
min{K(t), (P − exp{x2(t)})/q}

)
(3.9)

−
f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}
}

dt = 0

and ∫ ω

0

{
min

{
ê,

P − exp{x2(t)}
exp{x1(t)}

}
f (exp{x1(t)}) − d

}
dt = 0. (3.10)

Moreover, we derive ∫ ω

0
rdt =

∫ ω

0

{
r exp{x1(t)}

min{K(t), (P − exp{x2(t)})/q}
(3.11)

+
f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}
}

dt = rω,

∫ ω

0
ddt =

∫ ω

0
min

{
ê,

P − exp{x2(t)}
exp{x1(t)}

}
f (exp{x1(t)})dt = dω. (3.12)

From (3.9)–(3.12), one can conclude∫ ω

0
|ẋ1(t)|dt

=λ

∫ ω

0

∣∣∣∣∣∣r
(
1 −

exp{x1(t)}
min{K(t), (P − exp{x2(t)})/q}

)
−

f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}

∣∣∣∣∣∣ dt

<

∫ ω

0
|r|dt +

∫ ω

0

∣∣∣∣∣∣ r exp{x1(t)}
min{K(t), (P − exp{x2(t)})/q}

+
f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}

∣∣∣∣∣∣ dt

=2rω,

∫ ω

0
|ẋ2(t)|dt = λ

∫ ω

0

∣∣∣∣∣∣min
{

ê,
P − exp{x2(t)}

exp{x1(t)}

}
f (exp{x1(t)}) − d

∣∣∣∣∣∣ dt

<

∫ ω

0
|d|dt +

∫ ω

0

∣∣∣∣∣∣min
{

ê,
P − exp{x2(t)}

exp{x1(t)}

}
f (exp{x1(t)})

∣∣∣∣∣∣ dt
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= 2dω.

Note that s(t) = (x1(t), x2(t))T, then there are ξi, ηi such that

xi(ξi) = min
t∈[0,ω]

xi(t), xi(ηi) = max
t∈[0,ω]

xi(t), i = 1, 2.

By (3.11), we have∫ ω

0

r exp{x1(ξ1)}
Kmax

dt

≤

∫ ω

0

{
r exp{x1(t)}

min{K(t), (P − exp{x2(t)})/q}
+

f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}
}

dt = rω,

which means x1(ξ1) ≤ ln[Kmax], then

x1(t) ≤ x1(ξ1) +
∫ ω

0
|ẋ1(t)|dt ≤ ln[Kmax] + 2rω := K1.

By utilizing (3.11) again, we derive

rω =
∫ ω

0

{
r exp{x1(t)}

min{K(t), (P − exp{x2(t)})/q}
+

f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}
}

dt

≥

∫ ω

0

f (exp{x1(t)})
exp{x1(t)}

exp{x2(t)}dt ≥
∫ ω

0

f (exp{K1})
exp{K1}

exp{x2(ξ1)}dt

then x2(ξ2) ≤ ln[r exp{K1}/ f (exp{K1})], and

x2(t) ≤ x2(ξ2) +
∫ ω

0
|ẋ2(t)|dt ≤ ln

[
r exp{K1}

f (exp{K1})

]
+ 2dω := K2.

In addition,

dω =
∫ ω

0
min

{
ê,

P − exp{x2(t)}
exp{x1(t)}

}
f (exp{x1(t)})dt ≤

∫ ω

0
ê f (exp{x1(η1)})dt,

which illustrates x1(η1) ≥ ln[ f −1(d/ê)], then

x1(t) ≥ x1(η1) −
∫ ω

0
|ẋ1(t)|dt ≥ ln

[
f −1

(
d
ê

)]
− 2rω := K3.

