Human history is also the history of the fight against viral diseases. From the eradication of viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses and a corresponding increase in the tools and methods to combat them. More recently, antiviral peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs (KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple original feature sets. Finally, the deep model is built by combining improved residual network and bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of antiviral peptides. The datasets and codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi.
Citation: Xinyan Ma, Yunyun Liang, Shengli Zhang. iAVPs-ResBi: Identifying antiviral peptides by using deep residual network and bidirectional gated recurrent unit[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21563-21587. doi: 10.3934/mbe.2023954
[1] | Yanyan Cui, Chaojun Wang . Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220 |
[2] | Yanyan Cui, Chaojun Wang . The inhomogeneous complex partial differential equations for bi-polyanalytic functions. AIMS Mathematics, 2024, 9(6): 16526-16543. doi: 10.3934/math.2024801 |
[3] | Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1,2). AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496 |
[4] | Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088 |
[5] | Saulo Orizaga, Ogochukwu Ifeacho, Sampson Owusu . On an efficient numerical procedure for the Functionalized Cahn-Hilliard equation. AIMS Mathematics, 2024, 9(8): 20773-20792. doi: 10.3934/math.20241010 |
[6] | Ikram Ullah, Muhammad Bilal, Aditi Sharma, Hasim Khan, Shivam Bhardwaj, Sunil Kumar Sharma . A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation. AIMS Mathematics, 2024, 9(11): 32674-32695. doi: 10.3934/math.20241564 |
[7] | Andrey Muravnik . Wiener Tauberian theorem and half-space problems for parabolic and elliptic equations. AIMS Mathematics, 2024, 9(4): 8174-8191. doi: 10.3934/math.2024397 |
[8] | Bin He . Developing a leap-frog meshless methods with radial basis functions for modeling of electromagnetic concentrator. AIMS Mathematics, 2022, 7(9): 17133-17149. doi: 10.3934/math.2022943 |
[9] | Andrey Muravnik . Nonclassical dynamical behavior of solutions of partial differential-difference equations. AIMS Mathematics, 2025, 10(1): 1842-1858. doi: 10.3934/math.2025085 |
[10] | Hong Li, Keyu Zhang, Hongyan Xu . Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685 |
Human history is also the history of the fight against viral diseases. From the eradication of viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses and a corresponding increase in the tools and methods to combat them. More recently, antiviral peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs (KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple original feature sets. Finally, the deep model is built by combining improved residual network and bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of antiviral peptides. The datasets and codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi.
Partial differential equations are closely related to many physical problems in real life. For example, the ninth-order linear or non-linear boundary value problems are related to the laminar viscous flow in a semi-porous channel or the hydro-magnetic stability, and the telegraph equations are related to the vibrations within objects or the propagation of waves. There are also many different types of partial differential equations in engineering and other applied sciences. Zhang et al. [1] discussed cubic spline solutions of ninth-order linear and non-linear boundary value problems using a cubic B-spline. Shah et al. [2] proposed a new and efficient operational matrix method for solving time-fractional telegraph equations with Dirichlet boundary conditions. Nisar et al. [3] proposed a hybrid mesh free framework based on Padˊe approximation in order to solve the numerical solutions of nonlinear partial differential equations. There are also many different types of partial differential equations in chemistry, engineering, and other applied sciences. There have been many successful conclusions about these partial differential equations.
Complex partial differential equations of analytic functions also have a wide range of applications. Bi-analytic functions, the generalizations of analytic functions, have important applications in elasticity. In 1961, Sander [4] studied the properties of pairs of functions {u(x,y),v(x,y)} with binary real variables (x,y), which satisfy the system of partial differential equations:
{∂u∂x−∂v∂y=θ,∂u∂y+∂v∂x=ω,(k+1)∂θ∂x+∂ω∂y=0,(k+1)∂θ∂y−∂ω∂x=0, |
for the real constant k(k≠−1), where θ(x,y) and ω(x,y) are continuously differentiable functions of x and y. Sander provided the definition of bi-analytic functions of type k, which are of great significance for studying some physical problems for k>0, and extended some properties of analytic functions to bi-analytic functions.
In 1965, Lin and Wu [5] introduced the function class that is more extensive than Sander's function class, i.e., bi-analytic functions of the type (λ,k) which are defined by the system of equations:
{1k∂u∂x−∂v∂y=θ,∂u∂y+1k∂v∂x=ω,k∂θ∂x+λ∂ω∂y=0,k∂θ∂y−λ∂ω∂x=0, |
where θ(x,y) and ω(x,y) are continuously differentiable functions of x and y, and λ,k are real constants with λ≠0,1,k2, and 0<k<1. The complex form of the system is
k+12∂f∂ˉz−k−12∂f∂z=λ−k4λφ(z)+λ+k4λ¯φ(z), |
in which φ(z)=kϑ−iλω is analytic and is called the associate function of f(z)=u+iv. In [5], the general expression and the properties of bi-analytic functions of the type (λ,k) were researched in detail.
Hua et al. [6] introduced a mechanical interpretation for bi-analytic functions and promoted the corresponding function theory. Thereafter, bi-analytic functions aroused widespread attention from many scholars [7,8,9]. In 1994, Kumar [10] discussed a broader class of functions, i.e., bi-polyanalytic functions, and investigated several Riemann-Hilbert problems for systems of n-order partial differential equations applying polyanalytic functions [11] and bi-polyanalytic functions on the unit disk. In 2005, Kumar and Prakash [12] investigated Dirichlet problems for the Poisson equation and some boundary value problems for bi-polyanalytic functions on the unit disk. They obtained the explicit representations of the solutions and the corresponding solvable conditions. In 2006, Begehr and Kumar [13] discussed some complex partial differential equations of higher order. Some boundary value problems for bi-polyanalytic functions were solved on different conditions on the unit disk.
In recent years, some other boundary value problems for bi-analytic functions were solved [14,15,16,17]. With the gradual improvements of the theory for bi-analytic functions and polyanalytic functions [18,19,20,21] in the complex plane, some scholars attempted to generalize the relevant achievements to spaces of several complex variables [22,23].
In this paper, based on the work of the former researchers, we study a class of Schwarz problems for polyanalytic functions on the bicylinder. Then, from the perspective of series and applying the particular solution to the Schwarz problem for polyanalytic functions, we discuss a Dirichlet problem for bi-polyanalytic functions on the bicylinder.
In the following, let the bicylinder D2=D1×D2={(z1,z2):|z1|<1,|z2|<1}, and let ∂0D2 denote the characteristic boundary of D2. Let C(G) represent the set of continuous functions within G.
To get the main results, we need to discuss the following Schwarz problem.
Theorem 2.1. Let gμν∈C(∂0D2;R) for 1≤μ,ν≤m−1 (m≥2), and let
˜ϕ(z)=+∞∑m1,m2=0m−1∑˜v1=μm−1∑˜v2=νˉz˜v11ˉz˜v22˜v1!˜v2!um−~v1,m−~v2m1,m2zm11zm22, | (2.1) |
where
