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Abstract: Dynamic multi-objective optimization problems have been popular because of its extensive 
application. The difficulty of solving the problem focuses on the moving PS as well as PF dynamically. 
A large number of efficient strategies have been put forward to deal with such problems by speeding 
up convergence and keeping diversity. Prediction strategy is a common method which is widely used 
in dynamic optimization environment. However, how to increase the efficiency of prediction is always 
a key but difficult issue. In this paper, a new prediction model is designed by using the rank sums of 
individuals, and the position difference of individuals in the previous two adjacent environments is 
defined to identify the present change type. The proposed prediction strategy depends on environment 
change types. In order to show the effectiveness of the proposed algorithm, the comparison is carried 
out with five state-of-the–art approaches on 20 benchmark instances of dynamic multi-objective 
problems. The experimental results indicate the proposed algorithm can get good convergence and 
distribution in dynamic environments. 

Keywords: dynamic multi-objective optimization; evolutionary algorithm; multi-direction; prediction; 
Pareto optimal solutions 
 

1. Introduction 

A large number of multi-objective optimizations which change over time can be found in 
scientific and engineering fields, which are always known as dynamic multi-objective optimization 
problems (DMOPs) [1]. When the state changes over time, some multi-objective optimization models 
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in path planning [2], resource distribution [3], energy scheduling [4,5], network layout [6], and 
electrode-magnetic micro-mirrors become dynamic ones [7]. Therefore, it is necessary to study the 
optimal solutions to DMOPs at each moment as well as convergence. More and more researchers 
devote themselves to solving such problems in recent years. In any current environment of dynamic 
optimization, the Pareto optimal solutions (PS) and fronts (PF) need to be found in time before the 
next environment is detected, which brings great challenges for optimization approaches to deal with 
this kind of problem. 

The types of DMOPs can be found in [8,9]. A general mode of DMOPs can be formulated as follows:  

𝑚𝑖𝑛 𝑓 𝑥, 𝑡 𝑓 𝑥, 𝑡 , 𝑓 𝑥, 𝑡 , ⋯ , 𝑓 𝑥, 𝑡  

subject to 𝑥 ∈ Ω                                 (1) 

where 𝑚 is the scale of objectives. The objective 𝑓 𝑥, 𝑡  is a function on the decision-making vector, 
which can change over time or environment 𝑡 taken from the set 0, 1, 2, ⋯ , 𝑇 . 𝑇 is the total 
number of environment changes, and the objective space is denoted by 𝑅 . Decision-making 
vector 𝑥 𝑥 𝑡 , 𝑥 𝑡 , ⋯ , 𝑥 𝑡  is n-dimensional in space 𝛺.  Both the decision variable 
𝑥 𝑡 , 𝑖 1, 2, . . . , 𝑛, and objective function 𝑓 𝑥, 𝑡 , 𝑘 1, 2, . . . , 𝑚, depend on time variable 𝑡 
and dynamically change, once the new environment is detected. 

DMOPs consist of static multi-objective optimization problems (MOPs) and dynamic reaction 
mechanisms and are composed of a series of multi-objective optimization procedures located in 
different environments. The objectives in a MOP are conflicting with each other, so it is essential to 
explore the trade-off solutions set of all objectives. Different from MOPs, in a DMOP, the objective 
functions as well as variables maybe change as the time varies from one environment to another. It 
follows that solving DMOPs is to deal with a series of MOPs generated at different times and obtain 
the Pareto optimal solutions for each MOP. One optimization procedure is always followed by 
another and is expected to provide a high-quality Pareto optimal set for each of these static MOPs 
before the time 𝑡 changes. As a result, it has become a popular method to divide DMOPs into a 
sequence of MOPs. 

In a DMOP, it is always assumed that the optimization problems at adjacent moments may have 
certain dependence. Hence, the optimal solutions in the previous moments are always reused to 
generate the initial population at new environment. In order to make full use of the efficient 
information of better individuals at past moments, a number of prediction models have been developed. 
These prediction methods increase the exploitation capability of the population for new solutions in 
some degree, and by which some classical multi-objective evolutionary algorithms are adopted to deal 
with DMOPs. 

Sahmoud and Topcuoglu [10] presented a method for judging change types by calculating the 
difference of non-dominated solutions in two adjacent environments, and some other similar 
approaches have also been proposed in the past years [11]. These schemes are feasible and efficient 
when the change of solution sets is regular and stable. However, when the states change sharply, the 
optimization solutions may deviate significantly from the prediction area. Most of the existing 
approaches have limitations to deal with this kind DMOPs. This paper intends to develop a strategy 
combining center and multi-direction that can capture the complex environmental situations. 

In our study, we consider the change type of environment with a new method. When the new 
environment happens, according to the characteristic of the two nearest historical moments, the change 
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type and corresponding different predicting tactics are proposed. The main contributions of this paper 
are listed as follows: 

1) A new method of evaluating individuals is adopted. Rank values of each individual for all 
objective functions are recorded. Then, solutions are distinguished by their corresponding rank sums, 
which are used to guide the processes of optimization and dynamic response of the algorithm. 

2) On the basis of statistical information of rank sums for all individuals in two adjacent 
environments, translational change and non-translational change are determined. Different prediction 
strategies relying on different environment change types are adaptively adopted to respond the new 
environments. 

3) Experiments have been conducted to analyze the performance of our proposed algorithm 
MOEA/D/CMDS compared with others under different environmental change frequencies and severities. 

Next, the related work and preliminaries about DMOPs are introduced. The proposed algorithm is 
described in Section 4. The test instances, compared algorithms, performance metrics, and parameter 
settings are presented in Section 5. A series of experiment results and analysis are provided in Section 6. 
The conclusion and further research are expressed in Section 7. 

2. Related research 

In recent years, a large number of researchers proposed dozens of effective methods to solve 
DMOPs. According to their properties and characteristics, these approaches can be categorized by 
some representative schemes adopted in algorithm development, such as diversity, memory, prediction, 
decision variable classification and others. For classical DMOPs, most of these methods are 
competitive in keeping convergence, or remain superior in decreasing the loss of diversity. 

2.1. Methods based on diversity 

In DMOPs, once a new environment occurs, the populations have been convergent. As a result, the 
optimization algorithm always lacks the exploration ability, and then hardly jumps out of the local region. 
In order to solve this issue, some techniques, such as random initialization [12], hyper mutation [13], 
and immigration strategy [14], were used to overcome diversity loss. Deb et al. [15] proposed DNSGA-
II-A and DNSGA-II-B to increase the population diversity. In DNSGA-II-A, a part of the initial 
individuals of the population were regenerated to replace the original ones. In DNSGA-II-B, a certain 
proportion of individuals in the current population was updated by the mutation operation. 
Woldesenbet and Yen presented a triggered hyper mutation method [16]. A new mutation strategy [17] 
was combined with the prediction model to increase the diversity of individuals. In [18], Camara and 
Ortega selected some non-dominated individuals by crowding distance mechanisms, and these 
individuals were taken as candidates for mutation. Furthermore, a diversity preservation strategy 
was stated by Ruan et al. [19]. Most of these methods are good at keeping diversity, but they seem 
ineffective for complicated and unpredictable environments. 

2.2. Methods based on convergence 

With the purpose of obtaining high quality initial population to speed up convergence, the 
strategies based on memory and prediction are widely used in DMOPs. Memory-based approaches are 
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available for periodic or cycle environment changes. In this framework, the known historical optimal 
information of individuals is always utilized to respond to the new environment. Liang et al. [20] 
proposed a hybrid of memory (HMPS) and prediction strategies to improve the performance of the 
algorithm on the basis of whether the changes were similar to the previous ones. A new prediction and 
memory strategy (PMS) was applied by Peng et al. [21] as an effective response method. In [22], Wang 
and Li considered two memory schemes. The first one selected individuals from the archive and reused 
them. The second scheme selected individuals from the archive, and then used Gaussian perturbation 
on these individuals to produce new individuals which survived in the new environment. In [23], Koo 
et al. came up with a novel memory technique by sieving individuals with lesser crowding distance 
and generating new ones to act as elements for initial population. These schemes, as memory strategies, 
have been used for solving DMOPs and showed better performance than earlier approaches. 
Nevertheless, how to take full advantage of existing data is still a key but hard issue. To adopt 
redundant history information may be computation-expensive and even useless, whereas too little 
historical information could not provide useful value for exploring new environment. 

To fully take advantage of previous experience to guide new search direction, some techniques 
based on prediction have been utilized generally in DMOPs. A large number of experiment results 
show that effective prediction mechanism is helpful to accelerate the convergence of the algorithm. 
Strategies using prediction can learn the change patterns from the previous environment and predict 
the new locations of the optimal solutions, which can improve the efficiency of the algorithm. In [24], 
PS was conceived to be constructed by a center as well as manifolds (PPS). The known centers were 
serving to predict new centers, and the subsequent manifolds were estimated by using the previous 
manifolds. New centers and corresponding manifolds were taken as new individuals for the next 
generation of the evolution. Zou et al. [25] proposed a prediction strategy (CKPS) in which individuals 
were classified into three categories: non-dominated points, knee points and adaptive random points. 
The non-dominated ones with existing center point were going to participate in predicting. The 
evolutionary direction was controlled by knee points. The number of random points was determined 
by the severity of environmental changes. Kalman filter (KF) strategy was employed to look for PS 
and PF in the new environment by Muruganantham et al. [26]. A multi-directional prediction strategy 
(MDP) was designed by predicting the chosen representative individuals to guide the evolution 
direction [27]. Cao et al. [28] used a differential model to predict the locations of new individuals, in 
which three adjacent centers were adopted from different environments. In [29], Zheng et al. tested the 
effect of different prediction methods with different decision variables on the convergence and 
distribution of individuals, respectively. Li et al. [30] put forward a dual prediction strategy with an 
inverse model which predicted individuals in objective space as well as decision space, and good 
information of objective space was used to provide feedback for decision space. Rambabu et al. [31] 
built a mixture-of-experts-based ensemble framework which combined diversified types of predictors 
with gating network to describe prediction performance at different environments. In a word, these 
prediction methods try to get close to the new PS and PF by generating superior individuals to enhance 
the exploration capability of algorithms. However, the prediction error may be true if the historical 
information is not enough or predicting model is not inappropriate. Hence, it is necessary to establish 
a reasonable prediction model to improve the search performance of the algorithm. 
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2.3. Methods based on other schemes 

Except the methods based on diversity and convergence, there are other strategies to tackle DMOPs. 
For example, Xie et al. [32] adopted decision-variables-classification based cooperative evolution to 
improve the performance of the algorithm. In DMOPs, the probability distributions of the decision 
variables may change in different environments. On this basis, Liang et al. [33] used the Spearman rank 
correlation coefficient (SRCC) to measure the correlations between decision variables and objectives 
functions, which could efficiently produce potential high-quality points. In [34], Chen et al. proposed a 
domain adaptation learning strategy by introducing a mapping matrix between the search spaces of past 
and current environments. Zhang and Yang [35], sampled individuals by classification-based sampling 
to enhance population diversity and used the method of probability-based space shrinkage to generate 
high quality solutions. Zhang et al. [36] made use of the precision controllable mutation and the 
simulated isotropic magnetic particles niching to make individuals approximate the entire Pareto front 
automatically. In addition, other effective strategies have also been proposed in recent years. These 
methods above can enhance the search performance of algorithms to some extent. 

3. Preliminaries 

3.1. Basic definitions 

Definition 1. Time parameter 
The time 𝑡, as a discrete parameter, is defined by the following mathematical formula [37]: 

      1

t t

t
n



 

   
 

                                   (2) 

where 𝜏 is the number of generations, 𝑛  means change severity, τ  is used to describe the change 
frequency of environment, and parameters 𝑛  and 𝜏  control the degree of environmental change. 
Definition 2. Dynamic Pareto dominance [37] 

Suppose 𝑢 𝑡  and 𝑣 𝑡  are arbitrary individuals from decision space 𝛺 at time 𝑡. 𝑢 𝑡  is 
said to dominate 𝑣 𝑡  (denoted by 𝑢 𝑡 ≺ 𝑣 𝑡 ) if and only if the relational expressions 𝑓 𝑢, 𝑡
𝑓 𝑣, 𝑡 , ∀ 𝑖 ∈ 1, 2, 3, ⋯ , 𝑚 , 𝑎𝑛𝑑 𝑓 𝑢 𝑡 𝑓 𝑣 𝑡 , ∃ 𝑗 ∈ 1, 2, 3, ⋯ , 𝑚 , are true. 𝑢 𝑡  is 
called a non-dominated solution if there is not a solution which can dominate u(t). 
Definition 3. Pareto optimal solution set 

Pareto optimal solutions set at time 𝑡 is composed of selected non-dominated individuals and 
denoted by 𝑃𝑆 , which can be expressed by this form: 

    𝑃𝑆 𝑢 𝑡 | ∄ 𝑣 𝑡 ∈ 𝛺, 𝑣 𝑡 ≺ 𝑢 𝑡                       (3) 

Definition 4. Pareto optimal front 
The Pareto optimal front at time 𝑡, known as 𝑃𝐹 , can be expressed by the set as below: 

  𝑃𝐹 𝑓 𝑢 𝑡  𝑢 𝑡 ∈ 𝑃𝑆                          (4) 

Definition 5. The types of DMOPs 
According to the dynamic change characteristic of the PS and PF, Farina et al. [38] classified 

DMOPs into four types. 
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Type I: The PS changes over time but the PF is fixed. 
Type II: Both the PS and PF change over time. 
Type III: The PS remains fixed, while the PF changes over time. 
Type IV: Both the PS and PF remain fixed. 
Although the fourth type appears on occasion, the optimal solutions keep constant. As a result, 

we mainly focus on studying the first three types. 
Definition 6. Prediction based on center 

Given the stability of the geometrical center, the prediction schemes based on centers are widely 
used in dynamic optimization algorithms. This is because the moving direction of individuals are 
consistent with centers in some cases. The center of the PS can be expressed as follows: 

𝐶
| |

 ∑ 𝑥∈                                (5) 

where the number of solutions in 𝑃𝑆  is denoted by |𝑃𝑆 |, 𝑥 is an element pertaining to the set 𝑃𝑆 . 
This type of prediction model works well for a class of DMOPs in which the change of PS can be 
described by the center of the PS. 

3.2. Change detection 

Dynamic multi-objective optimization always involves change detection, change response and 
other related procedures. There are two common methods which are used in DMOPs to probe the 
change of environment. The first one is a fixed detectors approach, which always evaluates a number 
of detector vectors to observe whether the objective values of them undergo changes. This approach 
needs to re-evaluate the objective function values at every generation and is not suitable for noisy 
environments. The second method is a behavior-based approach [39,40], which involves the 
discrepancy and the statistical information of solutions in objective space. The behavior-based 
detection approach is popular because there are no additional fitness evaluations. As a result, we prefer 
the behavior-based scheme to detect whether the new environment appears. Once environment 
changes are detected, most of the strategies described above based on diversities and convergence 
belong to common change response methods. 

4. Proposed algorithm 

In the section, a new method of dividing change type is proposed. The change types of 
environments are described in Figure 1. They are divided into translational changes and non-
translational changes. Predicting models mainly depend on different change types. Therefore, for the 
translational change, a predicting strategy with center is adopted. Conversely, the multi-direction 
strategy is used to generate new individuals adaptively. The predicting model is named CMDS. In our 
studies, MOEA/D is used to execute evolution and the Tchebycheff approach acts as a decomposition 
method in static optimization stage [41]. Figure 2 shows the framework of the proposed algorithm 
(MOEA/D/CMDS). Next, we describe the detailed process of the algorithm. The whole structure of 
MOEA/D/CMDS is shown in Algorithm 1. 
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Figure 1. The change type of environment. 

 

Figure 2. The framework of MOEA/D/CMDS. 

Algorithm1: The whole framework of MOEA/D/CMDS 

1: Input: 𝑁 (population size), time step 𝑡 0, initial population 𝑃 ; 
2: Output: Approximated 𝑃𝑆  and 𝑃𝐹  at different moments; 
3: while stopping criteria is not satisfied do 
4:  Detect an environment for change   
5:    if change appears, then 
6:     Use Algorithm 2 to decide the change type and apply CMDS scheme to generate new solutions；
7:     𝑡 𝑡 1; 
8:     end if 
9: Optimize the static MOPs with MOEA/D； 
10: end while 
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4.1. Types of changes 

For each individual 𝑥 , 𝑖 ∈ 1, 2, ⋯ , 𝑁  at time 𝑡, its corresponding objective function value is 
𝑓 𝑥 , 𝑘 ∈ 1,2, ⋯ , 𝑚 . All elements in set 𝑓 𝑥 , 𝑓 𝑥 , ⋯ , 𝑓 𝑥  are sorted from the smallest 
value to the largest one. We record the sequential number of 𝑥  with 𝑅 . In other words, the rank 
value of 𝑥  is 𝑅  for the k-th objective at moment 𝑡. The smaller sequential number means smaller 
function value for each solution on the corresponding objective. The sum of 𝑅  for individual 𝑖 in 
each objective function is denoted by 𝑅 , and its expression is as follows: 

         𝑅 ∑ 𝑅                                 (6) 

where the maximum value of 𝑅  is 𝑚𝑎𝑥  and the minimum value of it is 𝑚𝑖𝑛  for the varying 𝑖. 
The sequence 𝑅 𝑅 , 𝑅 , ⋯ , 𝑅  represents the rank values of all solutions at moment 𝑡. As it 
should be, the sequence 𝑅 𝑅 , 𝑅 , ⋯ , 𝑅  displays the rank values at moment 𝑡 1. 
The intensity variation of the rank values corresponding to individual 𝑖  is represented by the 
difference between 𝑅  and 𝑅 . That is to say, the location variation degree for the i-th individual 
at 𝑡 moment and 𝑡 1 moment is measured by the value 𝑅 𝑅 . When the absolute value is 
small enough, we can assume that the change of location is not obvious for corresponding solution, or 
else the change of location is sharp. In order to distinguish the change type, the average value of 
𝑅 𝑅  𝑖 1, 2, ⋯ , 𝑁  is calculated and denoted by 𝑉 𝑅 . It is expressed below: 

                 𝑉 𝑅
∑ 𝑅𝑖

𝑡 𝑅𝑖
𝑡 1𝑁

𝑖 1

𝑁
                              (7) 

we construct threshold value α  which is below at time 𝑡:  

           𝛼                                (8) 

where 𝛼  varies with environment. At the same time, as the dimensionality 𝑚  of the objective 
function increases, 𝑚𝑎𝑥  and 𝑚𝑖𝑛  grow intensely. Hence, the difference of rank sums between the 
best solutions and the worst solutions is used to depict a change degree for extreme individuals. Smaller 
value of it means better stability of population relative to the increment of objective function number 
𝑚. If the position movement of all individuals between moments 𝑡 1 and 𝑡 is not drastic, 𝑉 𝑅  
must be smaller. Conversely, the larger 𝑉 𝑅  is true. According to the above idea, the threshold 
value 𝛼  can be set. When 𝑉 𝑅  is less than 𝛼 , the change type of environment is translational; 
Otherwise, it is considered as non-translational. For example, in the Figure 1, the black dots represent 
individuals at 𝑡 1 moment, and the red dots show solutions at 𝑡 moment. The solutions are noted 
as 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥  from left to right at moment. Arrows indicate the direction of individual evolution. 
In part (a) of Figure 1, rank sums of each solution do not vary. Hence, 𝑉 𝑅  is smaller than 𝛼  and 
the change type of environment is translational. However, in part (b) of Figure 1, individual 𝑥  has 
the maximum rank sum 8 and individual 𝑥  has the minimum rank sum 3 at the current moment 
𝑡. It is obvious that 𝑉 𝑅  is larger than 𝛼 , so the change type of environment is determined. The 
frame of identifying the change type of new environment is stated in Algorithm 2. 
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Algorithm 2: A method of distinguishing the change type 

1: Calculate the rank values 𝑅  and 𝑅  at two adjacent moments; 
2: Compute the variation degree 𝑅 𝑅  of individual 𝑖 at time 𝑡; 
3: Estimate the average variation degree 𝑉 𝑅  of the whole population according to Eq (7) in the 

present environment; 
4: Create the threshold value 𝛼  by Eq (8); 
4:    if 𝑉 𝑅 𝛼  holds 
5:     The change type of environment is translational; 
5:     else  
6:    The change type of environment is non-translational; 
7: end if 
8: Return the type of environment change; 

4.2. Prediction strategies 

The intention of prediction is to make the individuals quickly converge to the new PF before the 
next environment change is detected. Effective prediction strategies can reduce computation costs and 
promote algorithm convergence. Cao et al. proposed a second-order difference model to predict the 
moving trends of centroid of the solutions obtained [28], but the distinctions of individuals were 
neglected. The centers adopted by them were determined with all ones of the population. In our paper, 
solutions are selected, making up for the above shortcomings, and we employ a new prediction strategy 
which responds to the environment in terms of environment change type. 

4.3. Response to translational change 

Due to the high efficiency of using center predicting, when the change is translational, there are 
no extreme individuals whose rank sums alter intensely. Thus, we can conclude that the present 
environment could have great similarity with previous one. The change of environment is regular and 
not sharp. That is to say, the change is relatively stable. Hence, we can assume that the movement 
direction of the individual is consistent with that of the center of PS. 

In this paper, a new estimation method of PS is put forward. For the sequence 𝑅 , if the value of 
𝑅  is relatively small, it follows that individual 𝑖 has good characteristic. All individuals with the 
same properties as individual 𝑖 constitute the set 𝐵 , which approximates 𝑃𝑆  at the moment 𝑡. The 
individuals which do not belong to set 𝐵  are deemed to be in the set 𝐴 . It is apparent that present 
population is constituted by the elements of the set 𝐴  and 𝐵 . How to determine elements in the set 
𝐵 ? The smaller rank value of individual implies the better proximity to PS. However, if there are 
too few elements in set 𝐵 , the characteristic of the population could not be reflected fully. For the 
same reason, too many elements do not exactly reveal the superiority of individuals with lower rank 
values for 𝐵 . Taking these factors into consideration, the threshold value 𝛽  is calculated in the 
following way: 

                    𝛽 𝑚𝑖𝑛                              (9) 
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It is evident that 𝛽  varies over time 𝑡, and the average allocation of the difference between 𝑚𝑎𝑥  
and 𝑚𝑖𝑛  for each objective function is used to balance discrepancies of whole objectives. If the value 
of 𝑅  less than 𝛽  is true, corresponding individual 𝑖 is put into set 𝐵 . By the same principle, the 
sets 𝐵  and 𝐵  can be determined by the corresponding 𝛽  and 𝛽  which are threshold 
values corresponding to moments 𝑡 1 and 𝑡 2. Apparently, individuals with higher quality are 
gathered in sets 𝐵 , 𝐵  and 𝐵 . Then, the centers of these sets are separately denoted by 𝐶 𝐵 , 
𝐶 𝐵 , and 𝐶 𝐵 . Without loss of generality, in order to save computation cost, the previous 
three consecutive centers are used to construct new movement direction. In the process of predicting, 
maybe prediction error exists. To overcome this shortcoming, Gaussian perturbation with mean value 
0 and standard deviation 𝛿 𝑡  is introduced. The prediction formula is designed as follows: 

𝑥 𝑥 𝑟 ∗ 𝐶 𝐵 𝐶 𝐵 1 𝑟 ∗ 𝐶 𝐵 𝐶 𝐵 𝐺𝑢𝑎𝑠𝑠𝑖𝑎𝑛 0, 𝛿 𝑡  (10) 

where 𝑟  is a parameter randomly taken in 0,1  and 𝛿 𝑡  is expressed in the following form: 

                  𝛿 𝑡                               (11) 

It is obvious that smaller value 𝑚𝑎𝑥 𝑚𝑖𝑛  means more clustered individuals, so the disturbance 
amplitude should be larger. This symbolizes that larger value of 𝛿 𝑡  is established. Otherwise, the 
distribution of individuals is relatively scattered. The population has relatively better diversities, then 
only smaller disturbance amplitude is required. In a word, Gaussian perturbation is introduced to 
improve the search and exploration capability of population. In this response mechanism, the present 
population is divided into two subpopulations. Solutions of the first subpopulation are used to execute 
prediction. The individuals in the second subpopulation serve as the initial ones in the new 
environment directly. It is worth noting that there is no stored historical information to meet with the 
prediction formula of Eq (10) when the algorithm runs at the earliest three moments. In this case, all 
of the individuals are randomly initialized to respond the new environment change. 

4.4. Response to non-translational change 

When the non-translational change is detected, the population is divided into three parts. For 
different parts, the corresponding individual generating scheme is adopted. The set 𝐵  is as 
described above at present moment. It is easy to find that subpopulations 𝐵  and 𝐴  are 
distinguished by the value of 𝛽 . For a given individual 𝑥  in set 𝐵 , considering each 
individual 𝑥 , 𝑣 1, 2, 3, ⋯ , |𝐵 | in set 𝐵 , the Euclidean distance 𝑑𝑖𝑠𝑡 𝑥 , 𝑥  between 
𝑥  and 𝑥  is calculated. The individual 𝑥  with minimum 𝑑𝑖𝑠𝑡 𝑥 , 𝑥  is recorded as 𝑥 ∗ . 
It follows that x ∗  is the nearest point to 𝑥  for all individuals in set 𝐵 . Using the same way, 
the individual 𝑥 ∗  could be found in the set 𝐵 . The Euclidean distance of 𝑥  and 𝑥 ∗  is the 
minimum for all solutions in the set 𝐵 . Next, a new prediction model which is called multi-
direction strategy is proposed for each individual 𝑥  in set 𝐵 . 

      𝑥 𝑥 𝑟 ∗ 𝑥 𝑥 ∗ 1 𝑟 ∗ 𝑥 𝑥 ∗                  (12) 

where 𝑟  is a random number from 0,1 . We utilize pointwise prediction model for each element in 
the set 𝐵 . Each individual in 𝐵  has its direction. Obviously, the individuals which do not take part 
in this prediction belong to the set 𝐴 . We consider the individuals whose rank sum is 𝑚𝑖𝑛  at present 
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time 𝑡. In many cases, more than one individual has such feature, so these ones are known as the best 
solutions, which constitute the set 𝐺 . We assume that the center of 𝐺  is 𝐶 𝐺 . Then, we categorize 
the elements in the set 𝐴  according to random probability to increase the diversity of the population. 
For individuals in set 𝐴 , the first part solutions which are regarded as belonging to set 𝐴  are selected 
by a random probability to accept the below prediction strategy: 

            𝑥 𝑥 𝛾 ∗ 𝐶 𝐺 𝐶 1 𝛾 ∗ 𝐶 𝐺 𝐶                (13) 

where 𝐶  is the center of the whole population and 𝛾 is a random number from 0,1 . The second 
part solutions which constitute the set 𝐴  are the rest ones in the set 𝐴 . The way of generating new 
individuals for it is random initialization. The method is showed as below: 

                           𝑥 𝐿𝑏 𝑈𝑏 𝐿𝑏 ∗ 𝜃                          (14) 

where 𝐿𝑏  and 𝑈𝑏  which are given in the experiment are the upper bound and lower bound of each 
dimension variable, 𝑖 1, 2, ⋯ , 𝑛. 𝑖  represents dimension of individuals 𝑥  and 𝑥 . 𝜃  is a 
random number relying on 0, 1 . The detailed description about response strategies for two change 
types of environments of CMDS is described in Algorithm 3. 

Algorithm 3: CMDS scheme 

1: Input: The population 𝑃  at 𝑡 moment; 
2: Output: Initial population 𝑃  at 𝑡 1 moment; 
3: if the translational change appears 
4:    for 𝑖 1 to 𝑁 do 
5:     if 𝑖 𝑚𝑜𝑑 2 0 
6:     Apply Eq (10) to generate new solutions 
7:    else  
8:    The i-th individual is directly put into the initial population at next moment; 
9.    end if 
10:   end for 
11:  else 

if individuals belong to 𝐵   
Generate new solutions by Eq (12); 

12:   else if 𝑟𝑎𝑛𝑑 0,1 0.5 
         Put individuals into the set 𝐴  and use Eq (13) to produce new ones;  
13:       else  

Adopt Eq (14) to initialize individuals; 
14:  end if 
15:  Enter into static optimization; 

In general, a method relying on rank sums of individual is designed in this paper. Different 
prediction strategies are designed for individuals of different categories. Next, the results of the 
experiment are showed in the following section. 
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5. Experiment design 

5.1. Test instances 

The proposed algorithm MOEAD/D/CMDS is tested on 20 benchmark instances, including 
FDA1–FDA5 test suites [38], dMOP1–dMOP3 [42] test suites, ZJZ test suites (F5–F8) and JY1–JY8 
test suites [24]. By extending FDA problems, the dMOP test suites are acquired. A linear relationship 
exists among the decision variables of FDA and dMOP. However, there are nonlinear correlations in 
decision variables of F5–F8. For JY test suites, there are mixed PF and intricate relationships among 
decision variables which are all challenging features for dynamic multi-objectives optimization. 

5.2. Compared algorithms 

The proposed algorithm is compared with MOEA/D/DM [28], MOEA/D [41], MOEA/D/KF [26], 
DNSGA-II-A [15] and DSS [43]. MOEA/D/DM used a second-order center difference model to 
predict the moving trends of part individuals. Classical multi-objective optimization algorithm 
MOEA/D was employed for DMOPs after being slightly modified, wherein a part of individuals was 
randomly initialized. As is known to all, the same idea was applied to DNSGA-II-A. In the algorithm 
MOEA/D/KF, Kalman filter model was used to search the new direction of solutions. However, 
different from the above DMOPs algorithms, a directed local search method with linear prediction 
model is taken into DSS. 

5.3. Performance metrics 

Performance metrics can evaluate convergence, distribution, and diversity of the obtained 
population. The generation distance 𝐺𝐷  has been widely used in evaluating algorithm and was 
introduced in [42]. The expression form of 𝐺𝐷 is given as follows: 

                  𝐺𝐷
∑ ,∈

| |
                                (15) 

where the 𝑃𝐹   is consisted by evenly distributed points of the true PF at 𝑡 moment and 𝑃  is a set 
which is approximate to 𝑃𝐹  . The definition of 𝑑 𝑃𝐹 ,𝑣  is as follows: 

          𝑑 𝑃𝐹 ,𝑣 𝑚𝑖𝑛 ∈ ∑ ( ) ( )j jf v f u                     (16) 

where 𝑑 𝑃𝐹 ,𝑣  is the smallest Euclidean distance between individual 𝑣  and the set 𝑃𝐹 . |∙| 
represents cardinality of the corresponding set. The smaller 𝐺𝐷 of the algorithm symbolizes the better 
convergence. The 𝐼𝐺𝐷 [19,44] is a modified version of 𝐺𝐷. The expression of it is as below: 

                  𝐼𝐺𝐷
∑ ,∈

| |
                              (17) 

and 𝑑 𝑢, 𝑃  can be expressed as: 

𝑑 𝑢, 𝑃 𝑚𝑖𝑛 ∈ ∑ ( ) ( )j jf v f u                  (18) 
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𝑑 𝑢, 𝑃  means the minimum Euclidean distance between point 𝑢 on the 𝑃𝐹  and the set 𝑃 . As is 
known to all, 𝐼𝐺𝐷 is a useful index to measure the convergence and diversity of the obtained solutions.  

The average value of 𝐼𝐺𝐷 is defined as 𝑀𝐼𝐺𝐷 metric for all time windows in a single run [45]. 

                      𝑀𝐼𝐺𝐷
| |

∑ 𝐼𝐺𝐷 𝑃𝐹 , 𝑃∈                          (19) 

where 𝑇 is a set and represents all moments. Its cardinality is |𝑇|. The smaller value of 𝑀𝐼𝐺𝐷 
means the better performance of the algorithm. In this paper, we employ 𝑀𝐼𝐺𝐷 value to measure the 
performance of the algorithm MOEA/D/CMDS. 

5.4. Parameter setting 

Considering the change frequency and change severity affect the performance of algorithm. The 
experiment is tested on 𝑛 5, 10, 𝜏 5, 10. Hence, there are 4 types for each problem. In order 
to maintain fairness, the parameters in the comparison algorithms are taken from original references. 
The size of the population is 100 and 300 for bi-objective problems and tri-objective problems. The 
values of parameters 𝑟  and 𝑟  are equal to 0.6. At the same time, the value of 𝛾 is set to 0.8. 
Relatively larger values of 𝑟 , 𝑟 , and 𝛾  reflect that present environment data is dominant for 
generating new solutions. 𝐿𝑏  and 𝑈𝑏  are taken as 0 and 1, separately. Meanwhile, 𝐿𝑏  is 
assigned as 1 and 𝑈𝑏  is set as 1 when 𝑖 changes from 2 to 𝑛. 

In DE operator, 𝐶𝑅 is fixed as 0.5 and 𝐹 is set to 0.5. In the polynomial mutation operation, 
the value of parameter 𝜂 is 20. 𝑝 1 𝑛 is true, in which 𝑛 represents the dimensions of the 
decision space. The size of the neighborhood is 20. The coefficient 𝛿 is 0.8. The size of 𝑛  is the 
same as the cardinality of mating pool E, where parent individuals are selected to generate new ones. 
The total number of iterations is set to 40𝜏 , which assure 40 environmental changes to be carried out 
in each run. The proposed algorithm is executed independently 30 times for each example, and the 
𝑀𝐼𝐺𝐷  value is taken as a measure metric, the smaller 𝑀𝐼𝐺𝐷 , the better performance of 
MOEA/D/CMDS. 

6. Experiment result analysis 

The Tables 1–4 show the experiment results of each type of problem on 𝑀𝐼𝐺𝐷 values and their 
standard deviations. The best results are marked in bold. The detailed analysis about the test result is 
as follows. The curves of tracking the 𝐼𝐺𝐷 trend over 40 environment changes for 20 runs are showed 
in the Figures 3–5. 

6.1. Results on FDA and dMOP problems 

This section shows the experiment results about test functions FDA and dMOP. The PS of FDA1 
changes as a sine curve and the PF keeps fixed. MOEA/D/CMDS performs better than or close to 
MOEA/D/DE except the case 𝑛 5, 𝜏 10. For FDA2 problem, the shape of PF is convex and 
non-convex alternation in the objective space. At this case, MOEA/D/CMDS is slightly superior to or 
equivalent to other compared algorithms for all cases, which indicates that prediction strategy can 
improve the search ability of the algorithm. In FDA3 and FDA5, different density distributions exist 
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in distinct segments of the PF. These two types of changes don’t follow any assumed models, which 
cause certain challenges for all algorithms. However, the individuals with smaller rank sums play a 
positive guidance in the former adjacent environment for high severity change, which show the 
effectiveness of MOEA/D/CMDS. The test function FDA4 is a tri-objective problem whose PF and 
PS change with time. In this case, the moving direction provided by MOEA/D/CMDS is a 
disadvantage because the change of position sometimes inaccurately describes the movement direction 
of individuals. The results of FDA4 for all parameters are inferior to MOEA/D/DM, but they are 
obviously better than other compared algorithms. Specific experimental results are shown by Table 1. 

Table 1. Mean and standard deviations of 𝑀𝐼𝐺𝐷 values on FDA test set. 

Problem n , τ  MOEA/D/CMDS MOEA/D/DM MOEA/D MOEA/D/KF DNSGA-II-A DSS 

FDA1 (10,5) 0.0120(0.0006) 0.0128(0.0007)+ 0.0297(0.0007)+ 0.0249(0.0024)+ 0.1135(0.0044)+ 0.0596(0.0041)+

(5,5) 0.0169(0.0007) 0.0201(0.0019)+ 0.0807(0.0122)+ 0.0392(0.0161)+ 0.2005(0.0053)+ 0.0757(0.0036)+

(5,10) 0.0086(0.0004) 0.0082(0.0002)≈ 0.0169(0.0007)+ 0.0101(0.0002)+ 0.0792(0.0031)+ 0.0392(0.0021)+

(10,10) 0.0069(0.0006) 0.0071(0.0002)≈ 0.0116(0.0002)+ 0.0099(0.0001)+ 0.0381(0.0020)+ 0.0236(0.0011)+

FDA2 (10,5) 0.0083(0.0002) 0.0089(0.0006)≈ 0.0107(0.0005)+ 0.0587(0.0179)+ 0.0221(0.0016)+ 0.0312(0.0041)+

(5,5) 0.0099(0.0003) 0.0125(0.0019)+ 0.0157(0.0011)+ 0.0573(0.0204)+ 0.0342(0.0014)+ 0.0541(0.0039)+

(5,10) 0.0067(0.0004) 0.0070(0.0007)≈ 0.0084(0.0005)≈ 0.0110(0.0004)+ 0.0154(0.0006)+ 0.0190(0.0012)+

(10,10) 0.0059(0.0001) 0.0060(0.0002)≈ 0.0070(0.0004)+ 0.0107(0.0006)+ 0.0119(0.0007)+ 0.0126(0.0004)+

FDA3 (10,5) 0.0510(0.0023) 0.0552(0.0074)+ 0.0736(0.0088)+ 0.0732(0.0099)+ 0.1256(0.0061)+ 0.1007(0.0126)+

(5,5) 0.0680(0.0015) 0.0726(0.0069)+ 0.1089(0.0070)+ 0.0795(0.0097)+ 0.1668(0.0072)+ 0.1031(0.0109)+

(5,10) 0.0461(0.0059) 0.0471(0.0067)≈ 0.0671(0.0060)≈ 0.0533(0.0006)+ 0.1016(0.0054)+ 0.0882(0.0071)+

(10,10) 0.0345(0.0001) 0.0281 (0.0027)- 0.0511(0.0084)+ 0.0466(0.0073)+ 0.0960(0.0055)+ 0.0852(0.0029)+

FDA4 (10,5) 0.0563(0.0006) 0.0469(0.0005)- 0.0572(0.0007)+ 0.0544(0.0013)- 0.1257(0.0023)+ 0.1376(0.0080)+

(5,5) 0.0542 (0.0015) 0.0488(0.0017)- 0.0576(0.0011)+ 0.0545(0.0004)- 0.1816(0.0047)+ 0.1527(0.0027)+

(5,10) 0.0427(0.0003) 0.0411(0.0006)- 0.0439(0.0001)+ 0.0429(0.0001)+ 0.0949(0.0010)+ 0.1501(0.0088)+

(10,10) 0.0424(0.0001) 0.0401(0.0027)- 0.0454(0.0002)+ 0.0430(0.0004)+ 0.0715(0.0005)+ 0.1269(0.0095)+

FDA5 (10,5) 0.0658(0.0039) 0.0986(0.0073)+ 0.0854(0.0153)+ 0.0544(0.0013)+ 0.1049(0.0010)+ 0.0813(0.0017)+

(5,5) 0.0674(0.0035) 0.1063(0.0012)+ 0.0992(0.0016)+ 0.0873(0.0012)+ 0.1387(0.0013)+ 0.0841(0.0085)+

(5,10) 0.0784(0.0053) 0.0818(0.0032)+ 0.0656(0.0013)- 0.0636(0.0073)- 0.0767(0.0067)- 0.0819(0.0072)+

(10,10) 0.0746(0.0024) 0.0787(0.0040)+ 0.0705(0.0069)- 0.0602(0.0009)- 0.0608(0.0070)- 0.0725(0.0015)+

The statistical results about dMOP are listed in Table 2. The change type of dMOP1 belongs to 
Type III which keeps static PS, whereas the PF and PS of dMOP2 are all time-varying. For these two 
instances, when the change frequency parameter 𝜏  is equal to 5, MOEA/D/CMDS performs well 
because of powerful guidance of better history solutions. At the same time, if the value of 𝜏  is equal 
to 10, the degree of change of individual position is very small. Hence, the loss of diversity is obvious, 
which causes the degradation of algorithm performance. In dMOP3, only PS changes over time, and 
the variables which control the spread of the PF vary randomly. This mechanism of change brings 
certain difficulties for prediction schemes. Good performance of MOEA/D/CMDS shows its 
superiority in dMOP3. Figure 3 presents the trajectories of IGD on these two test problems. 
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Table 2. Mean and standard deviations of 𝑀𝐼𝐺𝐷 values on dMOP test set. 

Problem n , τ  MOEA/D/CMDS MOEA/D/DM MOEA/D MOEA/D/KF DNSGA-II-A DSS 

dMOP1 (10,5) 0.0248(0.0085) 0.0261(0.0108) ≈ 0.0339(0.0184)- 0.0303(0.0102)- 0.1129(0.0460)+ 0.0832(0.0023)+

(5,5) 0.0250(0.0080) 0.0298(0.0100)+ 0.0572(0.0319)+ 0.0594(0.0297)+ 0.1172(0.0337)+ 0.0882(0.0060)+

(5,10) 0.0133(0.0012) 0.0093(0.0039)- 0.0106(0.0036)≈ 0.0104(0.0070)≈ 0.0448(0.0066)+ 0.0380(0.0194)+

(10,10) 0.0116(0.0015) 0.0081(0.0030)- 0.0107(0.0061)≈ 0.0125(0.0025)+ 0.0396(0.0175)+ 0.0350(0.0116)+

dMOP2 (10,5) 0.0180(0.0018) 0.0261(0.0087)+ 0.0449(0.0014)+ 0.0319(0.0105)+ 0.0982(0.0026)+ 0.0538(0.0061)+

(5,5) 0.0293(0.0024) 0.0404(0.0022)+ 0.0914(0.0075)- 0.0416(0.0062)+ 0.1637(0.0068)+ 0.0638(0.0126)+

(5,10) 0.0109 (0.0007) 0.0129(0.0024)+ 0.0203(0.0006)+ 0.0135(0.0005)+ 0.0656(0.0015)+ 0.0431(0.0036)+

(10,10) 0.0084 (0.0022) 0.0077(0.0009)- 0.0141(0.0026)+ 0.0098(0.0004)+ 0.0407(0.0005)+ 0.0256(0.0081)+

dMOP3 (10,5) 0.0391(0.0055) 0.0748(0.0048)+ 0.0535(0.0074)- 0.0644(0.0146)+ 0.0746(0.0019)+ 0.0809(0.0055)+

(5,5) 0.0511(0.0062) 0.1138(0.0091)+ 0.0831(0.0106)+ 0.0845(0.0131)+ 0.1193(0.0035)+ 0.0913(0.0107)+

(5,10) 0.0150(0.0037) 0.0205(0.0026)+ 0.0197(0.0018)+ 0.0156(0.0091) ≈ 0.0478(0.0016)+ 0.0639(0.0037)+

(10,10) 0.0132(0.0010) 0.0184 (0.0006)+ 0.0159(0.0020)+ 0.0141(0.0009) + 0.0277(0.0011)+ 0.0443(0.0030)+
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Figure 3. Tracking curves obtained by the six algorithms on FDA and dMOP test instances 
with 𝑛 10, 𝜏 10 over 20 runs. 

6.2. Results on ZJZ problems 

The ZJZ test instances include F5–F8. The nonlinear relation is obvious between decision 
variables. Besides, according to the value of 𝑉 𝑅 , the changes type of PF is non-translational. The 
change of the position for individuals is sharp in two adjacent environments. Hence, it is difficult to 
fully utilize the information of the previous time windows. Therefore, ZJZ problems cause more 
challenges for DMOPs, especially when they face higher frequency and more severity changes. From 
Table 3, the algorithm proposed in this paper is very advantageous compared with other rivals except 
F8 which is a test function of three objectives. It is obvious that the MIGD values of MOEA/D/CMDS 
are far less than competitors. But for F8, the individuals which have smaller rank sums in the previous 
environment can’t guide new search direction well, so MOEA/D/CMDS is disadvantage. In a word, 
MOEA/D/CMDS performs well on most of the test instances for ZJZ problems, and the value of MIGD 
has superiority. The IGD curves of tracking characteristic are showed in Figure 4, the results of 
experiment are provided by Table 3. 

Table 3. Mean and standard deviations of 𝑀𝐼𝐺𝐷 values on ZJZ test set. 

Problem n , τ  MOEA/D/CMDS MOEA/D/DM MOEA/D MOEA/D/KF DNSGA-II-A DSS

F5 (10,5) 0.2973(0.0323) 0.5565(0.0514)+ 0.7451(0.0695)+ 0.6644(0.2153)+ 2.0327(0.0764)+ 0.7313(0.0285)+ 

(5,5) 0.1492(0.0275) 1.0183(0.2008)+ 1.3587(0.0694)+ 0.7054(0.7055)+ 3.3076(0.0957)+ 1.5468(0.2493)+ 

(5,10) 0.1294(0.0150) 0.7266(0.0596)+ 0.8078(0.0864)+ 0.3495(0.0596)+ 1.4451(0.0763)+ 0.7022(0.0788)+ 

(10,10) 0.0769(0.0159) 0.1691(0.0611)+ 0.6148(0.0597)+ 0.2738(0.0690)+ 0.8145(0.1088)+ 0.3515(0.0213)+ 

F6 (10,5) 0.0917(0.0228) 0.3688(0.0718)+ 0.6259(0.1432)+ 0.4923(0.1305)+ 1.4238(0.0249)+ 1.0297(0.1411)+ 

(5,5) 0.0976(0.0181) 0.4232(0.0618)+ 0.8785(0.1421)+ 0.7259(0.0347)+ 2.1295(0.0314)+ 1.8156(0.3615)+ 

(5,10) 0.0822(0.0141) 0.4518(0.0171)+ 0.6953(0.0969)+ 0.5842(0.0691)+ 1.1189(0.0015)+ 0.8147(0.0718)+ 

(10,10) 0.0759(0.0233) 0.2304(0.0550)+ 0.2858(0.0217)+ 0.2474(0.0770)+ 0.7294(0.0596)+ 0.3385(0.0075)+ 

F7 (10,5) 0.1364(0.0753) 0.4115(0.0338)+ 0.4735(0.0529)+ 0.5940(0.2637)+ 1.5068(0.0382)+ 1.0893(0.0843)+ 

(5,5) 0.1192(0.0167) 0.5551(0.0563)+ 0.6335(0.0559)+ 0.5889(0.0968)+ 2.0911(0.0531)+ 1.9872(0.0827)+ 

(5,10) 0.0931(0.0181) 0.4418(0.0196)+ 0.5227(0.0571)+ 0.4971(0.0249)+ 1.1363(0.0689)+ 0.8015(0.1077)+ 

(10,10) 0.0949(0.0357) 0.1767(0.0275)+ 0.3590(0.0352)+ 0.1993(0.0207)+ 0.7488(0.0615)+ 0.3621(0.0335)+ 

F8 (10,5) 0.1081(0.0022) 0.0869(0.0056)- 0.1212(0.0032)+ 0.1432(0.0009)+ 0.2648(0.0031)+ 0.2847(0.0008)+ 

(5,5) 0.1306(0.0064) 0.1083(0.0002)- 0.1423(0.0019)+ 0.1478(0.0005)+ 0.4124(0.0016)+ 0.3066(0.0199)+ 

(5,10) 0.1021(0.0030) 0.0868(0.0028)- 0.1061(0.0038) ≈ 0.1029(0.0041)+ 0.2231(0.0025)+ 0.2267(0.0006)+ 

(10,10) 0.0828(0.0035) 0.0742(0.0019)- 0.0966(0.0052)+ 0.1081(0.0045)+ 0.1568(0.0037)+ 0.1820(0.0050)+ 
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Figure 4. Tracking curves obtained by the four algorithms on ZJZ test instances with 𝑛
10, 𝜏 10 over 20 runs. 

6.3. Results on JY problems 

The results of the JY test are showed in Table 4. MOEA/D/CMDS has the better superiority on 
four problems JY3, JY4, JY6, and JY7, but it performs a little worse than the rest test problems. The 
decision variables of JY1 and JY2 are irrelevant and the center difference model of the whole 
population in MOEA/D/DM could improve the performance of the algorithm. For the JY3 problem, 
any two decision variables have time-varying non-monotonic dependencies. As time goes on, the PS 
becomes more and more complicated. At this case, MOEA/D/CMDS considers the nearest ones in 
B_(t-1) and B_(t-2) for each individual in B_t in order to make full use of history information. Of 
course, individuals with poor quality are discarded at the same time. Therefore, solutions from 
previous moments with smaller rank sums could improve the exploration ability of algorithm. The 
MIGD values of JY3 are far less than other compared algorithms for all cases. The PF of JY4 is 
discontinuous and its disconnected parts change with time. It is difficult to cover all the PF components. 
Although this type of problem is difficult, the method adopted in this paper is competitive when the 
environment changes severely. In other cases, the results are similar to MOEA/D/DM because the PF 
of JY5 keeps stationary. Thus, MOEA/D/CMDS performs poorly on this kind of problem. For the test 
functions JY6 and JY7, they are multimodal problems and the PF shapes of them appear concave and 
convex alternately. The number of local optima changes for JY6, but the opposite situation is true for 
JY7. Local optimum increases more evaluations to acquire the PS when the environment does not 
change. As it should be, algorithms may fall into local optimum, which affects their performance. In 
short, dealing with these two types of problems is very difficult. The PS of JY8 is static, and yet the 
segments of PF change with time. When the change of environment is fast and severe, the experiment 
results are approximate to the results of MOEA/D/DM. In other cases, MOEA/D/CMDS performs 
worse than MOEA/D/DM and MOEA/D, but it is obviously superior to most of the comparison 
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algorithms. Features of JY instances are reflected by Figure 5. The experiment results about JY series 
are shown by Table 4. 

We mark the computational results with “+”, “-“ or “≈”, which indicate MOEA/D/CMDS is 
better than, worse than or equal to the compared algorithms. In a word, on FDA test set, the proposed 
algorithm shows its superiority on 10 among 15 test problems. For dMOP and ZJZ test problems, 
the proposed algorithm defeats other compared algorithms on at least three fourths of the problems. 
For the test functions JY, half test results of MOEA/D/CMDS are evidently superior to other 
compared approaches. 

Table 4. Mean and standard deviations of 𝑀𝐼𝐺𝐷 values on JY test set. 

Problem n , τ  MOEA/D/CMDS MOEA/D/DM MOEA/D MOEA/D/KF DNSGA-II-A DSS 

JY1 (10,5) 0.0140(0.0004) 0.0119(0.0005)- 0.0221(0.0013)+ 0.0165(0.0007)+ 2.2917(0.1051)+ 0.1353(0.0211)+ 

(5,5) 0.0165(0.0006) 0.0140(0.0006)- 0.0331(0.0024)+ 0.0168(0.0008)+ 2.3698(0.1423)+ 0.1417(0.0152)- 

(5,10) 0.0096(0.0001) 0.0088(0.0001)- 0.0124(0.0002)+ 0.0094(0.0002)≈ 2.3243(0.0606)+ 0.0975(0.0055)+ 

(10,10) 0.0091(0.0001) 0.0081(0.0001)- 0.0112(0.0004)+ 0.0095(0.0001)+ 2.2579(0.2837)+ 0.0788(0.0091)+ 

JY2 (10,5) 0.0137(0.0003) 0.0119(0.0004)+ 0.0211(0.0001)+ 0.0153(0.0179)+ 0.2006(0.0077)+ 0.0934(0.0085)+ 

(5,5) 0.0185(0.0007) 0.0139(0.0001)− 0.0321(0.0019)+ 0.0165(0.0006)- 0.0314(0.0028)+ 0.1197(0.0123)+ 

(5,10) 0.0093(0.0001) 0.0075(0.0001)- 0.0114(0.0004)≈ 0.0082(0.0001)- 0.0809(0.0119)- 0.0761(0.0080)- 

(10,10) 0.0083(0.0001) 0.0068(0.0001)- 0.0101(0.0002)+ 0.0082(0.0002) ≈ 0.1114(0.0104)+ 0.0514(0.0019)+ 

JY3 (10,5) 0.0248(0.0071) 0.1014(0.0002)+ 0.1026(0.0009)+ 0.1658(0.0210)+ 0.1371(0.0050)+ 0.1522(0.0326)+ 

(5,5) 0.0223(0.0114) 0.1065(0.0050)+ 0.1021(0.0001)+ 0.1669(0.0050)+ 0.1398(0.0072)+ 0.1593(0.0228)+ 

(5,10) 0.0161(0.0044) 0.1001(0.0002)+ 0.1008(0.0016)+ 0.0784(0.0245)+ 0.1111(0.0012)+ 0.1188(0.0107)+ 

(10,10) 0.0135(0.0034) 0.0991(0.0007)+ 0.0987(0.0003)+ 0.0768(0.0367)+ 0.1070(0.0023)+ 0.1287(0.0272)+ 

JY4 (10,5) 0.0631(0.0004) 0.0703(0.0001)+ 0.0693(0.0001)+ 0.0690(0.0003)+ 0.3046(0.0350)+ 0.1143(0.0022)+ 

(5,5) 0.0617(0.0005) 0.0697(0.0002)+ 0.0689(0.0001)+ 0.0690(0.0001)+ 0.4135(0.0148)+ 0.1322(0.0059)+ 

(5,10) 0.0638(0.0004) 0.0677(0.0001)+ 0.0648(0.0001) ≈ 0.0665(0.0005)≈ 0.2791(0.0182)+ 0.1164(0.0126)+ 

(10,10) 0.0650 (0.0002) 0.0688(0.0002) ≈ 0.0662(0.0002) ≈ 0.0665(0.0002) ≈ 0.2134(0.0078)+ 0.0834(0.0037)+ 

JY5 (10,5) 0.0088(0.0001) 0.0082(0.0002)- 0.0086(0.0153)≈ 0.0185(0.0003)+ 0.2129(0.0163)+ 0.0325(0.0030)+ 

 (5,5) 0.0095(0.0003) 0.0087(0.0001)- 0.0088(0.0001)- 0.0189(0.0004)+ 0.1037(0.0265)+ 0.0355(0.0051)+ 

(5,10) 0.0074(0.0001) 0.0072(0.0001)≈ 0.0073(0.0001)≈ 0.0101(0.0002)+ 0.0866(0.0073)+ 0.0199(0.0015)+ 

(10,10) 0.0072(0.0008) 0.0070(0.0002)≈ 0.0072(0.0001)≈ 0.0099(0.0002)+ 0.2098(0.0408)- 0.0183(0.0021)+ 

JY6 (10,5) 0.4981(0.0555) 0.7683(0.2305)+ 1.2888(0.1813)+ 2.0337(0.2023)+ 2.9309(0.1072)+ 2.0209(0.0813)+ 

(5,5) 1.2010(0.1772) 1.7921(0.0977)+ 2.0366(0.0671)+ 2.5656(0.1670)+ 3.6841(0.0481)+ 2.6077(0.1800)+ 

(5,10) 0.6598(0.0869) 1.0961(0.0252)+ 1.1478(0.1417)+ 1.2035(0.0854)+ 2.4085(0.0481)+ 2.1725(0.0874)+ 

(10,10) 0.2849(0.0523) 0.0709(0.0251)- 0.5860(0.0408)- 0.4830(0.1970)+ 1.8941(0.0671)+ 1.5976(0.0462)+ 

JY7 (10,5) 0.9299(0.1895) 2.0947(0.2360)+ 2.1380(0.2570)+ 3.1130(0.9544)+ 8.3470(0.2555)+ 5.3513(0.3697)+ 

(5,5) 0.6616(0.2297) 2.0939(0.3763)+ 2.2270(0.2962)+ 2.6165(0.3025)+ 6.2693(0.4685)+ 5.6526(0.6497)+ 

(5,10) 0.8156(0.3413) 1.9093(0.2225)+ 1.2515(0.1999)+ 2.0159(0.6514)+ 6.9805(0.3010)+ 3.7794(0.3253)+ 

(10,10) 1.3306(0.6101) 1.5058(0.3002)+ 2.0049(0.5105)+ 3.8106(0.6338)+ 5.0254(0.4324)+ 3.8062(0.4774)+ 

JY8 (10,5) 0.0235(0.0007) 0.0226(0.0012) ≈ 0.0236(0.0011)≈ 0.0330(0.0027)+ 0.0330(0.0039)+ 0.0706(0.0016)+ 

(5,5) 0.0254(0.0010) 0.0256(0.0012)≈ 0.0258(0.0008) ≈ 0.0343(0.0008)+ 0.0370(0.0036)+ 0.1734(0.0158)+ 

(5,10) 0.0233(0.0014) 0.0209(0.0006) ≈ 0.0220(0.0009) ≈ 0.0249(0.0017)+ 0.0167(0.0015)+ 0.0508(0.0066)+ 

(10,10) 0.0206(0.0007) 0.0189(0.0007)- 0.0204(0.0012) ≈ 0.0219(0.0008)+ 0.0153(0.0012)- 0.0257(0.0030)+ 
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Figure 5. Tracking curves obtained by the six algorithms on JY test instances with 𝑛
10, 𝜏 10 over 20 runs. 

7. Conclusions and future work 

In this paper, a new prediction scheme named CMDS is first presented to adaptively select 
prediction strategy to respond new environment. When environment change happens, CMDS method 
firstly judges the type of change, which is translational or no-translational. Next, the way of generating 
individual is determined in order to provide initial individuals at next moment. As a result, CMDS 
method is integrated into the frame of MOEA/D. From the experiment results, MOEA/D/CMDS can 
show its superiority in tracking the changing PS or PF. 
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In the future research, we will be devoted to studying more efficient prediction mechanisms to handle 
more complex dynamic optimization problems, and further extend to large-scale practical problems. 
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