Research article Special Issues

A dynamic multi-objective evolutionary algorithm using center and multi-direction prediction strategies


  • Received: 15 October 2023 Revised: 05 December 2023 Accepted: 18 January 2024 Published: 05 February 2024
  • Dynamic multi-objective optimization problems have been popular because of its extensive application. The difficulty of solving the problem focuses on the moving PS as well as PF dynamically. A large number of efficient strategies have been put forward to deal with such problems by speeding up convergence and keeping diversity. Prediction strategy is a common method which is widely used in dynamic optimization environment. However, how to increase the efficiency of prediction is always a key but difficult issue. In this paper, a new prediction model is designed by using the rank sums of individuals, and the position difference of individuals in the previous two adjacent environments is defined to identify the present change type. The proposed prediction strategy depends on environment change types. In order to show the effectiveness of the proposed algorithm, the comparison is carried out with five state-of-the–art approaches on 20 benchmark instances of dynamic multi-objective problems. The experimental results indicate the proposed algorithm can get good convergence and distribution in dynamic environments.

    Citation: Hongtao Gao, Hecheng Li, Yu Shen. A dynamic multi-objective evolutionary algorithm using center and multi-direction prediction strategies[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3540-3562. doi: 10.3934/mbe.2024156

    Related Papers:

  • Dynamic multi-objective optimization problems have been popular because of its extensive application. The difficulty of solving the problem focuses on the moving PS as well as PF dynamically. A large number of efficient strategies have been put forward to deal with such problems by speeding up convergence and keeping diversity. Prediction strategy is a common method which is widely used in dynamic optimization environment. However, how to increase the efficiency of prediction is always a key but difficult issue. In this paper, a new prediction model is designed by using the rank sums of individuals, and the position difference of individuals in the previous two adjacent environments is defined to identify the present change type. The proposed prediction strategy depends on environment change types. In order to show the effectiveness of the proposed algorithm, the comparison is carried out with five state-of-the–art approaches on 20 benchmark instances of dynamic multi-objective problems. The experimental results indicate the proposed algorithm can get good convergence and distribution in dynamic environments.



    加载中


    [1] Z. H. Zhang, Multi-objective optimization immune algorithm in dynamic environments and its application to green house controlling, Appl. Soft Comput., 8 (2008), 959–971 http://doi.org/10.1016/j.saoc.2007.07.005 doi: 10.1016/j.saoc.2007.07.005
    [2] Z. Wang, G. F. Li, J. Ren, Dynamic path planning for unmanned surface vehicle in complex offshore areas based on hybrid algorithm, Comput. Commun., 166 (2021), 49–56. http://doi.org/10.1016/j.comcom.2020.11.012 doi: 10.1016/j.comcom.2020.11.012
    [3] X. H. Wang, K. Z. Wang, S. Wu, S. Di, H. Jin, K. Yang, et al., Dynamic resource scheduling in mobile edge cloud with cloud radio access network, IEEE Trans. Parallel Distrib. Syst., 29 (2018), 2429–2445. http://doi.org/10.1109/TPDS.2018.2832124 doi: 10.1109/TPDS.2018.2832124
    [4] H. Lotfi, Multi–objective energy management approach in distribution grid integrated with energy storage units considering the demand response program, Energy Res., 44 (2020), 10662–10681. https://doi.org/10.1002/er.5709 doi: 10.1002/er.5709
    [5] Y. Kuang, J. Sun, X. J. Gan, D. W. Gong, Z. P. Liu, M. M. Zha, Dynamic multi-objective cooperative coevolutionary scheduling for mobile underwater wireless sensor networks, Comput. Ind. Eng., 156 (2021), 1–10. https://doi.org/10.1016/j.cie.2021 doi: 10.1016/j.cie.2021
    [6] N. Shiono, H. Suzuki, Y. Saruwatari, A dynamic programming approach for the pipe network layout problem, Eur. J. Oper. Res., 277 (2019), 52–61. https://doi.org/10.1016/j.ejor.2019.02.036 doi: 10.1016/j.ejor.2019.02.036
    [7] G. R. Feng, Y. Lan, X. P. Zhang, Z. X. Qian, Dynamic adjustment of hidden node parameters for extreme learning machine, IEEE Trans. Cybern., 45 (2015), 279–288. https://doi.org/10.1109/TCYB.2014.2325594 doi: 10.1109/TCYB.2014.2325594
    [8] S. B. Gee, K. C. Tan, H. A. Abbass, A benchmark test suite for dynamic evolutionary multi-objective optimization, IEEE Trans. Cybern., 47 (2017), 461–472. http://doi.org/10.1109/TCYB.2016.2519450 doi: 10.1109/TCYB.2016.2519450
    [9] S. Y. Jiang, S. X. Yang, Evolutionary dynamic multi-objective optimization: benchmarks and algorithm comparisons, IEEE Trans. Cybern., 47 (2016), 198–211. http://doi.org/10.1109/TCYB.20152510698 doi: 10.1109/TCYB.20152510698
    [10] S. Sahmoud, H. R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), (2016), 1–8. http://doi.org/10.1109/SSCI.2016.7849963
    [11] M. Rong, D. W. Gong, W. Pedrycz, L. Wang, A multi-model prediction method for dynamic multi-objective evolutionary optimization, IEEE Trans. Evol. Comput., 99 (2019), 1–15. http://doi.org/10.1109/TEVC.2019.2925358 doi: 10.1109/TEVC.2019.2925358
    [12] M. Greeff, A. P. Engelbrecht, Solving dynamic multi-objective problems with vector evaluated particle swarm optimization, Evol. Comput., 29 (2008), 17–24. http://doi.org/10.1109/CEC.20084631190 doi: 10.1109/CEC.20084631190
    [13] R. W. Morrison, K. A. D. Jong, Triggered hypermutation revisited, in Proceedings of the 2000 IEEE Congress on Evolutionary Computation CEC00 (Cat. No.00TH8512), 2 (2003), 1025–1032. http://doi.org/10.1109/CEC.2000.870759
    [14] C. R. B. Azevedo, A. F. R. Araújo, Generalized immigration schemes for dynamic evolutionary multi-objective optimization, in Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC), (2011), 2033–2040.
    [15] K. Deb, U. B. Rao, S. Karthik, Dynamic multi-objective optimization and decision making using modified NSGA-Ⅱ: a case study on hydro-thermal power scheduling, in Proceedings of International Conference on Evolutionary Multi-Criterion Optimization, (2007), 803–817. http://doi.org/10.1007/978-3-540-70928-2_60
    [16] Y. G. Woldesenbet, G. G. Yen, Dynamic evolutionary algorithm with variable relocation, IEEE Trans. Evol. Comput., 13 (2009), 500–513. http://doi.org/10.1109/TEVC.2008.2009031 doi: 10.1109/TEVC.2008.2009031
    [17] Y. Chen, J. Zou, Y. Liu, S. X. Yang, J. H. Zheng, W. X. Huang, Combining a hybrid prediction strategy and a mutation strategy for dynamic multi-objective optimization, Swarm Evol. Comput., 70 (2022), 1–16. http://doi.org/10.1016/j.swevo.2022.101041 doi: 10.1016/j.swevo.2022.101041
    [18] M. Cámara, J. Ortega, F. D. Toro, A single front genetic algorithm for parallel multi-objective optimization in dynamic environments, Neurocomputing, 72 (2009), 3570–3579. http://doi.org/10.1016/j.neucom.2008.12.041 doi: 10.1016/j.neucom.2008.12.041
    [19] G. Ruan, G. Yu, J. H. Zheng, J. Zou, S. X. Yang, The effect of diversity maintenance on prediction in dynamic multi-objective optimization, Appl. Soft Comput., 58 (2017), 631–647. http://doi.org/10.1016/j.asoc.2017.05.008 doi: 10.1016/j.asoc.2017.05.008
    [20] Z. P. Liang, S. X. Zheng, Z. X. Zhu, S. X. Yang, Hybrid of memory and prediction strategies for dynamic multi-objective optimization, Inf. Sci., 485 (2019), 200–218. http://doi.org/10.1016/j.ins.2019. 01.066 doi: 10.1016/j.ins.2019.01.066
    [21] Z. Peng, J. H. Zheng, J. Zou, M. Liu, Novel prediction and memory strategies for dynamic multi-objective optimization, Soft Comput., 19 (2015), 2633–2653. http://doi.org/10.1007/s00500-014-1433-3 doi: 10.1007/s00500-014-1433-3
    [22] Y. Wang, B. Li, Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment, in Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), (2009), 630–637. http://doi.org/10.1109/CEC.2009.4983004
    [23] W. T. Koo, C. K. Goh, K. C. Tan, A predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environment, Memet. Comput., 2 (2010), 87–110. https://doi.org/10.1007/s12293-009-0026-7 doi: 10.1007/s12293-009-0026-7
    [24] A. M. Zhou, Y. C. Jin, Q. F. Zhang, A population prediction strategy for evolutionary dynamic multi-objective optimization, IEEE Trans. Cybern., 44 (2013), 40–53. http://doi.org/10.1109/TCYB.2013.2245892 doi: 10.1109/TCYB.2013.2245892
    [25] J. Zou, Q. Y. Li, S. X. Yang, H. Bai, J. H. Zheng, A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization, Appl. Soft Comput., 61 (2017), 806–818. http://doi.org/10.1016/j.asoc.2017.08.004 doi: 10.1016/j.asoc.2017.08.004
    [26] A. Muruganantham, Y. Zhao, S. B. Gee, X. Qiu, K. C. Tan, Dynamic multi-objective optimization using evolutionary algorithm with kalman filter, Procedia Comput. Sci., 24 (2013), 66–75. https://doi.org/10.1016/j.procs.2013.10.028 doi: 10.1016/j.procs.2013.10.028
    [27] M. Rong, D. W. Gong, Y. Zhang, Y. C. Jin, W. Pedrycz, Multidirectional prediction approach for dynamic multi-objective optimization problems, IEEE Trans. Cybern., 49 (2019), 3362–3374. https://doi.org/10.1109/tcyb.2018.2842158 doi: 10.1109/tcyb.2018.2842158
    [28] L. L. Cao, L. H. Xu, E. D. Goodman, H. Li, Decomposition-based evolutionary dynamic multi-objective optimization using a difference model, Appl. Soft Comput., 76 (2019), 473–490. https://doi.org/10.1016/j.asoc.2018.12.031 doi: 10.1016/j.asoc.2018.12.031
    [29] J. H. Zheng, Y. B. Zhou, J. Zou, S. X. Yang, J. W. Ou, Y. R. Hu, A prediction strategy based on decision variable analysis for dynamic multi-objective optimization, Swarm Evol. Comput., 60 (2021), 100786. https://doi.org/10.1016/j.swevo.2020.100786 doi: 10.1016/j.swevo.2020.100786
    [30] X. X. Li, J. M. Yang, H. Sun, Z. Y. Hu, A. R. Cao, A dual prediction strategy with inverse model for evolutionary dynamic multi-objective optimization, ISA Trans., 117 (2021), 196–209. https://doi.org/10.1016/j.isatra.2021.01.053 doi: 10.1016/j.isatra.2021.01.053
    [31] R. Rambabu, P. Vadakkepat, K. C. Tan, M. Jiang, A mixture-of-experts prediction framework for evolutionary dynamic multi-objective optimization, IEEE Trans. Cybern., 50 (2020), 5099–5112. https://doi.org/10.1109/TCYB.2019.2909806 doi: 10.1109/TCYB.2019.2909806
    [32] H. P. Xie, J. Zou, S. X. Yang, J. H. Zheng, J. W. Ou, Y. R. Hu, A decision variable classification-based cooperative coevolutionary algorithm for dynamic multi-objective optimization, Inf. Sci., 560 (2021), 307–330. https://doi.org/10 10.1016/j.ins.2021.01.021 doi: 10.1016/j.ins.2021.01.021
    [33] Z. P. Liang, T. C. Wu, X. L. Ma, Z. X. Zhu, S. X. Yang, A dynamic multi-objective evolutionary algorithm based on decision variable classification, IEEE Trans. Cybern., 52 (2020), 1602–1615. https://doi.org/10.1109/TCYB.2020.2986600 doi: 10.1109/TCYB.2020.2986600
    [34] G. Y. Chen, Y. N. Guo, M. Y. Huang, D. W. Gong, Z. K. Yu, A domain adaptation learning strategy for dynamic multi-objective optimization, Inf. Sci., 606 (2022), 328–349. https://doi.org/10.1016/j.ins.2022.05.050 doi: 10.1016/j.ins.2022.05.050
    [35] Q. Y. Zhang, S. X. Yang, Novel prediction strategies for dynamic multi-objective optimization, IEEE Trans. Evol. Comput., 24 (2020), 260–274. https://doi.org/10.1109/tevc.2019.2922834 doi: 10.1109/tevc.2019.2922834
    [36] K. Zhang, C. N. Sheng, X. M. Liu, Multi-objective evolution strategy for dynamic multi-objective optimization, IEEE Trans. Evol. Comput., 24 (2020), 974–988. https://doi.org/10.1109/TEVC.2020.2985323 doi: 10.1109/TEVC.2020.2985323
    [37] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6 (2002), 182–197. https://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
    [38] M. Farina, K. Deb, P. Amato, Dynamic multi-objective optimization problems: test cases, approximations, and applications, IEEE Trans. Evol. Comput., 8 (2004), 425–442. https://doi.org/10.1007/3-540-36970-8_22 doi: 10.1007/3-540-36970-8_22
    [39] H. Richter, Detecting change in dynamic fitness landscapes, in Proceedings of 2009 IEEE Congress on Evolutionary Computation (CEC), (2009), 1613–1620. https://doi.org/10.1109/CEC.2009.4983135
    [40] T. T. Nguyen, S. Yang, J. Branke, Evolutionary dynamic optimization: A survey of the state of the art, Swarm Evol. Comput., 6 (2012), 1–24. https://doi.org/10.1016/j.swevo.2012.05.001 doi: 10.1016/j.swevo.2012.05.001
    [41] H. Li, Q. F. Zhang, Multi-objective optimization problems with complicated pareto sets, MOEA/D and NSGA-Ⅱ, IEEE Trans. Evol. Comput., 13 (2009), 284–302. https://doi.org/10.1109/TEVC.2008.925798 doi: 10.1109/TEVC.2008.925798
    [42] C. K. Goh, K. C. Tan, A competitive-cooperative co-evolutionary paradigm for dynamic multi-objective optimization, IEEE Trans. Cybern., 13 (2009), 103–127. https://doi.org/10.1109/TEVC.2008.920671 doi: 10.1109/TEVC.2008.920671
    [43] Y. Wu, Y. C. Jin, X. X. Liu, A directed search strategy for evolutionary dynamic multi-objective optimization, Soft Comput., 19 (2015), 3221–3235. https://doi.org/10.1007/s00500-014-1477-4 doi: 10.1007/s00500-014-1477-4
    [44] C. F. Wang, G. G. Yen, M. Jiang, A grey prediction-based evolutionary algorithm for dynamic multi-objective optimization, Swarm Evol. Comput., 56 (2020), 100695. https://doi.org/10.1016/j.swevo.2020.100695 doi: 10.1016/j.swevo.2020.100695
    [45] C. Rossi, M. Abderrahim, J. C. Diaz, Tracking moving optima using kalman-based predictions, Evol. Comput., 16 (2008), 1–30. https://doi.org/10.1162/evco.2008.16.1.1 doi: 10.1162/evco.2008.16.1.1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(895) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog