Research article

AttBiLFNet: A novel hybrid network for accurate and efficient arrhythmia detection in imbalanced ECG signals

  • Received: 15 December 2023 Revised: 19 February 2024 Accepted: 29 April 2024 Published: 10 May 2024
  • Within the domain of cardiovascular diseases, arrhythmia is one of the leading anomalies causing sudden deaths. These anomalies, including arrhythmia, are detectable through the electrocardiogram, a pivotal component in the analysis of heart diseases. However, conventional methods like electrocardiography encounter challenges such as subjective analysis and limited monitoring duration. In this work, a novel hybrid model, AttBiLFNet, was proposed for precise arrhythmia detection in ECG signals, including imbalanced class distributions. AttBiLFNet integrates a Bidirectional Long Short-Term Memory (BiLSTM) network with a convolutional neural network (CNN) and incorporates an attention mechanism using the focal loss function. This architecture is capable of autonomously extracting features by harnessing BiLSTM's bidirectional information flow, which proves advantageous in capturing long-range dependencies. The attention mechanism enhances the model's focus on pertinent segments of the input sequence, which is particularly beneficial in class imbalance classification scenarios where minority class samples tend to be overshadowed. The focal loss function effectively addresses the impact of class imbalance, thereby improving overall classification performance. The proposed AttBiLFNet model achieved 99.55% accuracy and 98.52% precision. Moreover, performance metrics such as MF1, K score, and sensitivity were calculated, and the model was compared with various methods in the literature. Empirical evidence showed that AttBiLFNet outperformed other methods in terms of both accuracy and computational efficiency. The introduced model serves as a reliable tool for the timely identification of arrhythmias.

    Citation: Enes Efe, Emrehan Yavsan. AttBiLFNet: A novel hybrid network for accurate and efficient arrhythmia detection in imbalanced ECG signals[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5863-5880. doi: 10.3934/mbe.2024259

    Related Papers:

  • Within the domain of cardiovascular diseases, arrhythmia is one of the leading anomalies causing sudden deaths. These anomalies, including arrhythmia, are detectable through the electrocardiogram, a pivotal component in the analysis of heart diseases. However, conventional methods like electrocardiography encounter challenges such as subjective analysis and limited monitoring duration. In this work, a novel hybrid model, AttBiLFNet, was proposed for precise arrhythmia detection in ECG signals, including imbalanced class distributions. AttBiLFNet integrates a Bidirectional Long Short-Term Memory (BiLSTM) network with a convolutional neural network (CNN) and incorporates an attention mechanism using the focal loss function. This architecture is capable of autonomously extracting features by harnessing BiLSTM's bidirectional information flow, which proves advantageous in capturing long-range dependencies. The attention mechanism enhances the model's focus on pertinent segments of the input sequence, which is particularly beneficial in class imbalance classification scenarios where minority class samples tend to be overshadowed. The focal loss function effectively addresses the impact of class imbalance, thereby improving overall classification performance. The proposed AttBiLFNet model achieved 99.55% accuracy and 98.52% precision. Moreover, performance metrics such as MF1, K score, and sensitivity were calculated, and the model was compared with various methods in the literature. Empirical evidence showed that AttBiLFNet outperformed other methods in terms of both accuracy and computational efficiency. The introduced model serves as a reliable tool for the timely identification of arrhythmias.



    加载中


    [1] J. Huang, B. Chen, B. Yao, W. He, ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network, IEEE Access, 7 (2019), 92871–92880. https://doi.org/10.1109/ACCESS.2019.2928017 doi: 10.1109/ACCESS.2019.2928017
    [2] H. Chang, H. Zan, S. Zhang, B. Zhao, K. Zhang, Construction of cardiovascular information extraction corpus based on electronic medical records, Math. Biosci. Eng., 20 (2023), 13379–13397. https://doi.org/10.3934/mbe.2023596 doi: 10.3934/mbe.2023596
    [3] Q. Yao, R. Wang, X. Fan, J. Liu, Y. Li, Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network, Inf. Fusion, 53 (2020), 174–182. https://doi.org/10.1016/j.inffus.2019.06.024 doi: 10.1016/j.inffus.2019.06.024
    [4] L. C. M. Jr, J. F. Toole, H. S. Miller, Long-term EKG monitoring in patients with cerebrovascular insufficiency, Stroke, 7 (1976), 264–269. https://doi.org/10.1161/01.STR.7.3.264 doi: 10.1161/01.STR.7.3.264
    [5] M. Pittiruti, G. Scoppettuolo, A. L. Greca, A. Emoli, A. Brutti, I. Migliorini, et al., The EKG method for positioning the tips of PICCs: Results from two preliminary studies, J. Assoc. Vasc. Access, 13 (2008), 179–186. https://doi.org/10.2309/java.13-4-4 doi: 10.2309/java.13-4-4
    [6] E. K. Wang, L. Xi, R. P. Sun, F. Wang, L. Y. Pan, C. X. Cheng, et al., A new deep learning model for assisted diagnosis on electrocardiogram, Math. Biosci. Eng., 16 (2019), 2481–2491. https://doi.org/10.3934/mbe.2019124 doi: 10.3934/mbe.2019124
    [7] E. Svennberg, F. Tjong, A. Goette, N. Akoum, L. D. Biase, P. Bordachar, et al., How to use digital devices to detect and manage arrhythmias: An EHRA practical guide, Europace, 24 (2022), 979–1005. https://doi.org/10.1093/europace/euac038 doi: 10.1093/europace/euac038
    [8] W. Midani, Z. Fki, M. BenAyed, Online anomaly detection in ECG signal using hierarchical temporal memory, in 2019 Fifth International Conference on Advances in Biomedical Engineering (ICABME), IEEE, (2019), 1–4. https://doi.org/10.1109/ICABME47164.2019.8940307
    [9] E. R. Adams, A. Choi, Using neural networks to predict cardiac arrhythmias, in 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, (2012), 402–407. https://doi.org/10.1109/ICSMC.2012.6377734
    [10] W. Midani, W. Ouarda, M. B. Ayed, DeepArr: An investigative tool for arrhythmia detection using a contextual deep neural network from electrocardiograms (ECG) signals, Biomed. Signal Process. Control, 85 (2023), 104954. https://doi.org/10.1016/j.bspc.2023.104954 doi: 10.1016/j.bspc.2023.104954
    [11] S. M. P. Dinakarrao, A. Jantsch, M. Shafique, Computer-aided arrhythmia diagnosis with bio-signal processing: A survey of trends and techniques, ACM Comput. Surv., 52 (2019), 1–37. https://doi.org/10.1145/3297711 doi: 10.1145/3297711
    [12] J. J. Halford, Computerized epileptiform transient detection in the scalp electroencephalogram: Obstacles to progress and the example of computerized ECG interpretation, Clin. Neurophysiol., 120 (2009), 1909–1915. https://doi.org/10.1016/j.clinph.2009.08.007 doi: 10.1016/j.clinph.2009.08.007
    [13] M. Y. Ansari, Y. Yang, P. K. Meher, S. P. Dakua, Dense-PSP-UNet: A neural network for fast inference liver ultrasound segmentation, Comput. Biol. Med., 153 (2023), 106478. https://doi.org/10.1016/j.compbiomed.2022.106478 doi: 10.1016/j.compbiomed.2022.106478
    [14] Z. Akkus, J. Cai, A. Boonrod, A. Zeinoddini, A. D. Weston, K. A. Philbrick, et al., A survey of deep-learning applications in ultrasound: Artificial intelligence–powered ultrasound for improving clinical workflow, J. Am. Coll. Radiol., 16 (2019), 1318–1328. https://doi.org/10.1016/j.jacr.2019.06.004 doi: 10.1016/j.jacr.2019.06.004
    [15] F. A. Elhaj, N. Salim, A. R. Harris, T. T. Swee, T. Ahmed, Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals, Comput. Methods Programs Biomed., 127 (2016), 52–63. https://doi.org/10.1016/j.cmpb.2015.12.024 doi: 10.1016/j.cmpb.2015.12.024
    [16] Y. Kutlu, D. Kuntalp, Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients, Comput. Methods Programs Biomed., 105 (2012), 257–267. https://doi.org/10.1016/j.cmpb.2011.10.002 doi: 10.1016/j.cmpb.2011.10.002
    [17] T. Li, M. Zhou, ECG classification using wavelet packet entropy and random forests, Entropy, 18 (2016), 285. https://doi.org/10.3390/e18080285 doi: 10.3390/e18080285
    [18] R. J. Martis, U. R. Acharya, C. M. Lim, K. M. Mandana, A. K. Ray, C. Chakraborty, Application of higher order cumulant features for cardiac health diagnosis using ECG signals, Int. J. Neural Syst., 23 (2013), 1350014. https://doi.org/10.1142/S0129065713500147 doi: 10.1142/S0129065713500147
    [19] R. J. Martis, U. R. Acharya, K. M. Mandana, A. K. Ray, C. Chakraborty, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health, Expert Syst. Appl., 39 (2012), 11792–11800. https://doi.org/10.1016/j.eswa.2012.04.072 doi: 10.1016/j.eswa.2012.04.072
    [20] H. F. Huang, G. S. Hu, L. Zhu, Sparse representation-based heartbeat classification using independent component analysis, J. Med. Syst., 36 (2012), 1235–1247. https://doi.org/10.1007/s10916-010-9585-x doi: 10.1007/s10916-010-9585-x
    [21] U. R. Acharya, Y. Hagiwara, J. E. W. Koh, S. L. Oh, J. H. Tan, M. Adam, et al., Entropies for automated detection of coronary artery disease using ECG signals: A review, Biocybern. Biomed. Eng., 38 (2018), 373–384. https://doi.org/10.1016/j.bbe.2018.03.001 doi: 10.1016/j.bbe.2018.03.001
    [22] Ö. Yildirim, A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification, Comput. Biol. Med., 96 (2018), 189–202. https://doi.org/10.1016/j.compbiomed.2018.03.016 doi: 10.1016/j.compbiomed.2018.03.016
    [23] A. Khazaee, A. Ebrahimzadeh, Heart arrhythmia detection using support vector machines, Intell. Autom. Soft Comput., 19 (2013), 1–9. https://doi.org/10.1080/10798587.2013.771456 doi: 10.1080/10798587.2013.771456
    [24] J. Park, K. Lee, K. Kang, Arrhythmia detection from heartbeat using k-nearest neighbor classifier, in 2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE, (2013), 15–22. https://doi.org/10.1109/BIBM.2013.6732594
    [25] N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, M. Strintzis, ECG pattern recognition and classification using non-linear transformations and neural networks: A review, Int. J. Med. Inform., 52 (1998), 191–208. https://doi.org/10.1016/S1386-5056(98)00138-5 doi: 10.1016/S1386-5056(98)00138-5
    [26] M. Coşkun, Ö. YILDIRIM, U. Ayşegül, Y. Demir, An overview of popular deep learning methods, Eur. J. Tech., 7 (2017), 165–176.
    [27] U. Erdenebayar, H. Kim, J. U. Park, D. Kang, K. J. Lee, Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal, J. Korean Med. Sci., 34 (2019), e64. https://doi.org/10.3346/jkms.2019.34.e64 doi: 10.3346/jkms.2019.34.e64
    [28] K. S. Lee, S. Jung, Y. Gil, H. S. Son, Atrial fibrillation classification based on convolutional neural networks, BMC Med. Inform. Decis. Mak., 19 (2019), 1–6. https://doi.org/10.1186/s12911-019-0946-1 doi: 10.1186/s12911-019-0946-1
    [29] C. Zhang, W. Liu, H. Ma, H. Fu, Siamese neural network based gait recognition for human identification, in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, (2016), 2832–2836. https://doi.org/10.1109/ICASSP.2016.7472194
    [30] Y. Ng, M. T. Liao, T. L. Chen, C. K. Lee, C. Y. Chou, W. Wang, Few-shot transfer learning for personalized atrial fibrillation detection using patient-based siamese network with single-lead ECG records, Artif. Intell. Med., 144 (2023), 102644. https://doi.org/10.1016/j.artmed.2023.102644 doi: 10.1016/j.artmed.2023.102644
    [31] L. Wang, X. Zhou, Detection of congestive heart failure based on LSTM-based deep network via short-term RR intervals, Sensors, 19 (2019), 1502. https://doi.org/10.3390/s19071502 doi: 10.3390/s19071502
    [32] T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, (2017), 2980–2988. https://doi.org/10.1109/ICCV.2017.324
    [33] T. F. Romdhane, M. A. Pr, Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss, Comput. Biol. Med., 123 (2020), 103866. https://doi.org/10.1016/j.compbiomed.2020.103866 doi: 10.1016/j.compbiomed.2020.103866
