Research article Special Issues

Threshold dynamics of a switching diffusion SIR model with logistic growth and healthcare resources


  • Received: 13 February 2024 Revised: 16 April 2024 Accepted: 22 April 2024 Published: 14 May 2024
  • In this article, we have constructed a stochastic SIR model with healthcare resources and logistic growth, aiming to explore the effect of random environment and healthcare resources on disease transmission dynamics. We have showed that under mild extra conditions, there exists a critical parameter, i.e., the basic reproduction number $ R_0^s $, which completely determines the dynamics of disease: when $ R_0^s < 1 $, the disease is eradicated; while when $ R_0^s > 1 $, the disease is persistent. To validate our theoretical findings, we conducted some numerical simulations using actual parameter values of COVID-19. Both our theoretical and simulation results indicated that (1) the white noise can significantly affect the dynamics of a disease, and importantly, it can shift the stability of the disease-free equilibrium; (2) infectious disease resurgence may be caused by random switching of the environment; and (3) it is vital to maintain adequate healthcare resources to control the spread of disease.

    Citation: Shuying Wu, Sanling Yuan. Threshold dynamics of a switching diffusion SIR model with logistic growth and healthcare resources[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5881-5899. doi: 10.3934/mbe.2024260

    Related Papers:

  • In this article, we have constructed a stochastic SIR model with healthcare resources and logistic growth, aiming to explore the effect of random environment and healthcare resources on disease transmission dynamics. We have showed that under mild extra conditions, there exists a critical parameter, i.e., the basic reproduction number $ R_0^s $, which completely determines the dynamics of disease: when $ R_0^s < 1 $, the disease is eradicated; while when $ R_0^s > 1 $, the disease is persistent. To validate our theoretical findings, we conducted some numerical simulations using actual parameter values of COVID-19. Both our theoretical and simulation results indicated that (1) the white noise can significantly affect the dynamics of a disease, and importantly, it can shift the stability of the disease-free equilibrium; (2) infectious disease resurgence may be caused by random switching of the environment; and (3) it is vital to maintain adequate healthcare resources to control the spread of disease.



    加载中


    [1] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2012.
    [2] R. Acuña-Soto, D. Stahle, M. Cleaveland, M. Therrell, Megadrought and megadeath in 16th century Mexico, Emerging Infect. Dis., 8 (2002), 360. https://doi.org/10.3201/eid0804.010175 doi: 10.3201/eid0804.010175
    [3] World Health Organization, Smallpox Eradication Programme - SEP (1966–1980), 2010. Available from: https://www.who.int/news-room/feature-stories/detail/the-smallpox-eradication-programme–-sep-(1966-1980).
    [4] Z. Ma, Dynamical Modeling and Analysis of Epidemics, World Scientific, 2009.
    [5] World Health Organization, Poliomyelitis, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/poliomyelitis.
    [6] Mayo Clinic, Diphtheria, 2023. Available from: https://www.mayoclinic.org/diseases-conditions/diphtheria/symptoms-causes/syc-20351897.
    [7] World Health Organization, Measles, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/measles.
    [8] Wikipedia, Tetanus, 2024. Available from: https://en.wikipedia.org/wiki/Tetanus.
    [9] Wikipedia, HIV/AIDS, 2024. Available from: https://en.wikipedia.org/wiki/HIV/AIDS.
    [10] World Health Organization, Coronavirus Disease (COVID-19) Pandemic, 2023. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    [11] R. Anderson, R. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991.
    [12] R. Ross, The Prevention of Malaria, John Murray, 1911.
    [13] W. Kermack, A. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [14] W. Kermack, A. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ. the problem of endemicity, Proc. R. Soc. London, Ser. A, 138 (1932), 55–83. https://doi.org/10.1098/rspa.1932.0171 doi: 10.1098/rspa.1932.0171
    [15] R. Anderson, C. Fraser, A. Ghani, C. Donnelly, S. Riley, N. Ferguson, et al., Epidemiology, transmission dynamics and control of SARS the 2002–2003 epidemic, Philos. Trans. R. Soc. London, Ser. B, 359 (2004), 1091–1105. https://doi.org/10.1098/rstb.2004.1490 doi: 10.1098/rstb.2004.1490
    [16] M. Aguiar, V. Anam, K. Blyuss, C. Estadilla, B. Guerrero, D. Knopoff, et al., Mathematical models for dengue fever epidemiology: A 10-year systematic review, Phys. Life Rev., 40 (2022), 65–92. https://doi.org/10.1016/j.plrev.2022.02.001 doi: 10.1016/j.plrev.2022.02.001
    [17] J. Dushoff, J. Plotkin, S. Levin, D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, PNAS, 101 (2004), 16915–16916. https://doi.org/10.1073/pnas.0407293101 doi: 10.1073/pnas.0407293101
    [18] M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, et al., Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures, PNAS, 117 (2020), 10484–10491. https://doi.org/10.1073/pnas.2004978117 doi: 10.1073/pnas.2004978117
    [19] C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differ. Equations, 257 (2014), 1662–1688. https://doi.org/10.1016/j.jde.2014.05.030 doi: 10.1016/j.jde.2014.05.030
    [20] G. Lan, S. Yuan, B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Franklin Inst., 358 (2021), 2405–2433. https://doi.org/10.1016/j.jfranklin.2021.01.015 doi: 10.1016/j.jfranklin.2021.01.015
    [21] W. Wang, S. Ruan, Bifurcations in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775–793. https://doi.org/10.1016/j.jmaa.2003.11.043 doi: 10.1016/j.jmaa.2003.11.043
    [22] A. Abdelrazec, J. Bélair, C. Shan, H. Zhu, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271 (2016), 136–145. https://doi.org/10.1016/j.mbs.2015.11.004 doi: 10.1016/j.mbs.2015.11.004
    [23] Z. Shi, D. Jiang, Stochastic modeling of SIS epidemics with logarithmic ornstein–uhlenbeck process and generalized nonlinear incidence, Math. Biosci., 365 (2023), 109083. https://doi.org/10.1016/j.mbs.2023.109083 doi: 10.1016/j.mbs.2023.109083
    [24] Q. Liu, D. Jiang, Threshold behavior in a stochastic SIR epidemic model with logistic birth, Physica A, 540 (2020), 123488. https://doi.org/10.1016/j.physa.2019.123488 doi: 10.1016/j.physa.2019.123488
    [25] S. Liu, S. Ruan, X. Zhang, Nonlinear dynamics of avian influenza epidemic models, Math. Biosci., 283 (2017), 118–135. https://doi.org/10.1016/j.mbs.2016.11.014 doi: 10.1016/j.mbs.2016.11.014
    [26] P. Saha, U. Ghosh, Global dynamics and control strategies of an epidemic model having logistic growth, non-monotone incidence with the impact of limited hospital beds, Nonlinear Dyn., 105 (2021), 971–996. https://doi.org/10.1007/s11071-021-06607-9 doi: 10.1007/s11071-021-06607-9
    [27] L. Gao, H. Hethcote, Disease transmission models with density-dependent demographics, J. Math. Biol., 30 (1992), 717–731. https://doi.org/10.1007/bf00173265 doi: 10.1007/bf00173265
    [28] J. Cao, X. Jiang, B. Zhao, Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures, J. Biomed. Res. Innovation, 1 (2020), 1–19. https://doi.org/10.31579/2690-1897/021 doi: 10.31579/2690-1897/021
    [29] M. Zanin, C. Xiao, T. Liang, S. Ling, F. Zhao, Z. Huang, et al., The public health response to the COVID-19 outbreak in mainland China: A narrative review, J. Thoracic Dis., 12 (2020), 4434. https://doi.org/10.3201/eid0804.010175 doi: 10.3201/eid0804.010175
    [30] S. Welliver, C. Robert, Temperature, humidity, and ultraviolet B radiation predict community respiratory syncytial virus activity, Pediatr. Infect. Dis. J., 26 (2007), S29–S35. https://doi.org/10.1097/inf.0b013e318157da59 doi: 10.1097/inf.0b013e318157da59
    [31] L. Nottmeyer, F. Sera, Influence of temperature, and of relative and absolute humidity on COVID-19 incidence in England–-A multi-city time-series study, Environ. Res., 196 (2021), 110977. https://doi.org/10.1016/j.envres.2021.110977 doi: 10.1016/j.envres.2021.110977
    [32] J. Han, J. Yin, X. Wu, D. Wang, C. Li, Environment and COVID-19 incidence: A critical review, J. Environ. Sci., 124 (2023), 933–951. https://doi.org/10.1016/j.jes.2022.02.016 doi: 10.1016/j.jes.2022.02.016
    [33] G. Lan, S. Yuan, B. Song, Threshold behavior and exponential ergodicity of an sir epidemic model: the impact of random jamming and hospital capacity, J. Math. Biol., 88 (2024), 2. https://doi.org/10.1007/s00285-023-02024-1 doi: 10.1007/s00285-023-02024-1
    [34] N. Dieu, D. Nguyen, N. Du, G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15 (2016), 1062–1084. https://doi.org/10.1137/15m1043315 doi: 10.1137/15m1043315
    [35] W. Wei, W. Xu, J. Liu, A regime-switching stochastic SIR epidemic model with a saturated incidence and limited medical resources, Int. J. Biomath., 16 (2023), 2250124. https://doi.org/10.1142/S1793524522501248 doi: 10.1142/S1793524522501248
    [36] T. Tuong, D. Nguyen, N. Dieu, K. Tran, Extinction and permanence in a stochastic SIRS model in regime-switching with general incidence rate, Nonlinear Anal. Hybrid Syst., 34 (2019), 121–130. https://doi.org/10.1016/j.nahs.2019.05.008 doi: 10.1016/j.nahs.2019.05.008
    [37] D. Nguyen, N. Nguyen, G. Yin, General nonlinear stochastic systems motivated by chemostat models: Complete characterization of long-time behavior, optimal controls, and applications to wastewater treatment, Stochastic Processes Appl., 130 (2020), 4608–4642. https://doi.org/10.1016/j.spa.2020.01.010 doi: 10.1016/j.spa.2020.01.010
    [38] G. Yin, C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Springer Science & Business Media, 2009.
    [39] S. Bonaccorsi, S. Ottaviano, A stochastic differential equation SIS model on network under markovian switching, Stochastic Anal. Appl., 41 (2023), 1231–1259. https://doi.org/10.1080/07362994.2022.2146590 doi: 10.1080/07362994.2022.2146590
    [40] A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856x doi: 10.1137/10081856x
    [41] Wikipedia, COVID-19 Pandemic in Tamil Nadu, 2023. Available from: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Tamil_Nadu.
    [42] Knoema, Tamil Nadu–Crude Birth Rate, 2024. Available from: https://knoema.com/atlas/India/Tamil-Nadu/Birth-rate.
    [43] Knoema, Tamil Nadu–Crude Death Rate, 2024. Available from: http://knoema.com/atlas/India/Tamil-Nadu/Death-rate.
    [44] N. George, N. Tyagi, J. Prasad, COVID-19 pandemic and its average recovery time in Indian states, Clin. Epidemiol. Global Health, 11 (2021), 100740. https://doi.org/10.1016/j.cegh.2021.100740 doi: 10.1016/j.cegh.2021.100740
    [45] M. Barman, T. Rahman, K. Bora, C. Borgohain, COVID-19 pandemic and its recovery time of patients in India: A pilot study, Diabetes Metab. Syndrome: Clin. Res. Rev., 14 (2020), 1205–1211. https://doi.org/10.1016/j.dsx.2020.07.004 doi: 10.1016/j.dsx.2020.07.004
    [46] S. Marimuthu, M. Joy, B. Malavika, A. Nadaraj, E. Asirvatham, L. Jeyaseelan, Modelling of reproduction number for COVID-19 in India and high incidence states, Clin. Epidemiol. Global Health, 9 (2021), 57–61. https://doi.org/10.1016/j.cegh.2020.07.004 doi: 10.1016/j.cegh.2020.07.004
    [47] A. Chin, J. Chu, M. Perera, K. Hui, H. Yen, M. Chan, et al., Stability of SARS-Cov-2 in different environmental conditions, Lancet Microbe, 1 (2020), e10. https://doi.org/10.1016/s2666-5247(20)30003-3 doi: 10.1016/s2666-5247(20)30003-3
    [48] S. Riddell, S. Goldie, A. Hill, D. Eagles, T. Drew, The effect of temperature on persistence of SARS-Cov-2 on common surfaces, Virol. J., 17 (2020), 1–7. https://doi.org/10.1186/s12985-020-01418-7 doi: 10.1186/s12985-020-01418-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(718) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog