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Abstract: Within the domain of cardiovascular diseases, arrhythmia is one of the leading anomalies 
causing sudden deaths. These anomalies, including arrhythmia, are detectable through the 
electrocardiogram, a pivotal component in the analysis of heart diseases. However, conventional 
methods like electrocardiography encounter challenges such as subjective analysis and limited 
monitoring duration. In this work, a novel hybrid model, AttBiLFNet, was proposed for precise 
arrhythmia detection in ECG signals, including imbalanced class distributions. AttBiLFNet integrates 
a Bidirectional Long Short-Term Memory (BiLSTM) network with a convolutional neural network 
(CNN) and incorporates an attention mechanism using the focal loss function. This architecture is 
capable of autonomously extracting features by harnessing BiLSTM’s bidirectional information flow, 
which proves advantageous in capturing long-range dependencies. The attention mechanism enhances 
the model’s focus on pertinent segments of the input sequence, which is particularly beneficial in class 
imbalance classification scenarios where minority class samples tend to be overshadowed. The focal 
loss function effectively addresses the impact of class imbalance, thereby improving overall 
classification performance. The proposed AttBiLFNet model achieved 99.55% accuracy and 98.52% 
precision. Moreover, performance metrics such as MF1, K score, and sensitivity were calculated, and 
the model was compared with various methods in the literature. Empirical evidence showed that 
AttBiLFNet outperformed other methods in terms of both accuracy and computational efficiency. The 
introduced model serves as a reliable tool for the timely identification of arrhythmias. 

Keywords: arrhythmia detection; cardiovascular disease; BiLSTM; electrocardiography; cardiology; 
class imbalance 
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1. Introduction 

Cardiovascular diseases (CVDs) pose a significant threat to human health worldwide. Data from 
the World Health Organization (WHO) indicate that CVDs are the leading cause of death globally, 
resulting in 17.9 million fatalities annually, comprising approximately 32% of all global deaths. 
Over 75% of these fatalities occur in developing nations. The prevalence and mortality rates of CVDs 
are steadily increasing at alarming levels. Consequently, regular heart rhythm monitoring has emerged 
as an essential and indispensable strategy for effectively managing and preventing CVDs [1,2]. 

 

Figure 1. The 12-lead ECG system. (a) The spatial arrangement of the 10 electrodes 
employed in the 12-lead ECG system. (b) Electrodes on human skin capture the electrical 
potential differences, and ECG signals from 12 leads depict the heart’s electrical activity 
from various angles [3]. 

The electrocardiogram (ECG) is a cornerstone of clinical arrhythmia diagnosis. This non-invasive 
method provides a detailed view of the heart’s electrical activity, revealing the timing and coordination 
of atrial and ventricular contractions. The most widely applied solution for arrhythmia detection is 
electrocardiography, which records the electrical activity of the heart over a period using electrodes 
placed over the skin, as illustrated in Figure 1 [3]. By analyzing the ECG’s waveforms, healthcare 
professionals can assess the efficiency of impulse conduction through the heart’s conduction system, 
including the atria, atrioventricular (AV) junction, and ventricles. The procedure involves attaching 
twelve electrodes to specific locations on the body, four on the limbs, and six on the chest. These 
electrodes act as sensors, capturing the heart’s electrical signals and transmitting them to an ECG 
machine for analysis and interpretation [4–6]. Traditional arrhythmia monitoring methods, such as 
Holter monitors and event recorders, are limited by their short-term recording capabilities, often 
restricting continuous patient surveillance. To address this limitation and enhance the duration and 
quality of arrhythmia screening, smart wearable devices have emerged as a promising alternative. 
These devices, including smartwatches, clothing-integrated sensors, and chest patches, enable continuous 
monitoring of arrhythmias, providing valuable insights into cardiac rhythm patterns over extended 
periods. Their ability to capture arrhythmic events throughout daily activities offers clinicians a more 
comprehensive understanding of patient cardiovascular health [7]. However, it is important to note that 
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the acquisition of ECG signals can be affected by various challenges. These challenges include the 
absence of cardiac arrhythmia indicators during capture, non-stationary ECG signal morphology, 
patient-specific ECG signal properties, large volumes of ECG data, and the presence of noise and 
artifacts. These challenges can lead to inaccurate interpretations of cardiac arrhythmias [8–11]. In 
addition, traditional ECG analysis is subjective, time-consuming, and limited in its ability to detect 
subtle changes in heart function due to its reliance on the expertise of the interpreting physician [12]. 

The use of machine learning (ML) and deep learning (DL) models in ECG interpretation has the 
potential to improve healthcare access and outcomes in remote or resource-limited settings. These 
models can provide continuous, real-time monitoring and more accurate interpretation of ECG signals, 
thereby increasing the likelihood of capturing intermittent arrhythmias. Additionally, the use of ML 
and DL models can standardize analyses, reducing the variability inherent in human interpretation and 
potentially leading to improved patient outcomes. Therefore, it is essential to foster research and 
development in the field of ML to realize its full potential benefits [13,14]. A review of extant literature 
reveals that traditional ML algorithms, which employ handcrafted features, are commonly employed 
as the initial step in the model development process. The utilization of a shallow learning model in 
conjunction with a feature extractor is a particularly prevalent approach in this regard [15]. Several 
researchers [15–21] have utilized advanced mathematical techniques, such as higher-order statistics 
(HOS), continuous wavelet transform, independent component analysis (ICA), and principal 
component analysis (PCA), to extract meaningful features from data [22]. Conventional classifier 
networks, including random forest, support vector machine, and k-nearest neighbors, were trained on 
these extracted features. However, the achieved results fell short of expectations, and the feature 
extraction process proved to be time-consuming. Additionally, a significant drawback of these methods 
lies in the dataset-specific nature of the extracted features, hindering generalization capabilities. 
Because of these disadvantages, deep learning algorithms such as convolutional neural networks 
(CNNs) have been adopted to extract features automatically. Despite significant advancements in 
arrhythmia detection, both traditional classifiers [23–25] and deep learning-based classifiers [26–28] 
struggle to effectively handle class imbalance. This is primarily due to the inherent nature of ECG 
signals, where acquiring equal amounts of data for each class of arrhythmias is often impractical. 
Conventional classifier networks, on the other hand, require substantial amounts of balanced data from 
each class to achieve optimal performance [29]. To address this challenge, various techniques have 
been explored, including Siamese Neural Networks [30], Long Short-Term Memory (LSTM) 
networks [31], and Bidirectional LSTM (BiLSTM) networks [22]. While these methods have shown 
some improvement in classification accuracy, they have yet to reach the desired levels of performance. 

In recent years, there has been a surge of research dedicated to addressing the challenge of class 
imbalance in various domains. One noticeable contribution is the work of Lin et al. (2017) in the object 
detection field [32]. They introduced the focal loss function, an enhanced version of the categorical 
cross-entropy loss function commonly employed in CNNs. Subsequently, focal loss has been 
incorporated into DL techniques in various fields, including time series analysis [33], speech 
recognition [34], and natural language processing [35]. A particularly noteworthy study in this area is 
that of Petmezas et al. (2021) on an imbalanced ECG dataset [36]. This work utilizes a hybrid network 
architecture combining an LSTM and a CNN, with focal loss selected as the loss function. The CNN 
component serves as a feature extractor, while the LSTM acts as an information selector, learning the 
temporal dynamics of the input data. This study effectively demonstrates the superior performance of 
CNN-LSTM with focal loss in handling class imbalance [36]. 
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While the combination of CNN and LSTM proves effective in handling class imbalance, further 
improvements can be achieved by replacing the LSTM with a BiLSTM. BiLSTMs offer several 
advantages over LSTMs, particularly in the context of imbalanced data classification. LSTMs, with 
their unidirectional flow of information, can sometimes miss important contextual information, 
especially when dealing with long sequences or when the relevant information is spread out across the 
sequence. BiLSTMs, on the other hand, process the input sequence in both directions, allowing them 
to capture long-range dependencies and contextual information more effectively [37]. This makes 
BiLSTMs particularly well-suited for tasks like sentiment analysis, machine translation, and time 
series prediction, where contextual information is crucial for accurate classification. In addition to 
replacing the LSTM with a BiLSTM, incorporating an attention mechanism into the model can further 
enhance its performance. Attention mechanisms allow the model to focus on the most relevant parts 
of the input sequence, dynamically assigning weights to different parts of the sequence based on their 
importance. This is particularly beneficial for imbalanced data classification, where the minority class 
samples are often overshadowed by the majority class samples [38]. By selectively focusing on the 
minority class samples, the attention mechanism can help the model to better learn their characteristics 
and improve its classification accuracy for the minority class. The combination of a BiLSTM with an 
attention mechanism can provide a powerful and effective approach to handling imbalanced data 
classification tasks. The BiLSTM’s ability to capture long-range dependencies and contextual 
information, coupled with the attention mechanism’s ability to selectively focus on the most relevant 
parts of the input sequence, can lead to significant improvements in classification performance, 
particularly for the minority class. 

We introduce AttBiLFNet architecture, a novel network model that proficiently addresses the 
challenges of arrhythmia detection in ECG signals, focusing on class imbalance. The proposed method 
effectively extracts and classifies arrhythmia patterns using a BiLSTM network with a CNN combined 
with an attention mechanism and focal loss. The performance of the proposed model has been 
comprehensively evaluated with existing approaches and has consistently outperformed them in terms 
of both accuracy and computational efficiency. Additionally, the proposed method has been compared 
with a hybrid approach that uses both advanced and traditional feature extraction methods by 
integrating the univariate feature selection (UFS) method into the model. The UFS method identifies 
the most important features by evaluating the performance of each feature individually through 
classifiers [39]. Combining these two methods is aimed to lead to more meaningful and effective 
feature selection. To the best of our knowledge, AttBiLFNet represents the first application of this 
particular combination of techniques in the context of arrhythmia detection. The key contributions of 
this work are summarized as follows: 

• The development of a novel network architecture, AttBiLFNet, that effectively addresses the 
challenges of arrhythmia detection in the context of class imbalance of ECG signals; 

• The compelling extraction and classification of arrhythmia patterns using a BiLSTM network 
with a CNN combined with an attention mechanism and the focal loss function; 

• The proposed method is comprehensively evaluated in comparison to existing approaches, 
demonstrating superior performance in both accuracy and computational efficiency; 

• The comparison of the proposed method with a hybrid approach that uses both advanced and 
traditional feature extraction methods by integrating the UFS method into the model; 

• The first implementation of this customized combination of techniques in the field of 
arrhythmia detection. 
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The remainder of this paper is organized as follows: Section 2 details the experimental datasets, 
network architecture, and analysis of the methodologies used. Subsequently, Sections 3 and 4 provide 
a comprehensive comparison and evaluation of the proposed model’s performance. 

2. Methodology 

2.1. Dataset and data preparation 

The MIT-BIH Arrhythmia Database (MITDB) is a publicly available collection of 48 half-hour 
excerpts of two-channel ambulatory ECG recordings from 47 subjects. The recordings were obtained 
from the BIH Arrhythmia Laboratory between 1975 and 1979. The database includes a wide variety 
of arrhythmias, including atrial fibrillation, atrial flutter, ventricular tachycardia, and premature 
ventricular contractions. The MITDB has been used extensively for the development and evaluation 
of arrhythmia detection algorithms. In this work, we selected five classes that are widely used in the 
literature [10]: 

Right bundle branch block (RBBB): RBBB is a cardiac conduction disorder characterized by a 
delay in the transmission of electrical impulses through the right bundle branch (RBB) of the heart’s 
His-Purkinje system. This delay results in a widening of the QRS complex on an ECG, indicating a 
prolonged activation of the right ventricle. While RBBB is often asymptomatic and benign, it may also 
be associated with various cardiovascular conditions and pulmonary diseases. Therefore, a thorough 
clinical evaluation is crucial to determine the underlying cause of RBBB and assess the overall cardiac 
health of individuals with this conduction abnormality. 

Left bundle branch block (LBBB): LBBB is a cardiac conduction disorder characterized by a 
prolonged or impeded electrical impulse along the left bundle branch, a crucial component of the 
heart’s electrical conduction system. This abnormality often manifests on an ECG as a widened QRS 
complex, reflecting the delayed activation of the left ventricle. LBBB can arise from various 
underlying cardiac conditions, including myocardial infarction, cardiomyopathy, or structural heart 
disease. Clinical presentations of LBBB range from asymptomatic individuals to those experiencing 
symptoms such as heart failure, palpitations, or dizziness. Diagnosing and managing LBBB involve a 
comprehensive evaluation encompassing the patient’s medical history, clinical symptoms, and 
additional cardiac testing to determine the underlying cause and assess overall cardiovascular health. 
Treatment strategies primarily focus on addressing the root cause while managing associated 
symptoms, emphasizing the importance of a multidisciplinary approach in the care of individuals with 
left bundle branch block. 

Normal beats (N): Regular and rhythmic heart contractions, known as normal beats, play a crucial 
role in maintaining cardiovascular health. These physiological occurrences, characterized by the 
depolarization of the atria and ventricles, ensure an efficient blood-pumping mechanism throughout 
the circulatory system. Grasping the intricacies of N beats is paramount in the realm of cardiac 
electrophysiology, offering valuable insights for healthcare professionals in diagnosing and managing 
various cardiac conditions. Researchers in the field of cardiology delve into the nuances of N beats to 
comprehend the normal functioning of the heart, paving the way for advancements in medical science 
for the prevention and treatment of cardiovascular disorders. 

Atrial premature beats (APBs): APBs, also known as premature atrial contractions (PACs), are a 
type of cardiac arrhythmia characterized by the origination of premature depolarization within the atria. 
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These ectopic beats disrupt the heart’s normal electrical rhythm, resulting in an early contraction of 
the atria before the expected heartbeat sequence. While often benign and asymptomatic, APBs can 
sometimes lead to palpitations, a fluttering sensation in the chest, or other mild symptoms. The 
identification and comprehension of APBs are crucial in clinical cardiology, as their presence may 
indicate an underlying cardiovascular condition. Diagnostic tools such as ECG play a crucial role in 
recognizing and assessing the frequency of APBs, assisting healthcare professionals in the 
comprehensive evaluation and management of individuals presenting with this cardiac arrhythmia. 

Premature ventricular contraction (PVC): PVC is a prevalent cardiac arrhythmia characterized by 
untimely contractions originating from the ventricles, the heart’s lower pumping chambers. These 
ectopic beats disrupt the regular heartbeat, potentially impairing the heart’s ability to effectively pump 
blood. PVCs often manifest as palpitations and can be detected through ECG, which reveals abnormal 
QRS complexes. While occasional PVCs may be harmless, frequent or sustained occurrences may 
signal underlying cardiovascular problems and may warrant further evaluation and management. 
Enlightening the mechanisms and triggers of PVCs is essential for developing personalized 
interventions to address this prevalent cardiac arrhythmia and its potential implications for overall 
cardiovascular health. Table 1 provides the beat counts for each class of arrhythmia waveform. 

Table 1. The number of heartbeats and classes for the MIT-BIH dataset. 

Beat types Numbers 
Right bundle branch block (RBBB) 7259 
Left bundle branch block (LBBB) 8075 
Normal beats (N) 75,052 
Atrial premature beats (APB) 2546 
Premature ventricular contraction (PVC) 7130 

2.2. Methods 

2.2.1. The univariate feature selection 

Univariate feature selection (UFS) is a statistical method widely used in machine learning and 
data analysis to identify and select the most informative features from a dataset. The aim of this 
technique is to improve the model performance and reduce the dimensionality by retaining only the 
most relevant variables. Univariate feature selection individually assesses the significance of each 
feature, independently of the others, making it particularly useful when dealing with high-dimensional 
datasets. The process involves evaluating the relationship between each feature and the target variable 
based on statistical metrics such as correlation, mutual information, or statistical tests like Analysis of 
Variance (ANOVA). Then, features with the highest scores or statistical significance are selected for 
further analysis or model training. One common formula used in UFS is the F-statistic for ANOVA. 
For a given feature, the F-statistic is calculated as the ratio of the variance between groups to the 
variance within groups. Mathematically, it is represented as: 

 𝐹 =     , (1) 

where the variance between groups measures the differences in means among various categories, and 
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the variance within groups represents the variability within each category. A higher F-statistic indicates 
greater differences between group means and, therefore, a potentially more informative feature. 
Researchers and data scientists often set a threshold or use statistical tests to determine the significance 
of the F-statistic and select features accordingly. UFS provides a systematic approach to enhance model 
efficiency and interpretability by focusing on the most relevant features in a dataset [39,40]. 

2.2.2. Convolutional neural network (CNN) and Bidirectional LSTM (BiLSTM) 

Convolutional neural networks (CNNs) and Bidirectional Long Short-Term Memory (BiLSTM) 
networks are specialized architectures within the field of deep learning. CNNs excel, particularly in 
image recognition tasks. Fundamentally, they comprise convolutional and pooling layers. 
Convolutional layers amplify features within the input data while pooling layers diminish 
dimensionality while preserving crucial features. The convolution operation is frequently represented 
mathematically in Eq (2): 

 𝑦(𝑡) = 𝑥(𝑡) ∗ 𝑤(𝑡) = 𝑥(𝜏)𝑤(𝑡 − 𝜏)𝑑𝜏. (2) 

Here, the input is denoted by x, and the kernel or filter by w. The feature map, y, is the result of 
applying the kernel to the input [36]. 

BiLSTMs are widely used in natural language processing tasks, providing the capability to 
interact with both past and future contexts of the input data. BiLSTMs can retain and process 
information by taking into account the context beyond the immediate input. A BiLSTM cell is typically 
formulated as: 

 𝑖 = 𝜎(𝑊 𝑥 + 𝑏 + 𝑊 ℎ + 𝑏 ), (3) 

 𝑓 = 𝜎(𝑊 𝑥 + 𝑏 + 𝑊 ℎ + 𝑏 ), (4) 

 𝑜 = 𝜎(𝑊 𝑥 + 𝑏 + 𝑊 ℎ + 𝑏 ), (5) 

 𝑔 = 𝑡𝑎𝑛ℎ(𝑊 𝑥 + 𝑏 + 𝑊 ℎ + 𝑏 ), (6) 

 𝑐 = 𝑓 ⊙ 𝑐 + 𝑖 ⊙ 𝑔 , (7) 

 ℎ = 𝑜 ⊙ tanh (𝑐 ). (8) 

In these equations, 𝑥   represents the input, ℎ   is the output of the cell, 𝑖  , 𝑓 ,  𝑜  , and 𝑔  
denote input, forget, output, and memory gates, respectively. 𝑊 and 𝑏 terms indicate weights and 
biases, 𝜎 represents the sigmoid function, tanh is the hyperbolic tangent function, and ⊙ signifies 
element-wise multiplication [41]. 

2.2.3. Attention mechanism 

The attention mechanism employs dynamic weighting to evaluate the significance of individual 
elements within an input sequence. These weights are adjusted adaptively based on the relative 
importance of each element, enabling the model to enhance its learning and focusing capability. The 
attention mechanism has demonstrated effectiveness in tasks involving sequential data, particularly in 
the fields of natural language processing (NLP) and machine translation. Mathematically, the attention 
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mechanism can be expressed as follows: 
Considering a data input as a sequence 𝑋 = {𝑥 , 𝑥 , … , 𝑥 }  and hidden states 𝐻 ={ℎ , ℎ , … , ℎ }, where 𝑛 represents the length of the input sequence. 
The attention weights, denoted as 𝑎 = {𝑎 , 𝑎 , … , 𝑎 }, are typically calculated using a network 

or a set of learnable parameters. 
These attention weights are often normalized using the softmax function to ensure the sum of the 

total weight to 1: 

 𝑒 = 𝑠𝑐𝑜𝑟𝑒(ℎ , ℎ ), (9) 

 𝑎 =  ( )∑  ( ). (10) 

Here, ℎ  is usually a query vector, and 𝑒  is measured using a scoring function, which could 
involve various methods such as dot product, scalar product, or another similarity metric. 

Finally, a weighted combination is formed using these weights: 

 𝐶 = ∑ 𝑎 ℎ . (11) 

Here, 𝐶 symbolizes the context vector, which is often utilized in the remainder of the model. 
This formulation constitutes the fundamental concept of the attention mechanism, enabling the 

model to focus on specific segments and emphasize essential information, particularly beneficial when 
dealing with lengthy input sequences [42]. 

2.2.4. Focal loss 

Focal loss is a specialized loss function designed primarily for classification problems, effective 
in addressing issues related to class imbalance. This function finds significant application in tasks such 
as object recognition. To comprehend focal loss, it is beneficial to first recall the cross-entropy loss, 
which is commonly utilized for multi-class classification problems. 

The cross-entropy loss, expressed by the following formula, serves as a foundational understanding: 

 𝐶𝐸(𝑝, 𝑦) = − ∑ 𝑦 log (𝑝 ). (12) 

Here:  
• 𝑝 denotes the probability vector predicted by the model; 
• 𝑦 represents the one-hot encoded vector corresponding to the actual class; 
• 𝑦  signifies the 𝑖 − 𝑡ℎ element of the true class; 
• 𝑝  represents the 𝑖 − 𝑡ℎ element of the predicted class; 
• Focal loss stands as an improved version of the cross-entropy loss, specifically tailored to 

address the challenges posed by class imbalance more effectively. The formula for focal loss 
is articulated as follows: 

 𝐹𝐿(𝑝, 𝑦) = − ∑ 𝑦 ((1 − 𝑝 ) . log(𝑝 )). (13) 

Here: 
• 𝛾 is a hyperparameter, often set to 2; 
• Other variables remain consistent with the cross-entropy loss. 
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Notably, focal loss incorporates the term 1 − 𝑝𝑖 𝛾 to facilitate a stronger focus on rare classes. 

This term ensures that correctly classified instances result in less pronounced updates to the model, 
effectively mitigating the impact of class imbalance. In this formula, 𝑝𝑖  represents the predicted 
probability by the classification model, 𝑦𝑖  denotes the actual class, and 𝛾  signifies the focus 
parameter [32]. 

2.2.5. AttBiLFNet 

 

Figure 2. Proposed novel multi-hybrid AttBiLFNet architecture. 
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AttBiLFNet is a hybrid network architecture that effectively addresses the challenges of 
arrhythmia detection in the context of imbalanced ECG signal datasets. The proposed method 
successfully extracts and classifies arrhythmia patterns by utilizing a BiLSTM network with a CNN, 
combined with an attention mechanism and the focal loss function. Furthermore, the proposed method 
has been compared with a hybrid approach that employs both advanced and traditional feature 
extraction methodologies by integrating the UFS algorithm into the model. In this comparison, 
AttBiLFNet_1, the version without UFS, and AttBiLFNet_2, the version with UFS, were evaluated. A 
detailed illustration of the proposed AttBiLFNet architecture is provided in Figure 2.  

3. Results and discussion 

We introduce a novel network architecture, called AttBiLFNet, for challenging arrhythmia 
detection in ECG signals containing class imbalance. The proposed AttBiLFNet architecture 
effectively extracts and classifies arrhythmia patterns utilizing the BiLSTM network with a CNN 
combined with the attention mechanism and the focal loss. The constructed models were tested on a 
computer equipped with an Intel Xeon E5-2630 2.3 GHz CPU and 12 GB RAM. Additionally, the 
proposed method has been compared with a hybrid approach that uses both advanced and 
traditional feature extraction methods by integrating the UFS technique with the proposed 
AttBiLFNet architecture. 

3.1. Evaluation metrics 

The datasets were divided into training and test sets using 10-fold cross-validation. This process 
was implemented in each proposed model to evaluate its performance. The average experimental 
results were then calculated for accuracy, sensitivity, specificity, Kappa score, and Macro F1 score, as 
defined in Eqs (14)–(18), respectively. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = × 100, (14) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = × 100, (15) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = × 100, (16) 

 𝐾𝑎𝑝𝑝𝑎 = , (17) 

 𝑀𝑎𝑐𝑟𝑜𝐹1 = ×  ×    . (18) 

Accuracy is a fundamental metric for evaluating classification models, measuring the proportion 
of correctly classified instances. It encompasses both true positives (TP), instances correctly predicted 
as positive, and true negatives (TN), instances correctly predicted as negative. However, accuracy can 
be misleading in situations where the dataset is imbalanced, with one class significantly more prevalent 
than the others. In such cases, sensitivity (recall) and specificity become more relevant metrics. 
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Sensitivity, also known as recall, evaluates the model’s ability to correctly identify actual positive 
instances. It is calculated as the ratio of TP to the total number of actual positive instances (TP+FN). 
Specificity, on the other hand, evaluates the model’s capability to correctly identify actual negative 
instances. It is calculated as the ratio of TN to the total number of actual negative instances (TN+FP). 
The kappa score, a more sophisticated metric, measures the agreement between predicted and actual 
classifications, accounting for the agreement that could have occurred by chance. The macro F1 score 
aims to balance precision and recall on a per-class basis. It is calculated by independently calculating 
the F1 score for each class and then taking the unweighted average (macro-average) across all classes. 
The precision measures the proportion of correct positive predictions (TP/(TP+FP)), while recall 
assesses the proportion of actual positive instances that are correctly identified (TP/(TP+FN)). 

These equations collectively provide a comprehensive evaluation framework for classification 
models, considering their ability to accurately classify instances, handle class imbalance, and measure 
the agreement between predicted and actual classifications. The results obtained for each metric allow 
for a comparison of the effectiveness of the different models studied in this paper. Additionally, it is 
crucial to account for variations in outcomes across multiple executions due to the stochastic nature of 
neural network models. Executing the model ten times and averaging the results for each metric 
ensures a more robust and dependable assessment of its performance. 

3.2. Results 

This work employs sensitivity, precision, accuracy, macro F1 (MF1), and Cohen’s Kappa 
coefficient (K) as performance metrics. The proposed model’s performance was evaluated using 10-
fold cross-validation. The detailed results of these experiments are listed in Table 2. 

Table 2. Ten-fold cross-validation averages using AttBiLFNet architectures. 

Methods Sensitivity (% ± SD) Precision (% ± SD) Accuracy (% ± SD) MF1 (% ± SD) K (% ± SD) 
AttBiLFNet_1 98.14 ± 0.003 98.93 ± 0.002 99.55 ± 0.0006 98.52 ± 0.001 98.93 ± 0.001
AttBiLFNet_2 97.70 ± 0.004 98.81 ± 0.002 99.45 ± 0.0004 98.24 ± 0.001 98.70 ± 0.001

The performance metrics for each arrhythmia class are provided in Tables 3 and 4. The highest 
performance was achieved in the LBBB and RBBB classes, while the lowest performance was 
obtained in the APB class. 

Table 3. Performance metrics achieved on the five classes for AttBiLFNet_1. 

Class Accuracy (%) Sensitivity (%)  Precision (%)  MF1 (%)  K  
N 99.62 99.83 99.66 99.74 0.99 
LBBB 99.97 99.69 99.95 99.82 1.00 
RBBB 99.97 99.80 99.83 99.81 1.00 
PVC 99.82 98.66 98.84 98.75 0.99 
APB 99.73 92.74 96.39 94.51 0.94 
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Table 4. Performance metrics achieved on the five classes for AttBiLFNet_2. 

Class Accuracy (%) Sensitivity (%)  Precision (%)  MF1 (%)  K  
N 99.53 99.82  99.56 99.69 0.99 
LBBB 99.95 99.68 99.76 99.72 1.00 
RBBB 99.95 99.55 99.71 99.63 1.00 
PVC 99.80 98.28 98.93 98.61 0.98 
APB 99.68  91.21 96.12 93.56 0.93 

Figure 3 illustrates a performance comparison of different components in three different scenarios 
for the APB class. In the first scenario, LSTM was preferred over BiLSTM. In the second scenario, 
Categorical Cross Entropy was used instead of focal loss. In the third scenario, the attention mechanism 
was removed from the model. All scenarios were tested, and their performances were compared to the 
proposed model. The proposed model achieved the highest performance, followed by the method used 
in the first scenario. The worst performance occurred in the third scenario, where attention mechanism 
was not used. 

 

Figure 3. Comparing the performance of various versions of the proposed model with 
different component combinations. 

Table 5 presents a performance comparison of the proposed AttBiLFNet model with the other 
state-of-the-art ECG studies. The highest results are highlighted in bold for easy identification. The field 
of arrhythmia classification has witnessed a surge in the development of novel methodologies, each 
aiming to achieve superior performance metrics. Notable contributions include the works of [1,43,44], 
all of which have surpassed a remarkable 99% accuracy threshold. A common thread among these 
algorithms is their adherence to the end-to-end paradigm, which effectively eliminates the need for a 
separate feature extraction step. This characteristic highlights the efficacy of the end-to-end 
methodology in attaining high precision across a diverse spectrum of arrhythmias. In contrast, [45] 
embarked on a distinct approach, employing an autoencoder (ACN) to extract features from ECG 
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signals, followed by classification using a support vector machine (SVM) classifier. This strategy 
resulted in a commendable accuracy of 98.84%. Additionally, researchers have explored alternative 
avenues for feature extraction from input signals, utilizing a variety of techniques. [22], for instance, 
introduced a discrete wavelet transform to enhance the performance of BiLSTM networks. This 
innovative approach involved fusing wavelet coefficient features with ECG signal features, as mapped 
by Bidirectional LSTM, culminating in an impressive accuracy of 99.39% in arrhythmia classification. 
Building upon this success, [46] incorporated a convolutional ACN to extract encoded ECG features, 
subsequently inputting them into an LSTM classifier for automated arrhythmia detection. This 
approach yielded accuracy rates of 99.11% for encoded features and 99.23% for raw ECG data. 
Diverging from the prevailing end-to-end paradigm, [47] opted for wavelet features, achieving a 
commendable accuracy of 97.41%. This diversity in approaches underscores the dynamic landscape 
of methodologies employed in the pursuit of accurate arrhythmia classification. Moreover, [10] 
proposes a novel deep learning-based approach for arrhythmia detection from ECG signals. Their 
approach, termed DeepArr, utilizes a 1D-CNN and a BiLSTM layer. The 1D-CNN extracts local 
spatiotemporal features from the ECG signal, while the BiLSTM captures the contextual features of 
arrhythmia from the extracted features. Their proposed method achieves an accuracy of 99.46%, a 
specificity of 99.57%, a sensitivity of 97.01%, a precision of 98.26%, and an F1-score of 97.63%. 
Additionally, they demonstrate the effectiveness of employing CNN and BiLSTM in tandem for 
arrhythmia detection. 

Table 5. Performance comparison of the proposed AttBiLFNet model with other state-of-
the-art ECG studies on the MIT-BIH database. 

Works Number of 
beats 

Class f er Accuracy 
(%) 

Sens t v ty 
(%) 

Prec s on 
(%) 

MF1 
(%) 

Y ld r m (2018) [22] 7326 B LSTM 99.39 - - - 
Oh et al. (2018) [48] 16,499 CNN+LSTM 98.10 97.50 - - 
Y ld r m et al. (2019) [46] 100,022 LSTM 99.23 - - - 
Oh et al. (2019) [49] 94,667 U-net arch tecture 99.30 - - - 
Huang et al. (2019) [1] 2520 2-D CNN 99.00 - - - 
Q ao et al. (2020) [44] 99,863 DELM-LRF-BLSTM 99.32 - 98.30 97.71 
Murat et al. (2020) [43] 100,022 CNN+LSTM 99.26 97.14 98.07 97.60 
Wu et al. (2021) [47] 32,422 CNN 97.41 97.05 - - 
Ojha et al. (2022) [45] - SVM 98.84 - - - 
M dan  et al. (2023) [10] 100,062 DeepArr 99.46 97.01 98.26 97.63 
Proposed work-1 100,062 AttB LFNet_1 99.55 98.14 98.93 98.52 
Proposed work-2 100,062 AttB LFNet_2 99.45 97.70 98.81 98.24 

As can be discerned from Table 5, AttBiLFNet exhibits superior performance when compared to 
other works. The DeepArr approach is the closest model to ours, and with this method, as shown in 
Table 6, our approach demonstrably outperforms DeepArr by approximately 3% for the APB class, 
particularly when analyzing the performance of arrhythmia classes. This highlights the effectiveness 
of our model in handling class imbalance. Furthermore, the MF1 score of our proposed method 
surpasses that of all other studies in the table by approximately 1%. Despite AttBiLFNet_1 
demonstrating the highest performance, our experiments reveal that the training time for each epoch 
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of AttBiLFNet_2 is approximately 40% faster than that of AttBiLFNet_1. Consequently, while there 
is a slight decrease in performance when utilizing UFS, it facilitates a more efficient process. 

Table 6. AttBiLFNet (I) and DeepArr (II) performance values of arrhythmia classes. 

Class Accuracy (%) Sens t v ty (%)  Prec s on (%)  MF1 (%)  
N (I) 99.62 99.83 99.66 99.74 
N (II) 99.52 99.82 99.60 99.71 
LBBB (I) 99.97 99.69 99.95 99.82 
LBBB (II) 99.98 99.70 99.85 99.77 
RBBB (I) 99.97 99.80 99.83 99.81 
RBBB (II) 99.95 99.42 99.84 99.63 
PVC (I) 99.82 98.66 98.84 98.75 
PVC (II) 99.84 97.16 98.02 97.59 
APB (I) 99.73 92.74 96.39 94.51 
APB (II) 99.63 89.00 94.01 91.44 

In this work, a novel arrhythmia detection method called AttBiLFNet is proposed. This method 
is designed as a neural network that includes attention mechanisms, BiLSTM, CNN layers, and focal 
loss. The attention mechanism enables the model to focus on specific features and highlight important 
information, enabling it to focus more precisely on the attributes that are critical for arrhythmia 
detection. The BiLSTM layer is employed to more effectively model changes over time in arrhythmia 
detection, as these changes can play an important role in the diagnostic process. The CNN component 
is used to recognize local features and distinguish particular patterns, which has provided us to more 
accurately address the complex and localized features of arrhythmias. Besides, focal loss makes the 
learning process more balanced by enabling the model to better handle examples in rare classes. 
Through the combination of these layers, AttBiLFNet was able to perform more precisely and 
comprehensively in arrhythmia detection. 

4. Conclusions 

In this paper, a novel hybrid network architecture was proposed for arrhythmia detection, which 
is insensitive to imbalanced class distributions. This innovative hybrid model effectively captures and 
classifies arrhythmia patterns in the ECG signal data by employing a combination of a BiLSTM 
network, a CNN, an attention mechanism, and the focal loss function. This multi-hybrid combination 
improves the proposed model’s ability to distinguish subtle patterns in imbalanced datasets, enabling 
higher accuracy in arrhythmia detection while sustaining computational efficiency. Through a 
comprehensive evaluation and comparative performance analysis with the existing approaches, the 
proposed model demonstrates superior performance, proving to be an advanced solution to overcome 
the challenges posed by imbalanced ECG signal datasets. In addition to comparing AttBiLFNet with 
established methods, we explore a hybrid approach that integrates both advanced techniques and 
traditional feature extraction methods for arrhythmia detection. This comparative analysis provides a 
holistic view of the proposed method’s efficacy, demonstrating its advantages over hybrid approaches 
and reaffirming its promise as a cutting-edge solution for addressing class imbalance in arrhythmia 
detection. Hence, AttBiLFNet emerges as a promising and robust approach, offering advancements in 
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both accuracy and computational efficiency, thereby contributing to the evolution of arrhythmia 
detection methodologies.  

Future research will focus on developing various strategies to further improve the performance 
of AttBiLFNet. In this context, more effective methods will be investigated to address the issue of data 
imbalance, and the model’s feature extraction capabilities will be enhanced by integrating with other 
advanced techniques. Also, some new techniques are intended to be developed to optimize real-time 
performance, notably on resource-constrained devices. 
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