    [34] Z. Zhu, W. Dai, Y. Hu, J. Li, Speech emotion recognition model based on Bi-GRU and focal loss, Pattern Recognit. Lett., 140 (2020), 358–365. https://doi.org/10.1016/j.patrec.2020.11.009 doi: 10.1016/j.patrec.2020.11.009
    [35] R. Iikura, M. Okada, N. Mori, Improving bert with focal loss for paragraph segmentation of novels, in Distributed Computing and Artificial Intelligence, 17th International Conference, Springer, (2021), 21–30. https://doi.org/10.1007/978-3-030-53036-5_3
    [36] G. Petmezas, K. Haris, L. Stefanopoulos, V. Kilintzis, A. Tzavelis, J. A. Rogers, et al., Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets, Biomed. Signal Process. Control, 63 (2021), 102194. https://doi.org/10.1016/j.bspc.2020.102194 doi: 10.1016/j.bspc.2020.102194
    [37] M. Woźniak, M. Wieczorek, J. Siłka, BiLSTM deep neural network model for imbalanced medical data of IoT systems, Future Gener. Comput. Syst., 141 (2023), 489–499. https://doi.org/10.1016/j.future.2022.12.004 doi: 10.1016/j.future.2022.12.004
    [38] S. V. Moravvej, S. J. Mousavirad, M. H. Moghadam, M. Saadatmand, An LSTM-based plagiarism detection via attention mechanism and a population-based approach for pre-training parameters with imbalanced classes, in Neural Information Processing, Springer, (2021), 690–701. https://doi.org/10.1007/978-3-030-92238-2_57
    [39] A. Jović, K. Brkić, N. Bogunović, A review of feature selection methods with applications, in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, (2015), 1200–1205. https://doi.org/10.1109/MIPRO.2015.7160458
    [40] T. Emura, S. Matsui, H. Y. Chen, compound. Cox: Univariate feature selection and compound covariate for predicting survival, Comput. Methods Programs Biomed., 168 (2019), 21–37. https://doi.org/10.1016/j.cmpb.2018.10.020 doi: 10.1016/j.cmpb.2018.10.020
    [41] W. Lu, J. Li, J. Wang, L. Qin, A CNN-BiLSTM-AM method for stock price prediction, Neural Comput. Appl., 33 (2021), 4741–4753. https://doi.org/10.1007/s00521-020-05532-z doi: 10.1007/s00521-020-05532-z
    [42] Z. Niu, G. Zhong, H. Yu, A review on the attention mechanism of deep learning, Neurocomputing, 452 (2021), 48–62. https://doi.org/10.1016/j.neucom.2021.03.091 doi: 10.1016/j.neucom.2021.03.091
    [43] F. Murat, O. Yildirim, M. Talo, U. B. Baloglu, Y. Demir, U. R. Acharya, Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review, Comput. Biol. Med., 120 (2020), 103726. https://doi.org/10.1016/j.compbiomed.2020.103726 doi: 10.1016/j.compbiomed.2020.103726
    [44] F. Qiao, B. Li, Y. Zhang, H. Guo, W. Li, S. Zhou, A fast and accurate recognition of ECG signals based on ELM-LRF and BLSTM algorithm, IEEE Access, 8 (2020), 71189–71198. https://doi.org/10.1109/ACCESS.2020.2987930 doi: 10.1109/ACCESS.2020.2987930
    [45] M. K. Ojha, S. Wadhwani, A. K. Wadhwani, A. Shukla, Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier, Phys. Eng. Sci. Med., 45 (2022), 665–674. https://doi.org/10.1007/s13246-022-01119-1 doi: 10.1007/s13246-022-01119-1
    [46] O. Yildirim, U. B. Baloglu, R. S. Tan, E. J. Ciaccio, U. R. Acharya, A new approach for arrhythmia classification using deep coded features and LSTM networks, Comput. Methods Programs Biomed., 176 (2019), 121–133. https://doi.org/10.1016/j.cmpb.2019.05.004 doi: 10.1016/j.cmpb.2019.05.004
    [47] M. Wu, Y. Lu, W. Yang, S. Y. Wong, A study on arrhythmia via ECG signal classification using the convolutional neural network, Front. Comput. Neurosci., 14 (2021), 564015. https://doi.org/10.3389/fncom.2020.564015 doi: 10.3389/fncom.2020.564015
    [48] S. L. Oh, E. Y. K. Ng, R. S. Tan, U. R. Acharya, Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats, Comput. Biol. Med., 102 (2018), 278–287. https://doi.org/10.1016/j.compbiomed.2018.06.002 doi: 10.1016/j.compbiomed.2018.06.002
    [49] S. L. Oh, E. Y. K. Ng, R. S. Tan, U. R. Acharya, Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types, Comput. Biol. Med., 105 (2019), 92–101. https://doi.org/10.1016/j.compbiomed.2018.12.012 doi: 10.1016/j.compbiomed.2018.12.012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(375) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog