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Abstract: In this article, we have constructed a stochastic SIR model with healthcare resources
and logistic growth, aiming to explore the effect of random environment and healthcare resources
on disease transmission dynamics. We have showed that under mild extra conditions, there exists a
critical parameter, i.e., the basic reproduction number Rs

0, which completely determines the dynamics
of disease: when Rs

0 < 1, the disease is eradicated; while when Rs
0 > 1, the disease is persistent. To

validate our theoretical findings, we conducted some numerical simulations using actual parameter
values of COVID-19. Both our theoretical and simulation results indicated that (1) the white noise
can significantly affect the dynamics of a disease, and importantly, it can shift the stability of the
disease-free equilibrium; (2) infectious disease resurgence may be caused by random switching of
the environment; and (3) it is vital to maintain adequate healthcare resources to control the spread of
disease.

Keywords: stochastic SIR epidemic model; switching diffusion; threshold; backward bifurcation;
logistic growth

1. Introduction

Infectious diseases have always been the greatest enemy of mankind, and their proliferation time
and again since ancient times has brought great disasters to human life and development. As early
as the second century A.D., the Antonine Plague ravaged the Roman Empire, causing a sharp decline
in population and economic deterioration, eventually leading to the fall of the Roman Empire [1].
The measles epidemic of 1519–1530 A.D. caused the Mexico Indians to plummet from 30 million to
3 million [2]. The horrific Black Death struck the European continent on three occasions: the first
time, in 1346–1350, nearly one-third of Europe’s population died during the epidemic; the second
time, documented as having occurred in 1665–1666, when one-sixth of London’s population died; and
the last time, in 1720–1722, killing one-half of the population of Marseilles in France, 60% of the

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2024260


5882

population of the Toulon neighborhood, 44% of the population of Arles, and 30% of the populations
of the Aix and the Arignon [1].

Throughout history, mankind has fought a relentless battle against infectious diseases. Looking
back at history, mankind has also won glorious victories in the fight against infectious diseases, and
the 20th century can be said to be the most glorious period in which mankind conquered infectious
diseases. Examples include defeating smallpox, which had ravaged the world for more than 2000
years [3]; leprosy and polio are about to be eradicated [4,5]; and diphtheria, measles, tetanus, and other
infectious diseases have also been effectively controlled [6–8]. But the road to conquering infectious
diseases is still long and winding. According to the World Health Organization (WHO), infectious
diseases remain the number one killer of humans. For instance, as of 2021, about 38.4 million people
worldwide live with HIV, with about 1.5 million new infections and about 650,000 deaths in 2021 [9];
as well as more than 772 million confirmed cases of COVID-19 and more than 6.9 million deaths
worldwide as of January 2024 [10]. History and reality tell us that mankind is facing a strong challenge
of infectious diseases, and the study of the transmission mechanism, transmission rules, and prevention
and control strategies of a certain infectious disease have become major problems that need to be
urgently solved in today’s world.

It is well known that establishing mathematical models is an important theoretical approach to
studying the transmission mechanisms and transmission dynamics of infectious diseases. For example,
as early as 1760, Bernouli had studied the spread of smallpox using mathematical methods [4]. In
1906, Hamer constructed a discrete model to study the recurrent epidemiologic process of measles
[11]. In 1911, Ross [12] used a differential equation model to study the dynamic behavior of malaria
transmission between mosquitoes and humans, and showed that if mosquito populations are kept below
a threshold, malaria transmission can be effectively controlled, for which Ross received the Nobel Prize
in Medicine. In 1927, Kemack and McKendrick [13] investigated the transmission patterns of the Black
Death epidemic in London in 1665–1666 and of the plague in Bombay in 1906 by constructing the
classical SIR compartmentalization model, and then in 1932, they proposed the “Threshold Theory”
for determining whether or not an infectious disease would eventually become an epidemic [14], which
laid a solid theoretical foundation for subsequent research on the dynamics of infectious diseases. Over
the past 40 years, many scholars have conducted in-depth and systematic studies on infectious disease
dynamics based on their predecessors and have achieved fruitful results. A large number of epidemic
models are proposed to study the transmission patterns of various epidemics, especially for measles,
malaria, tuberculosis, AIDS/HIV, SARS, dengue fever, influenza, and COVID-19 [15–18].

Classical epidemic models usually assume a constant size of the total population or a constant rate of
recruitment of the susceptible class [19–23]. This indicates that population size changes exponentially,
except for equal birth and death rates. This pattern of growth is unrealistic, as it only occurs when there
are sufficient resources [24–26], since nutrients and suitable environments are becoming more limited
as population size increases [27]. In this sense, logistic growth seems to be more realistic. To this end,
a variety of epidemic models with logistic growth have been proposed by many leading scholars, such
as Liu et al. [25] who constructed two avian influenza bird-to-human transmission models with logistic
growth, and analyzed their dynamical behavior.

During an outbreak, there are frequently no effective treatments or vaccines available, and the
limited scope for preventing or controlling the spread of the outbreak will result in a sudden increase
in the demand for emergency supplies and medical resources, leading to a temporary shortage of
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supplies. For example, during the outbreak of COVID-19 in Wuhan, thousands of volunteer doctors
from all over China supported Wuhan, and aid supplies from all provinces of China were transported
to Wuhan in a race against time. To accommodate the large number of confirmed cases, the Vulcan
Mountain and Thunder Mountain hospitals were established [28, 29]. In classical epidemic models,
the recovery rate is usually proportional to the number of infected individuals [23, 24]. This recovery
rate has limitations since it requires unlimited medical resources. Therefore, it is particularly
important to consider the impact of healthcare resources on the dynamics of outbreak transmission
when modeling epidemics. To reveal the impact of healthcare resources on epidemic transmission
dynamics, Shan and Zhu [19] assumed that the recovery rate depended on the abundance of
healthcare resources and the number of infected individuals, and more precisely, it was positively
correlated with healthcare resources and negatively correlated with the number of infected
individuals. According to the WHO Statistical Information System, the number of available hospital
beds per 10,000 population is an important indicator of the abundance of healthcare resources [19].
Hence, Shan and Zhu [19] proposed the following recovery rate with the number of hospital beds:

µ = µ(b, I) = µ0 +
(µ1 − µ0)b

I + b
, (1.1)

where µ0 and µ1 are the minimum and maximum recovery rates, respectively. Parameter b is the number
of hospital beds. I is the infective class. Their study shows that variations in the number of hospital beds
can lead to complex dynamical behaviors of disease transmission and that maintaining an adequate
number of beds is essential for controlling infectious diseases. The recovery rate equation (1.1) was
applied by Abdelrazec et al. [19] to study the impact of resources available to the health system on
dengue transmission dynamics. In addition, Saha and Ghosh [26] considered the impact of limited
environmental resources on population size and the number of hospital beds on the recovery rate and
constructed the following SIR model:

dS
dt = rS

(
1 − S

K

)
−
βS I

1+αI2 − u1S ,
dI
dt =

βS I
1+αI2 − (d + δ)I −

(
µ0 +

(µ1−µ0)b
b+I

)
I,

dR
dt =

(
µ0 +

(µ1−µ0)b
b+I

)
I + u1S − dR,

(1.2)

where S and R represent, respectively, the susceptible and recovered classes. r denotes the intrinsic
growth rate of susceptible individuals. β is the disease transmission rate, α measures the psychological
effect, u1 is the rate of newborn susceptible population vaccinated, d and δ denote natural mortality and
disease-related mortality, respectively. Notice that the third equation of model (1.2) does not affect its
first two equations, and we thus consider only its sub-model as follows dS

dt = rS
(
1 − S

K

)
−
βS I

1+αI2 − u1S ,
dI
dt =

βS I
1+αI2 − (d + δ)I −

(
µ0 +

(µ1−µ0)b
b+I

)
I.

(1.3)

Many studies have shown that climatic factors have a significant impact on the dynamics of disease
transmission. For example, Robert’s study showed that the activity of respiratory syncytial virus
reached its maximum at 45–65% relative humidity [30]. The rate of transmission of COVID-19 is
nonlinearly correlated with its ambient temperature [31]; low temperature favors the survival and
multiplication of SARS-CoV-2 in the environment, and low humidity makes the virus less likely to
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settle, which facilitates the spread of the virus through the air [32]. Thus, stochastic environments
have a significant impact on the transmission dynamics of epidemics and cannot be neglected.

One approach is to employ stochastic differential equations driven by Gaussian white noise to
examine how environmental fluctuations affect the persistence or elimination of infectious
illnesses [20, 33, 34]. Examining models of stochastic differential equations driven by Markov chains,
also known as systems with telegraph noise, is another viable strategy [35–37]. The difficulty with
foreseeing the pathogens transition across environments, as various environmental conditions will
result in varying levels of pathogen survival and infectivity, is a fundamental intuitive justification for
the adoption of systems with telegraph noise [38]. A system with telegraph noise uses sets of ordinary
differential equations to model the transmission dynamics of epidemics at different time periods.
Once the environment changes, the pattern of disease transmission changes, which in turn causes the
ordinary differential equations describing the pattern of disease transmission to change. The process
is then repeated indefinitely [38]. In this paper, we suppose that the disease transmission rate β is
perturbed by white noise and Markov switching, and establish the following stochastic model:dS (t) =

(
rS

(
1 − S

K

)
−
β(υ(t))S I

1+αI2 − u1S
)

dt − σS I
1+αI2 dB(t),

dI(t) =
(
β(υ(t))S I

1+αI2 − (d + δ)I −
(
µ0 +

(µ1−µ0)b
b+I

)
I
)

dt + σS I
1+αI2 dB(t),

(1.4)

where σ represents the white noise intensity, B(t) denotes the Brownian motion, υ(t) is a right
continuous Markov chain in a finite state space H = {1, 2, · · · ,N} with the generatorW = (fi j)N×N
given by

P{υ(t + ∆t) = j|υ(t) = i} =

fi j∆t + o(∆t) if i , j,

1 −
∑
i,k
fik∆t + o(∆t) if i = j, (1.5)

where ∆t > 0 and fi j ≥ 0 is the transition rate from regime i to regime j (i , j).
Compared to the results of stochastic epidemic models with healthcare resources, e.g., [20, 33, 35],

this paper has the following advantages:

• Threshold dynamics of a switching diffusion SIR model with logistic growth and healthcare
resources are investigated.

• If σ = 0, and the elements of the generatorW are increased to a certain value, then the solution
of stochastic model (1.4) almost coincides with the solution of deterministic model (1.3) with
β =

∑
i∈H πiβ(i).

In this sense, we extend the previous studies.
The remainder of the paper is organized as follows: Section 2 examines the disease persistence and

extinction for stochastic model (1.4). In Section 3, we use the actual parameter values to simulate and
validate our theoretical results and give some biological explanations. Finally, the conclusions of the
paper are presented and discussed in Section 4.

2. Dynamical behavior for stochastic model (1.4)

Throughout, we assume that the Brownian motion B(t) is defined on a complete probability space
(Ω,F , {Ft}t≥0,P) and that υ is independent of B(t). Let

Rk
+ = {y ∈ R

k|yi > 0, i = 1, 2, · · · , k}.
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Suppose that the Markov chain υ(t) is irreducible, then there is a unique stationary distribution π =
(π1, . . . , πN ) ∈ RN+ with

πW = 0, and
N∑

s=1

πs = 1.

For the theories and notations related to stochastic differential equations with regime switching, the
reader is referred to [35, 38, 39].

Before delving into our examination of the fundamental characteristics of stochastic model (1.4),
we first provide the positivity of the solution for the model. The proof is routine and is, therefore, left
out.

Theorem 2.1. Model (1.4) has a unique global positive solution with probability 1 for any initial
condition (S (0), I(0)) ∈ R2

+. Furthermore, there exists τ > 0 such that

0 < S (t) + I(t) <
K(r + d − u1)2

4rd
, ∀t ≥ τ.

Notice that (0, 0) is an equilibrium of model (1.4), so we need to investigate under what conditions
the equilibrium (0, 0) is unstable. If (0, 0) is stable, then the system is collapsing.

Theorem 2.2. If r > u1, then for any initial value (S (0), I(0)) ∈ R2
+, there exists a constant c̃ :=

c̃(S (0), I(0)) > 0 such that

P
{
inf
t≥0

S (t) ≥ c̃
}
= 1. (2.1)

Proof. Define V1 = S −θ1 , where θ1 > 0. By Itô’s formula [40], we have

LV1 = − θ1S −θ1
(
r − u1 −

rS
K
−
β(υ(t))I
1 + αI2 −

σ2I2

2(1 + αI2)2

)
. (2.2)

Assume that Dϵ is a deleted neighborhood of (0, 0), and ϵ > 0 is a small enough constant. Then it
follows from Eq (2.2) that for any (S , I) ∈ Dϵ ,

LV1 ≤ − θ1S −θ1 (r − u1 − f (ϵ)) ,

where f (ϵ) is a function that is continuous at 0 and f (0) = 0. Hence, for sufficiently small ϵ and any
(S , I) ∈ Dϵ , we have

LV1 ≤ − θ1S −θ1 (r − u1 − f (ϵ)) < 0.

On the basis of Lemma 7.7 in [38], we know that (0, 0) is unstable in probability. □

Based on Theorems 2.1 and 2.2, we easily obtain that if r > u1, the feasible domain Γ is almost
surely positively invariant, where

Γ =

{
(S , I) ∈ R2

+ : 0 < S + I <
K(r + d − u1)2

4rd
, S ≥ c̃

}
. (2.3)

As such, we solely examine the dynamics of model (1.4) in Γ, when r > u1.
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Determining the threshold condition for disease extinction and persistence is an important topic in
the study of epidemic dynamics. First, we introduce one of the most central indicators in epidemiology
for model (1.4), i.e., the basic reproduction number:

Rs
0 :=

K(r − u1)

r
(
d + δ + µ1 +

σ2K2(r−u1)2

2r2

) ·∑
k∈H

πkβ(k), (2.4)

which is often used to characterize the rate of transmission of the epidemic, reflecting the potential
and severity of the outbreak. Next, we will demonstrate that Rs

0 is the threshold value that establishes
whether the illness is extinct or not.

Theorem 2.3. If r > u1 and Rs
0 < 1, then the disease-free equilibrium

(
K(r−u1)

r , 0
)

for stochastic model
(1.4) is almost surely globally asymptotically stable.

Proof. The theorem’s proof is broken down into three steps as follows.
Step 1. We demonstrate the local asymptotic stability of the disease-free equilibrium

(
K(r−u1)

r , 0
)
,

that is, there exists a constant ϱ1 > 0 such that

P

{
lim
t→∞

(S (t), I(t)) =
(

K(r − u1)
r

, 0
)}
≥ 1 − ε (2.5)

for any ε > 0 and any
(
S (0), I(0)

)
∈ Oϱ1 :=

(
K(r−u1)

r − ϱ1,
K(r−u1)

r + ϱ1

)
× (0, ϱ1).

In fact, using Itô’s formula yields

d ln I = L ln Idt +
σS

1 + αI2 dB(t) (2.6)

where

L ln I =
β(υ(t))S
1 + αI2 − (d + δ) −

(
µ0 +

(µ1 − µ0)b
b + I

)
−

σ2S 2

2(1 + αI2)2

=

(
β(υ(t))K(r − u1)

r
− (d + δ + µ1) −

σ2K2(r − u1)2

2r2

)
+

(
β(υ(t))S
1 + αI2 −

β(υ(t))K(r − u1)
r

)
−

(
µ0 +

(µ1 − µ0)b
b + I

− µ1

)
−
σ2

2

(
S 2

(1 + αI2)2 −
K2(r − u1)2

r2

)
:= f1(S , I, υ(t)).

(2.7)

Note that

lim
I→0

S→K(r−u1)/r

f1(S , I, υ(t)) =
(
β(υ(t))K(r − u1)

r
− (d + δ + µ1) −

σ2K2(r − u1)2

2r2

)
,

and f1(S , I, υ(t)) is a continuous function concerning (S , I) ∈ Γ. Hence, for any ϵ > 0 and all (S , I) ∈
Oϱ1 , there is a sufficiently small ϱ1 > 0 such that

f1(S , I, υ(t)) <
(
β(υ(t))K(r − u1)

r
− (d + δ + µ1) −

σ2K2(r − u1)2

2r2

)
+ ϵ. (2.8)
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By combining Eqs (2.6) and (2.8), the strong law of large numbers and the Birkhoff ergodic theorem
together, we can demonstrate that

lim sup
t→∞

ln I(t)
t
≤

K(r − u1)
r

∑
k∈H

πkβ(k) − (d + δ + µ1) −
σ2K2(r − u1)2

2r2

 + ϵ.
Since ϵ is arbitrarily small and Rs

0 < 1, we have

lim sup
t→∞

ln I(t)
t
< 0,

i.e.,
lim
t→∞

I(t) = 0 a.s.

Then we easily get

lim
t→∞

S (t) =
K(r − u1)

r
a.s.

Therefore, Equation (2.5) holds.
Step 2. We show that for any (S (0), I(0)) ∈ Γ, the solution of stochastic model (1.4) always arrives

at

Dϱ1 :=

(S , I) : S ∈
K(r − u1)

r
−

√
2ϱ1

2
,

K(r − u1)
r

+

√
2ϱ1

2

 and I ∈
0, √2ϱ1

2


which is a subset of Oϱ1 at some moment whenever Rs

0 < 1. We can assume
(
S (0), I(0)

)
∈ Γ \ Dϱ1 , and

then the first hitting time of set Dϱ1 is defined by τϱ1 := inf{t ≥ 0, (S (t), I(t)) ∈ Dϱ1}. It then follows
from Theorem 2.2 that there exists S min > 0 such that S (t) ≥ S min for any t ∈ [0, τϱ1]. Hence, there is a
sufficiently large constant ℓ2 such that

√
2rϱ1S min

2K
− β(υ(t))

(
K(r + d − u1)2

4rd
+ 1

)
S I

1 + αI2 +
(ℓ2 − 1)σ2

2

( S I
1 + αI2

)2

< 0

for all (S , I) ∈ Γ\Dϱ1 . Then, define sufficiently large positive constant ℓ1 such thatΥ = ℓ1−(S +1)ℓ2 > 0
for (S , I) ∈ Γ. According to Itô’s formula, we can obtain that

LΥ = − ℓ2(S + 1)ℓ2−2
(
(S + 1)

[
rS
K

(
K(r − u1)

r
− S

)
−
β(υ(t))S I
1 + αI2 +

]
+

(ℓ2 − 1)σ2S 2I2

2(1 + αI2)2

)
≤ − ℓ2(S + 1)ℓ2−2

(S + 1)
 √2rϱ1S min

2K
−
β(υ(t))S I
1 + αI2

 + (ℓ2 − 1)σ2S 2I2

2(1 + αI2)2


≤ − ℓ2(S + 1)ℓ2−2

 √2rϱ1S min

2K
− β(υ(t))

(
K(r + d − u1)2

4rd
+ 1

)
S I

1 + αI2 +
(ℓ2 − 1)σ2

2

( S I
1 + αI2

)2
≤ − ℓ2(S + 1)ℓ2−2


√

2rϱ1S min

2K
−
β(υ(t))2

(
K(r+d−u1)2

4rd + 1
)2

2(ℓ2 − 1)σ2


≤ − ℓ2(S + 1)ℓ2−2

 √2rϱ1S min

4K


≤ − ϱ1.
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It is easily obtainable from Dynkin’s formula that

E[Υ(S (τϱ1 ∧ t), I(τϱ1 ∧ t))] ≤ Υ(0) −
1
2
ϱ1E(τϱ1 ∧ t).

Thus by the Fatou’s lemma, one has

E[Υ(S (τϱ1), I(τϱ1))] ≤ Υ(0) −
1
2
ϱ1E(τϱ1).

Notice that Υ > 0, which implies that E(τϱ1) < ∞.
Step 3. Based on Steps 1 and 2, and the strong Markov property, we easily get that for any ε > 0

and any (S (0), I(0)) ∈ Γ,

P

{
lim
t→∞

(S (t), I(t)) =
(

K(r − u1)
r

, 0
)}
≥ 1 − ε.

By the arbitrariness of ε, one can see that for each (S (0), I(0)) ∈ Γ,

P

{
lim
t→∞

(S (t), I(t)) =
(

K(r − u1)
r

, 0
)}
= 1.

This accomplishes the proof of the theorem. □

Next, we examine the persistence of the disease, which is a favorite topic in epidemiologic research.
We begin with the following conclusion.

Lemma 2.4. If r > u1 and Rs
0 > 1, then for any (S (0), I(0)) ∈ {(S , I) ∈ Γ : I = 0}, there is T > 0 such

that

E

∫ T

0
f1(S (t), I(t), υ(t))dt ≥

3λ
4

T, (2.9)

where f1(S (t), I(t), υ(t)) is defined in Eq (2.7) and λ = limt→∞
1
t

∫ t

0
f1

(
K(r−u1)

r , 0, υ(s)
)

ds.

Proof. Notice that I = 0 is the solution to the second equation of model (1.4), therefore, when I(0) = 0,
model (1.4) becomes dS

dt = rS
(
1 − S

K

)
− u1S ,

dI
dt = 0.

Hence, for each (S (0), I(0)) ∈ {(S , I) ∈ Γ : I = 0}, we have

lim
t→∞

(S (t), I(t)) =
(

K(r − u1)
r

, 0
)
.

That is

lim
t→∞

1
t

∫ t

0
f1(S (s), I(s), υ(s))ds = lim

t→∞

1
t

∫ t

0
f1

(
K(r − u1)

r
, 0, υ(s)

)
ds = λ.

It then follows from Rs
0 > 1 that λ > 0. Hence, there exists a constant T > 0 such that Eq (2.9)

holds. □
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Theorem 2.5. If r > u1 and Rs
0 > 1, there is a constant ς := ς(S (0), I(0)) > 0 such that

lim inf
t→∞

P {I(t) > ς} = 1. (2.10)

Proof. Define Vϑ = Iϑ, where ϑ ∈ R. It follows from Itô’s formula that

LVϑ = ϑ
[
β(υ(t))S
1 + αI2 − (d + δ) −

(
µ0 +

(µ1 − µ0)b
b + I

)
+

(ϑ − 1)σ2S 2

2(1 + αI2)2

]
Iϑ. (2.11)

Denoting

Λϑ = sup
(S ,I)∈Γ

{
ϑ

[
β(υ(t))S
1 + αI2 − (d + δ) −

(
µ0 +

(µ1 − µ0)b
b + I

)
+

(ϑ − 1)σ2S 2

2(1 + αI2)2

]}
,

that is, for all
(
S (0), I(0)

)
∈ Γ, we have LVϑ ≤ ΛϑIϑ. Hence

E(Iϑ(t)) = E(Iϑ(0)) + E
∫ t

0
LVϑds ≤ E(Iϑ(0)) +

∫ t

0
ΛϑE(Iϑ(s))ds.

It then follows from Gronwall inequality that for any (S (0), I(0)) ∈ Γ,

E(Iϑ(t)) ≤ Iϑ(0) exp(Λϑt),∀t ≥ 0. (2.12)

Analogously, for any t ≥ jT , we have

E(Iϑ(t)) ≤ E(Iϑ( jT )) exp[Λϑ(t − jT )]. (2.13)

Define W(t) = ln I(0) − ln I(t). Based on Eq (2.7),

W(t) = −
∫ t

0
f1(S (u), I(u), υ(u))du −

∫ t

0

σS (u)
1 + αI2(u)

dB(u). (2.14)

Combining Eq (2.14), the Feller property, and Lemma 2.4, there exists a sufficiently small ϱ3 > 0 such
that for each (S (0), I(0)) ∈ {(S , I) ∈ Γ : I < ϱ3},

E(W(T )) = −E
∫ T

0
f1(S (u), I(u), υ(u))du ≤ −

λ

2
T. (2.15)

Hence, for any t ≥ 0, according to Eq (2.12), we have

E(eW(t) + e−W(t)) = E
( I(0)

I(t)
+

I(t)
I(0)

)
≤ E(eΛ−1t + eΛ1t) < ∞. (2.16)

Using Lemma 2.2 in [36], we obtain

lnE(eϑW(T )) ≤ E(ϑW(T )) + Λ̂1ϑ
2, ϑ ∈ [0, 0.5],

where Λ̂1 := Λ̂1(T,Λ−1,Λ1) is a constant. We then choose sufficiently small ϑ such that Λ̂1ϑ
2 ≤ λϑ4 T .

On the basis of Eq (2.15), one can get that

E
( Iϑ(0)
Iϑ(T )

)
= E(eϑW(T )) ≤ exp

(
−
λϑ

2
T + Λ̂1ϑ

2
)
≤ exp

(
−
λϑ

4
T
)
.
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That is, for any I(0) < ϱ3, we have

E(I−ϑ(T )) ≤ I−ϑ(0) exp
(
−
λϑ

4
T
)
= ρI−ϑ(0), (2.17)

where ρ = exp(−λϑ4 T ).
For any I(0) > ϱ3, it then follows from Eq (2.12) that

E(I−ϑ(T )) ≤ ϱ−ϑ3 exp(Λ−ϑT ) := κ. (2.18)

Combining Eqs (2.18) and (2.17), we easily get that

E(I−ϑ(T )) ≤ ρI−ϑ(0) + κ,

for each (S (0), I(0)) ∈ Γ. Based on the Markov property, we immediately get that

E[I−ϑ(( j + 1)T )] ≤ ρE(I−ϑ( jT )) + κ.

Therefore
E[I−ϑ(( j + 2)T )] ≤ ρ2E(I−ϑ( jT )) + ρκ + κ,

and

E(I−ϑ(mT )) ≤ ρmI−ϑ(0) +
κ(1 − ρm)

1 − ρ
. (2.19)

Combining Eqs (2.13) and (2.19) yields

E(I−ϑ(t)) ≤
(
ρmI−ϑ(0) +

κ(1 − ρm)
1 − ρ

)
exp(Λ−ϑT ), t ∈ [mT, (m + 1)T ],

which implies that
lim sup

t→∞
E(I−ϑ(t)) ≤

κ

1 − ρ
exp(Λ−ϑT ) := Φ.

Then, in accordance with Chebyshev’s inequality, we easily get

P{|I(t)| < ι} = P
{

1
|I(t)|ϑ

>
1
ιϑ

}
≤ ιϑE(|I−ϑ(t)|),

where ι = ε
1
ϑ

Φ
1
ϑ

and ε > 0 is an arbitrarily small constant. Hence

lim sup
t→∞

P{|I(t)| < ι} ≤ ιϑΦ = ε.

That is
lim inf

t→∞
P{I(t) ≥ ι} > 1 − ε.

The proof of the theorem is hereby finished.
□
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3. Numerical results

In this section, we verify and extend our mathematical results by borrowing the actual parameter
values from Tamil Nadu for COVID-19. For the sake of convenience, let us first assume that the total
resident population of a district in Tamil Nadu is 10,000. As reported in [41], in Tamil Nadu, there
are 1.1 hospital beds for every 1000 people. Thus, an estimate of b is 11. In this section, if the value
of the numerical solution I(t) at a moment t is less than 0.0001, the illness is deemed extinct. Table 1
summarizes the parameter values for models (1.3) and (1.4).

Table 1. Parameter values for model (1.3) in numerical simulations.

Parameters Value Sources

r 0.0077 [42]
K 10, 000 Estimated
α 0.0001 Estimated
u1 0.0027 Estimated
d 0.0061 [43]
δ 0.0122 [44]
µ0 1/34 [45]
µ1 1/16 [45]
b 11 [41]
R0 := βK(r−u1)

r(d+δ+µ1) 1.405 [46]

We always assume that S (0) = 6200, I(0) = 10, and R(0) = 3790, unless otherwise stated. As
shown in [47] and [48], SARS-CoV-2 is highly stable in cold environments at 4◦C, whereas after the
temperature reaches 20◦C, SARS-CoV-2 survival decreases with the increasing temperature. Hence,
based on Table 1, we assume that the basic reproduction numbers in states 1 (cold environments) and
2 (hot environments) are respectively

R0(1) :=
β(1)K(r − u1)

r
(
d + δ + µ1 +

σ2K2(r−u1)2

2r2

) = 1.405,R0(2) :=
β(2)K(r − u1)

r
(
d + δ + µ1 +

σ2K2(r−u1)2

2r2

) = 0.797,

and we can get the transmission rates in states 1 and 2, respectively, as β(1) = 1.7623 × 10−5, β(2) =
1.0 × 10−5.

It is well known that white noise can inhibit disease outbreaks when its intensity is sufficiently
high. Therefore, this issue will not be addressed in this paper. Backward bifurcation is a problem of
coexistence of multiple equilibria for the model, which is a hot research topic in the epidemic model.
A discussion similar to Theorem 10 in [26], one can get that deterministic model (1.3) undergoes
backward bifurcation at R0 = 1 if b < K(µ1−µ0)(r−u1)2

r(d+δ+µ1) . Hence, in this section, we focus on how white
noise and random switching affect the dynamics of the transmission dynamics for the disease when
deterministic model (1.3) undergoes backward bifurcation. To do this, we let β vary and fix the other
parameters such that R0 varies between 0.75 and 1.1, and b = 11 < K(µ1−µ0)(r−u1)2

r(d+δ+µ1) = 13.085275. As
shown in Figure 1, deterministic model (1.3) has two endemic equilibrium and one disease-free
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equilibrium when 0.7961 < R0 < 1, and both the disease-free equilibrium and endemic equilibrium
with a relatively large number of infected individuals are stable. We then divide the numerical
simulation into three parts as follows.

Figure 1. The backward bifurcation curve for model (1.3).

3.1. Impact of white noise on the transmission dynamics for the disease

We first letN = 1, β(υ(t)) ≡ 1.15246×10−5, σ = 0.000001, and the other parameters are taken from
Table 1. A direct calculation gives R0 = 0.9188 and Rs

0 = 0.9186. As shown in Figure 2, deterministic
model (1.3) with β ≡ 1.15246 × 10−5 has two endemic equilibrium E1 and E2, and the disease-free
equilibrium E0. Moreover, both E2 and E0 are stable, while E1 is a saddle point. Further, the stable
manifold of E1 divides R2

+ into two regions, A1 and A2, where A1 and A2 are the attraction domains
of E0 and E2, respectively. In contrast, the solution trajectories of stochastic model (1.4), regardless
of whether it starts from regions A2 or A1, may cross the stable manifold of E1 finite times, but will
always eventually converge to E0 (see Figure 3).

5800 6000 6200 6400
0

10

20

30

40

50

60

S

I

Area A2

Area A1 E1

E0

E2

Figure 2. Areas A1 and A2 are the areas of disease extinction and persistence, respectively.
Stable and unstable manifolds for E1 of deterministic model (1.3) are represented by the pink
curves. Here β = 1.15246 × 10−5 and the other parameters are taken from Table 1.
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(a) (S (0), I(0)) = (6200, 10) (b) (S (0), I(0)) = (6200, 8)

Figure 3. Phase portraits of models (1.3) and (1.4) for different initial values. The pink curve
represents stable manifold for E1. We choose β(υ(t)) ≡ 1.15246 × 10−5 and σ = 0.000001.
The remaining parameters are provided in Table 1.

3.2. Impact of random switching on the dynamics of the transmission dynamics for the disease

Next, we consider the effect of the generatorW with the same stationary distribution but different
elements on the dynamics of disease transmission. We choose 4 different generatorsW,

G1 :=
(
−0.292 0.292
0.073 −0.073

)
, G2 :=

(
−2.92 2.92
0.73 −0.73

)
,G3 :=

(
−29.2 29.2

7.3 −7.3

)
, G4 :=

(
−2920 2920

730 −730

)
,

σ = 0, β(1) = 1.7623 × 10−5, β(2) = 1.0 × 10−5, and the other parameters are taken from Table 1.
By the irreducible property, we can get that the Markov chain υ(t) always has a unique stationary
distribution (π1, π2) = (0.2, 0.8) for these four cases. As shown in Figures 2 and 4, the solutions of
stochastic model (1.4) with generatorsW1, W2, W3, andW4 may cross the stable manifold of the
equilibrium E1 of deterministic model (1.3) with β = π1β(1)+ π2β(2) = 1.15246× 10−5 finite times. In
addition, the stochastic trajectories oscillate in the vicinity of the trajectory of the deterministic model.
The amplitude of the oscillations decreases with increasing the elements of the generatorW: when the
elements are increased to a certain value, the solution of stochastic model (1.4) almost coincides with
the solution of deterministic model (1.3) with β = π1β(1)+π2β(2). This implies that when the speed of
switching is fast enough, the solution of stochastic model (1.4) with σ = 0 is practically deterministic.