Therefore, maxt∈[0,ω] |x1(t)| ≤ max{|K1|, |K3|} := K5. Furthermore, note that exp{2rω}P ≤ ê f −1(d/ê), we
have P ≤ ê exp{x1(ξ1)}, then

dω =
∫ ω

0
min

{
ê exp{x1(t)}, P − exp{x2(t)}

} f (exp{x1(t)})
exp{x1(t)}

dt

≥

∫ ω

0
(P − exp{x2(η2)})

f (exp{x1(η1)})
exp{x1(η1)}

dt.
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Consequently, x2(η2) ≥ ln[P − d/ f ′(0)], and

x2(t) ≥ x2(η2) −
∫ ω

0
|ẋ2(t)|dt ≥ ln

[
P −

d
f ′(0)

]
− 2dω := K4.

Therefore, maxt∈[0,ω] |x2(t)| ≤ max{|K2|, |K4|} := K6. Obviously, Ki(i = 1, · · · , 6) are independent of λ.
Next, consider the following algebraic equations∫ ω

0

{
r
(
1 −

v1

min{K(t), (P − v2)/q}

)
−

f (v1)
v1

v2

}
dt = 0,

min{êv1, P − v2}
f (v1)
v1
− d = 0.

Based on the assumption P > êKmax, the solutions of these algebraic equations lie in following cases:

• If êv1 + v2 ≤ P, then there exists at least one solution. Denote by (v∗1, v
∗
2) the largest solution, and

it satisfies v∗1 = f −1(d/ê), 0 < v∗2 < P.
• If êv1 + v2 > P, P < qKmin, then there exists at least one solution. Denote by (v∗∗1 , v

∗∗
2 ) the largest

solution, which satisfies 0 < v∗∗1 < P/q, 0 < v∗∗2 < rP/(r + d).
• If êv1 + v2 > P, P ≥ qKmin, then there exists at least one solution (v̂1, v̂2), satisfying 0 < v̂2 < P,

0 < v̂1 ≤ min
{

f −1
(
(r + d − P f ′(0))d

qr

)
,

r + d − P f ′(0)
rK̄

}
.

Therefore, for the solution (ṽ1, ṽ2) of the algebraic equations, there exists a sufficiently large number
K7 such that ||(ln ṽ1, ln ṽ2)T|| = | ln ṽ1| + | ln ṽ2| ≤ K7. Define Ω = {s(t) = (x1(t), x2(t))T ∈ X : ||s|| < K},
where K = K5 + K6 + K7, then Ω satisfies condition (a) in Lemma 1. When s ∈ ∂Ω∩KerL = ∂Ω∩R2,
s is a constant vector in R2 with ||s|| = K. Then QNs , 0.

For v ∈ [0, 1], construct homotopic maps

Hv(x1, x2) = vQN(x1, x2) + (1 − v)G(x1, x2),

and

G(x1, x2) =
(

exp{2x2} − (r + P) exp{x2} − rq exp{x1}

P − d − exp{x2}

)
.

Obviously, Hv(x1, x2) satisfies that H0(x1, x2) = G(x1, x2), H1(x1, x2) = QN(x1, x2), 0 < Hv(∂Ω∩KerL).
In addition, under the condition in Theorem 5, we have

deg{JQNs,Ω ∩ KerL, 0} = deg{G,Ω ∩ KerL, 0} , 0,

where J is an identity map due to ImP = KerL. Hence, Ω satisfies all the conditions in Lemma 1,
and (3.7) has at least one solution s∗(t) = (x∗1(t), x∗2(t)) in DomL ∩ Ω̄. Set x∗(t) = exp{x∗1(t)} and y∗(t) =
exp{x∗2(t)}, then (x∗(t), y∗(t))T is a ω-periodic positive solution of (2.3). The proof is complete. □

Lemma 2. ( [47]) Let h be a real number and f be a nonnegative function defined on [h,+∞) such
that f is integrable on [h,+∞) and is uniformly continuous on [h,+∞). Then limt→+∞ f (t) = 0.
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Theorem 6. Let (x∗(t), y∗(t)) be the positive ω-periodic solution of (2.3). If

êP f ′(0) <
r
k
, sup

t∈R+
{min{Kmin, (P − y∗(t))/q}} >

r max{k/Kmin, 1}
q(d − f ′(0) − ê)

,

then (x∗(t), y∗(t)) is globally asymptotically stable.

Proof. Let (x(t), y(t)) be the solution of (2.3) with positive initial values x(t0) > 0 and y(t0) > 0. We
have proved that the set Γ = {(x, y) : 0 ≤ x ≤ k, 0 ≤ y ≤ P} is an ultimately bounded region of (2.3).
Then there exists a T1 > 0 such that (x(t), y(t)) ∈ Γ and (x∗(t), y∗(t)) ∈ Γ for t ≥ t0 + T1. Consider the
Lyapunov function defined by

V(t) = | ln{x(t)} − ln{x∗(t)}| + |y(t) − y∗(t)|.

Along the trajectory of (2.3), calculating the right derivative of V(t) yields that

D+V(t)

=rsgn{x(t) − x∗(t)}
(

x∗(t)
min{K(t), (P − y∗(t))/q}

−
x(t)

min{K(t), (P − y(t))/q}

)
+ sgn{x(t) − x∗(t)}

(
f (x∗(t))

x∗(t)
y∗(t) −

f (x(t))
x(t)

y(t)
)
− d|y(t) − y∗(t)|

+ sgn{y(t) − y∗(t)}
(
min

{
ê,

P − y(t)
x(t)

}
f (x(t))y(t)

)
− sgn{y(t) − y∗(t)}

(
min

{
ê,

P − y∗(t)
x∗(t)

}
f (x∗(t))y∗(t)

)
≤

(
êP f ′(0) −

r
k

)
|x(t) − x∗(t)| + (ê + f ′(0) − d)|y(t) − y∗(t)|

+ rx(t)
∣∣∣∣∣ 1
min{K(t), (P − y(t))/q}

−
1

min{K(t), (P − y∗(t))/q}

∣∣∣∣∣
≤

(
êP f ′(0) −

r
k

)
|x(t) − x∗(t)| + (ê + f ′(0) − d)|y(t) − y∗(t)|

+
rx(t)

q min{K(t), (P − y∗(t))/q}
1

min{K(t), (P − y(t))/q}
|y(t) − y∗(t)|

≤

(
êP f ′(0) −

r
k

)
|x(t) − x∗(t)| + (ê + f ′(0) − d)|y(t) − y∗(t)|

+
r max{k/Kmin, 1}

q min{Kmin, (P − y∗(t))/q}
|y(t) − y∗(t)|

=

(
r max{k/Kmin, 1}

q min{Kmin, (P − y∗(t))/q}
+ ê + f ′(0) − d

)
|y(t) − y∗(t)|

+

(
êP f ′(0) −

r
k

)
|x(t) − x∗(t)|

≤ − η(|x(t) − x∗(t)| + |y(t) − y∗(t)|), t ≥ t0 + T1,

where η is a positive constant. Integrating the above differential inequality from t0 + T1 to t produces

V(t) + η
∫ t

t0+T1

(|x(s) − x∗(s)| + |y(s) − y∗(s)|)ds ≤ V(t0 + T1) < ∞.
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Then, it follows that∫ t

t0+T1

(|x(s) − x∗(s)| + |y(s) − y∗(s)|)ds ≤ V(t0 + T1)/η ≤ ∞, t ≥ t0 + T1,

which means |x(t) − x∗(t)| + |y(t) − y∗(t)| ∈ L1([t0 + T1,+∞)).
Note that x∗(t), y∗(t) are bounded, and x(t), y(t) are ultimate bounded in Γ, then x(t), y(t), x∗(t), y∗(t)

all have bounded derivatives for t ≥ t0 + T1. Hence, |x(t) − x∗(t)| + |y(t) − y∗(t)| is uniformly continuous
on [t0 + T1,+∞). From Lemma 2, it follows that

lim
t→+∞

(|x(t) − x∗(t)| + |y(t) − y∗(t)|) = 0.

The proof is complete. □

The following theorem is established for the boundary periodic solution of Eq (2.3).

Theorem 7. If P > qKmin, then (2.3) has a boundary periodic solution (x∗(t), 0), where

x∗(t) = (erω − 1)
(∫ t+ω

t

r
min{K(t), P/q}

e−r(t−s)ds
)−1

.

Furthermore, if

q(d − ê f (k)) min{K(t), P/q} > rk max{k/Kmin, 1} f or t ∈ [0, ω],

then (x∗(t), 0) is globally asymptotically stable.

Proof. Let (x(t), y(t)) be any solution of (2.3) with positive initial values x(t0) > 0 and y(t0) > 0. Since
Γ = {(x, y) : 0 ≤ x ≤ k, 0 ≤ y ≤ P} is an ultimately bounded region of (2.3), there exists a T1 > 0 such
that (x(t), y(t)) ∈ Γ and (x∗(t), 0) ∈ Γ for t ≥ t0 + T1. From the discussion in Theorem 6, to illustrate
(x∗(t), 0) is globally asymptotically stable, we only need to prove that

lim
t→+∞

(|x(t) − x∗(t)| + |y(t)|) = 0.

Consider the following Lyapunov function

V(t) = |x(t) − x∗(t)| + |y(t)|.

Calculating the right derivative of V(t) along the solution of (2.3) yields that

D+V(t) =sgn{x(t) − x∗(t)} (rx(t) − rx∗(t) − f (x(t))y(t))

+ sgn{y(t)}
(
min

{
ê,

P − y(t)
x(t)

}
f (x(t))y(t) − dy(t)

)
+ sgn{x(t) − x∗(t)}

(
rx2
∗(t)

min{K(t), P/q}
−

rx2(t)
min{K(t), (P − y(t))/q}

)
≤r|x(t) − x∗(t)| + (ê f (x) − d)|y(t)|

+ sgn{x(t) − x∗(t)}
(

rx2
∗(t)

min{K(t), P/q}
−

rx2(t)
min{K(t), (P − y(t))/q}

)
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≤ − r|x(t) − x∗(t)| + (ê f (k) − d)|y(t)|

+
rx2(t) |min{K(t), P/q} −min{K(t), (P − y(t))/q}|

min{K(t), P/q}min{K(t), (P − y(t))/q}

≤ − r|x(t) − x∗(t)| +
(
ê f (k) − d +

rk max{k/Kmin, 1}
q min{K(t), P/q}

)
|y(t)|

≤ − γ(|x(t) − x∗(t)| + |y(t)|), t ≥ t0 + T1,

where γ is a positive constant. The remaining part of the proof follows the same steps as those discussed
in Theorem 6. For the sake of brevity, we omit it here. □

4. Numerical simulations

In this section, we present several numerical simulations based on the theoretical findings
discussed in the preceding sections. These simulations validate the theoretical results and investigate
the influence of seasonal light intensity, phosphorus availability, and zooplankton loss rate on the
system dynamics. In this context, we select the consumption rate function f (x) and phytoplankton
carrying capacity K(t) as the form

f (x) =
αx

c + x
, K(t) = 1.25 − 0.75 cos(2π(t − 30)/365),

then K(t) is a season-dependent function, attaining its maximum during summer and minimum during
winter (Figure 2). The parameter values used in our simulations are given in Table 1, unless explicitly
stated otherwise.

Figure 2. Light-dependent carrying capacity K(t).
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Initially, we conduct simulations to validate the sufficient theoretical criteria from the preceding
section. As illustrated in Figure 3(a), when Theorem 3 is satisfied, the phytoplankton persists, and the
zooplankton becomes extinct. In Figure 3(b), both phytoplankton and zooplankton exhibit persistence
in constant eventually. Additionally, Figure 3(c) reveals the existence of a strictly positive ω-periodic
solution (x∗(t), y∗(t)) for (2.3), which is globally asymptotically stable. Furthermore, Figure 3(d)
demonstrates the presence of a globally asymptotically stable boundary ω-periodic solution (x∗(t), 0)
for (2.3), indicating periodic oscillation in phytoplankton density while zooplankton remains extinct.
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Figure 3. Time-series curves of phytoplankton and zooplankton densities in (2.3). In (a)
and (b), the attractors correspond to the boundary equilibrium E1 and the internal equilibrium
E2, respectively. In (c), the attractor corresponds to the positive periodic solution (x∗(t), y∗(t)),
which is globally asymptotically stable. Last, in (d), the attractor represents the boundary
periodic solution (x∗(t), 0).

The intensity of light and the availability of phosphorus (P) can modulate the quality of
phytoplankton, as indicated in the preceding analysis. Particularly, the phosphorus availability of
phytoplankton exerts a substantial influence on the predation dynamics of zooplankton and is crucial
for the overall behavior of (2.3). Additionally, zooplankton impose top-down control on
phytoplankton in aquatic ecosystems, thereby playing a pivotal role in regulating phytoplankton
outbreaks. The loss rate of zooplankton, denoted by d, holds vital significance for the persistence of
zooplankton population. Consequently, we select the phosphorus availability P and the loss rate of
zooplankton d as bifurcation parameters to investigate the dynamic responses of (2.3) under
continuous variations of these parameters. Figure 4 exhibits the bifurcation surfaces, illustrating the
densities of all populations concerning the implicit variation of the loss rate and phosphorus
availability, represented by d and P, respectively. From Figure 4, one observes that phytoplankton
grow rapidly with enhancing phosphorus and loss rate of zooplankton initially. As phosphorus
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availability continues to increase, the density of phytoplankton undergoes pronounced oscillations
when the loss rate is low, while it displays regular periodic oscillations when the loss rate is high (see
Figure 4(a)). Furthermore, zooplankton cannot sustain at significantly low phosphorus availability
and high loss rate. When the loss rate is low, increasing phosphorus availability allows zooplankton to
persist stably or cyclically (see Figure 4(b)).

To gain a comprehensive understanding of the bifurcation characteristics and to further investigate
total phosphorus availability (P) and loss rate (d), we conduct in-depth analyses by examining specific
cross-sections along the gradients of P from 0 to 0.12 and d from 0 to 0.6. In each bifurcation diagram,
the blue curve represents the maximum biomass values, and the red curve represents the minimum
biomass values.

In scenarios where the loss rate of zooplankton is low (d = 0.05), both phytoplankton and
zooplankton coexist in a stable or cyclic state. That is, when 0 < P < 0.012, phytoplankton growth is
constrained exclusively by phosphorus availability. During this interval, phytoplankton and
zooplankton can coexist within a stable steady-state. On the other hand, as the phosphorus availability
spans from 0.012 to 0.12, the growth of phytoplankton becomes constrained by the season-driven
light intensity K(t). The populations can coexist via cyclic oscillation, as Figure 5 depicts. More
specifically, in the 0 < P < 0.012 range, the zooplankton biomass exhibits an increase with the rise in
phosphorus availability, reflecting the positive impact of enhanced food quality. Moreover, the
phytoplankton biomass experiences an initial increase followed by a decrease attributed to the
predation by zooplankton. Figure 5 demonstrates that at P = 0.012, the internal equilibrium loses its
stability and undergoes a supercritical Hopf bifurcation, leading to the coexistence of all populations
through oscillations as P increases from 0.012 to 0.017. However, as P continues to expand further
(e.g., 0.017 < P < 0.12 in Figure 5), abundant phosphorus availability induces erratic oscillatory
behavior in all populations.

Figure 4. Bifurcation surfaces for (2.3) with P and d being the bifurcation parameters. (a)
and (b) are bifurcation surfaces of equilibrium densities of phytoplankton and zooplankton,
respectively.
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Figure 5. Bifurcation diagrams of the equilibrium densities of (2.3) concerning the variation
of phosphorus availability P. In this context, d = 0.05, and the values of the other parameters
are selected from Table 1.

From Figures 6 and 7, it is evident that the irregular oscillations gradually diminish as the loss rate
of zooplankton increases. When P < 0.012 in Figure 6(b), the low food quality leads to the extinction
of zooplankton. Furthermore, in Figure 6(a), the phytoplankton biomass increases with the rise in
phosphorus availability. As phosphorus availability further increases, food quality improves, enabling
zooplankton survive in the cyclic oscillation form. Combining the observations from Figure 6(a) and
(b), the system undergoes a dynamic trajectory with the following pattern: E1-existence equilibrium
(0 < P < 0.003)→ (x∗(t), 0) boundary periodic solution (0.003 < P < 0.012)→ (x∗(t), y∗(t)) positive
periodic solution (0.012 < P < 0.12), which is similar to the one observed when d = 0.5 (Figure 7).

Next, we delve into the impact of varying the loss rate d on the dynamics of (2.3), focusing on
high and low levels of phosphorus availability denoted by P = 0.12 and P = 0.0015, respectively.
For P = 0.12, the phosphorus availability is at a high level, and the abundance of high-quality food
benefits the survival of zooplankton. In this regime, phytoplankton and zooplankton coexist in irregular
oscillation when d < 0.51. However, as the loss rate surpasses 0.51, food quality becomes a significant
limitation for zooplankton survival, leading to extinction. Consequently, the system transitions to a
boundary periodic solution, and the biomass of phytoplankton continues to increase while maintaining
regular oscillations.
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Figure 6. Bifurcation diagrams of the equilibrium densities of (2.3) with respect to
phosphorus availability P varying from 0 to 0.1. Here, d = 0.25, and the values of the
other parameters are selected from Table 1.
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Figure 7. Bifurcation diagrams of equilibrium densities with respect to phosphorus
availability P for the case d = 0.5 in Figure 4.

From Figure 9, it is evident that when the phosphorus availability is at a low level (P = 0.0015),
due to the low food quality, both phytoplankton and zooplankton coexist at low densities in the range
of 0 < d < 0.15. As d further increases, the zooplankton biomass declines, while the phytoplankton
density increases due to the absence of zooplankton predation. For d > 0.3, zooplankton go extinct
due to the low food quality. When considering the combined information from Figures 8 and 9, it
becomes evident that irregular oscillation disappears with decreasing phosphorus availability, and the
threshold value of d for zooplankton extinction declines. This observation is attributed to the low food
quality not adequately supporting the growth and survival of zooplankton. Based on the above
bifurcation diagrams concerning P and d, Figure 10 presents time-series solutions of (2.3) under
various parameter settings. These variations demonstrate that (2.3) can reflect the diverse bloom
patterns seen in natural ecosystems. In LKE model, when 0.56 < K < 0.98, the system exhibits
periodic oscillatory behavior [40]. However, this oscillatory behavior is limited to a single type and
has a very short period, making it unsuitable for describing the periodic blooms of phytoplankton, as
shown in Figure 11. Therefore, it is necessary to incorporate season-driven light intensity in
ecological modeling.
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Figure 8. Bifurcation diagrams of species densities for loss rate d varying from 0 to 0.6 when
P = 0.12.
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Figure 9. Bifurcation diagrams of species densities with respect to d varying from 0 to 0.6
for P = 0.0015.

Figure 10. Time-series solutions of (2.3) under different parameter settings. Solid lines
represent phytoplankton density, and dashed lines represent zooplankton density. Each
subplot corresponds to different values of parameters P and d, and other parameters are
selected from Table 1.
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Figure 11. Time-series solution of LKE model [40] when K = 0.75.
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Figure 12. Bifurcation diagrams of species densities with respect to θ varying from 0.01 to
0.04, and other parameters are selected from Table 1.

5. Conclusions and discussion

Ubiquitous seasonal periodic variations in the natural environment profoundly influence numerous
abiotic factors, including temperature and light intensity parameters. Light intensity significantly
impacts phytoplankton, influencing their growth and dynamics. For example, light intensity affects
the species composition of the phytoplankton community, the vertical distribution of phytoplankton,
and their uptake of nutrients. One of the most important effects is that increased light intensity can
stimulate photosynthesis, enhancing phytoplankton biomass. We comprehensively introduce a
seasonal-driven light intensity factor to apprehend the ramifications of periodic fluctuations on
organisms and proposes a phytoplankton-zooplankton model represented as (2.2). This model
emerges as a nonautonomous food chain model, characterized by stoichiometric constraints, thus
encapsulating the intricate phytoplankton heterogeneity, the connotation of food quality, and the
dynamic nature of time-varying parameters. Employing qualitative analysis, the plausible attractors
inherent in (2.3) encompass boundary equilibrium, internal equilibrium, boundary periodic solutions,
and positive periodic solutions (as demonstrated in Figure 3). The ensuing section delves into a
systematic exploration of the effects of phosphorus availability and the loss rate of zooplankton on the
intricate dynamics governed by (2.3), elucidated through comprehensive numerical simulations.

The simulation outcomes have illustrated how seasonal-driven light intensity and nutrient-limited
grazing combined to create blooms. In Figure 3(c), phytoplankton biomass peaks around the 200th
day, while zooplankton biomass reaches its lowest point simultaneously due to low-quality food.
Then, we carry out some bifurcation diagrams to demonstrate the pivotal significance of phosphorus
availability and loss rate of zooplankton in shaping the growth dynamics and coexistence patterns of
phytoplankton and zooplankton. In scenarios where the loss rate d remains constant (Figures 5–7),
elevated phosphorus availability notably fosters the concurrent presence of phytoplankton and
zooplankton. Specifically, when the zooplankton loss rate is set at a low value (d = 0.05), an initial
stable equilibrium arises, marked by the coexistence of both phytoplankton and zooplankton. This
state primarily results from phytoplankton growth being delimited by phosphorus availability.
Subsequently, as phosphorus availability escalates, the development of phytoplankton becomes
influenced by the seasonally fluctuating light intensity. Consequently, both phytoplankton and
zooplankton manifest cyclic oscillations. Notably, when phosphorus availability surpasses a
threshold, say P > 0.017, the proliferation of abundant phosphorus precipitates erratic oscillatory
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behavior across all population categories.

Insights derived from Figures 6 and 7 distinctly illustrate a noticeable trend: Irregular oscillations
gradually diminish as the loss rate of zooplankton increases. Conversely, when phosphorus
availability remains consistently high, the initial coexistence of phytoplankton and zooplankton is
characterized by irregular oscillations. However, as the loss rate surges, zooplankton face extinction.
In the context of P = 0.0015, the densities of phytoplankton and zooplankton remain persistently low,
owing to the restricted availability of phosphorus. Upon intensifying the loss rate, zooplankton
density undergoes further decline, while phytoplankton density increases due to the absence of
zooplankton predation. Despite ample food, zooplankton biomass fails to increase significantly due to
poor sustenance quality. In LKE model, when 0.56 < K < 0.98, the system exhibits periodic
oscillatory behavior [40]. However, this oscillatory behavior is limited to a single type and has a very
short period, making it unsuitable for describing the periodic blooms of phytoplankton, as shown in
Figure 11. When introducing season-driven light intensity, the model can produce diverse bloom
patterns, as seen in Figure 10. Hence, it is significant to incorporate K(t) as the carrying capacity of
phytoplankton, which is contingent upon the season-driven light intensity.

We introduce season-driven light intensity into the model, exerting a notable influence on the
light-dependent carrying capacity denoted as K(t). Light intensity and various other biotic and abiotic
factors, including phosphorus availability, predation rates, and loss rates, are frequently subject to
seasonal variations or temporal fluctuations. Consequently, the model’s complexity escalates,
rendering the exploration of seasonal effects more intricate. Additionally, K(t) was used in a specific
form in the numerical simulations. We did not explore the effects of factors such as amplitude and
period on the system. However, discussing the intensity and period of season-driven is also an
interesting question. What is more, the authenticity of the zooplankton’s ingestion rate can be
enhanced by calibrating it against empirical data obtained from natural settings. This enhancement
would enable the model to address real-world complexities more effectively.

Furthermore, the linearity attributed to the loss rate of zooplankton is an assumption herein.
However, it is imperative to acknowledge that this loss rate is inherently influenced by and varies in
response to interactions at the subsequent trophic level. Consequently, formulating a more detailed
food chain model could more explicitly elucidate the mechanisms underlying phytoplankton blooms.
A comprehensive elucidation of these concerns has the potential to offer novel perspectives on the
subject under investigation. However, these intricate discussions are deferred to future research
endeavors.
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