3.3. Combined effects of white noise and random switching on disease transmission dynamics

Let σ = 0.000001, S (0) = 6200, I(0) = 10, and the other parameters are the same as those in
Figure 4. In this instance, the basic reproduction number Rs

0 = 0.9186 < 1. According to Theorem 2.3,
we get that the disease is extinct for model (1.4). The numerical simulations shown in Figure 4 directly
corroborate the conclusion. In addition, from Figure 2, it is clear that the asymptotic behavior of
deterministic model (1.3) with β = π1β(1) + π2β(2) = 1.15246 × 10−5 is closely related to the initial
values. In contrast, the disease-free equilibrium E0 of stochastic model (1.4) with β(1) = β(2) =
1.15246 × 10−5 is globally asymptotically stable (see Figure 5), that is, the asymptotic behavior of the
stochastic model is independent of the initial values. This means that when the deterministic model
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shows that both the disease-free equilibrium and the endemic equilibrium are stable, white noise has
the power to change the disease-free equilibrium’s stability from locally stable to globally stable.

5800 6000 6200 6400
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20
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80
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G
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G
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G
4

determinstic model

(a): (S (0), I(0)) = (6200, 10)

5800 6000 6200 6400
0

5

10
G

1

G
2

G
3

G
4

determinstic model

(b): (S (0), I(0)) = (6200, 3)
Figure 4. The sample orbits of deterministic model (1.3) and stochastic model (1.4) are
graphed forW = G1,G2,G3,G4. Here β = 1.15246 × 10−5, β(1) = 1.7623 × 10−5, β(2) =
1.0 × 10−5, σ = 0, and the other parameters are taken from Table 1.

Figure 5. The sample orbits of stochastic model (1.4). Here σ = 0.000001, (S (0), I(0)) =
(6200, 10), and the other parameters are the same as those in Figure 4.

In addition, taking into account the impact of the change of seasons on the survival and transmission

rates of SARS-CoV-2, we letW = G5 :=
(
−0.073 0.073
0.292 −0.292

)
, and the other parameters are the same as

those in Figure 5. Then, it is easy to get that the Markov chain υ(t) has a unique stationary distribution
(π1, π2) = (0.8, 0.2) and Rs

0 = 1.283 > 1. According to Theorem 2.5, we get that the disease is persistent
for model (1.4). The numerical simulation in Figure 6 directly confirms this conclusion. A comparison
of Figures 5 and 6 shows that the resurgence of COVID-19 may be caused by random switching of the
environment.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5881–5899.



5895

Figure 6. The sample orbits of stochastic model (1.4). Here W = W5 and the other
parameters are the same as those in Figure 5.

4. Discussion and conclusions

In this article, we investigated the effects of healthcare resources and random environment on the
dynamics of the SIR model with logistic growth. Our results showed that the asymptotic behavior of
deterministic model (1.3) was closely related to the initial values, since when R0 < 1, deterministic
model (1.3) may exhibit bistability; whereas the asymptotic behavior of the stochastic model (1.4) was
independent of the initial values, but related to the basic reproduction number Rs

0 when σ > 0.
More specifically, if r > u1, we have

• If Rs
0 > 1, the disease is persistent; whereas if Rs

0 < 1, the disease is extinct.

• White noise has the power to alter the disease-free equilibrium’s stability.

• If σ = 0, and the elements of the generatorW are increased to a certain value, then the solution
of stochastic model (1.4) almost coincides with the solution of deterministic model (1.3) with
β =

∑
i∈H πiβ(i).

• The resurgence of infectious diseases may be caused by random switching of the environment.

• It is vital to maintain adequate medical resources to control the spread of disease, since the lack
of medical resources will lead to infectious diseases with complex dynamics, which poses a great
challenge to the prevention and control of infectious diseases.

We have also noticed the work of Nguyen et al. [37], where the authors studied a general stochastic
differential equation with switching and non-degenerate diffusion. It is shown that the long-term
properties of the system can be classified by using a real-valued parameter ξ. However, the techniques
used in [37] are not applicable to stochastic model (1.4) since the Lyapunov exponent of I(t) is a
non-monotonic function with respect to (S , I) as follows:

lim
t→∞

ln I(t)
t
= lim

t→∞

1
t

∫ t

0

(
β(υ(t))S
1 + αI2 − (d + δ) −

(
µ0 +

(µ1 − µ0)b
b + I

)
−

σ2S 2

2(1 + αI2)2

)
dt.

This paper focused on characterizing disease extinction by studying the stability of the disease-free
equilibrium of stochastic model (1.4). In addition, there is no mature theory or methodology for the
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study of the ergodicity of stochastic differential equations with switching and degenerate diffusion, and
we leave it for future investigations.
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