um−~v1,m−~v2m1,m2={1(2πi)2∫∂0D2m−μ−1∑l1=0m−ν−1∑l2=0g(μ+l1)(ν+l2)(ζ)l1!l2!˜Adζ1dζ2ζ1ζ2,{˜v1=μ˜v2=ν,1(2πi)2∫∂0D2m−μ−1∑l1=0m−1−˜v2∑l2=0g(μ+l1)(˜v2+l2)(ζ)l1!l2!˜B|v2=˜v2−νdζ1dζ2ζ1ζ2,{˜v1=μν<˜v2≤m−1,1(2πi)2∫∂0D2m−1−˜v1∑l1=0m−ν−1∑l2=0g(˜v1+l1)(ν+l2)(ζ)l1!l2!˜C|v1=˜v1−μdζ1dζ2ζ1ζ2,{μ<˜v1≤m−1˜v2=ν,1(2πi)2∫∂0D2m−1−˜v1∑l1=0m−1−˜v2∑l2=0g(˜v1+l1)(˜v2+l2)(ζ)l1!l2!˜D|v1=˜v1−μv2=˜v2−νdζ1dζ2ζ1ζ2,{μ<˜v1≤m−1ν<˜v2≤m−1, | (2.2) |
and
{˜A=2[m1∑j1=0m2∑j2=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D21|v1=0m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31|v2=0m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11]−(D11D12+D22D23+D32D33)|v1=v2=0+2(−ζ1−ˉζ1)l1[m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22ˉζm11+B21D31−D23+B222B21]|v2=0+2(−ζ2−ˉζ2)l2[m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11ˉζm22+D21C21−D11+C222C21]|v1=0+2(¯ζ1m1C21+B21¯ζ2m2−B21C21)(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2,˜B=2{[m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−(−ζ1−ˉζ1)l1ˉζm11]m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D21|v1=0m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−B21D31}−(D11D12+D22|v1=0D23+D32D33−B21D23−B21B22), |
{˜C=2{m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11[m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22−(−ζ2−ˉζ2)l2ˉζm22]+D21m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31|v2=0m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−D21C21}−(D11D12+D22D23+D32D33|v2=0−D11C21−C22C21),˜D=2[m1∑j1=0m2∑j2=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D21m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11]−(D11D12+D22D23+D32D33), |
in which
D11={Cm1l1(−ζ1−ˉζ1)l1−m1,0≤m1≤l1,0,m1>l1,D12={Cm2l2(−ζ2−ˉζ2)l2−m2,0≤m2≤l2,0,m2>l2,D21={0,0≤m1<l1,(−1)l1+v1ˉζm1−l11,m1≥l1,D22={(−1)m1+v1,m1=l1,0,m1≠l1,D23={Cm2l2(−ζ2−ˉζ2)l2−m2,0≤m2≤l2,0,m2>l2,D31={0,0≤m2<l2,(−1)l2+v2ˉζm2−l22,m2≥l2,D32={Cm1l1(−ζ1−ˉζ1)l1−m1,0≤m1≤l1,0,m1>l1,D33={(−1)m2+v2,m2=l2,0,m2≠l2, |
and
C21={0,m2≥1,1,m2=0,C22={(−1)m1+v1,m1=l1,0,m1≠l1, |
B21={0,m1≥1,1,m1=0,B22={(−1)m2+v2,m2=l2,0,m2≠l2. |
Then, ˜ϕ(z) satisfies
ℜ∂μˉz1∂νˉz2˜ϕ(z)=gμν(z)(z∈∂0D2),ℑ∂μˉz1∂νˉz2˜ϕ(0,z2)=0=ℑ∂μˉz1∂νˉz2˜ϕ(z1,0)(z1∈D1,z2∈D2). |
Proof: 1) Let
˜ϕ(z)=m−1∑˜v1=μm−1∑˜v2=νˉz˜v11ˉz˜v22˜v1!˜v2!u˜v1˜v2(z), | (2.3) |
in which
u˜v1˜v2(z)={1(2πi)2∫∂0D2m−μ−1∑l1=0m−ν−1∑l2=0g(μ+l1)(ν+l2)(ζ)l1!l2!(A1−A2−A3+A4)dζ1dζ2ζ1ζ2,{˜v1=μ˜v2=ν,1(2πi)2∫∂0D2m−μ−1∑l1=0m−1−˜v2∑l2=0g(μ+l1)(˜v2+l2)(ζ)l1!l2!(B1−B2)|v2=˜v2−νdζ1dζ2ζ1ζ2,{˜v1=μν<˜v2≤m−1,1(2πi)2∫∂0D2m−1−˜v1∑l1=0m−ν−1∑l2=0g(˜v1+l1)(ν+l2)(ζ)l1!l2!(C1−C2)|v1=˜v1−μdζ1dζ2ζ1ζ2,{μ<˜v1≤m−1˜v2=ν,1(2πi)2∫∂0D2m−1−˜v1∑l1=0m−1−˜v2∑l2=0g(˜v1+l1)(˜v2+l2)(ζ)l1!l2!D|v1=˜v1−μv2=˜v2−νdζ1dζ2ζ1ζ2,{μ<˜v1≤m−1ν<˜v2≤m−1, | (2.4) |
is analytic on D2, and
{A1=[(z1−ζ1−ˉζ1)l1(z2−ζ2−ˉζ2)l2+(−z1)l1(z2−ζ2−ˉζ2)l2+(z1−ζ1−ˉζ1)l1(−z2)l2][2ζ1ζ2(ζ1−z1)(ζ2−z2)−1],A2=(−ζ1−ˉζ1)l1{(z2−ζ2−ˉζ2)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z2)l2[2ζ2ζ2−z2−1]},A3=(−ζ2−ˉζ2)l2{(z1−ζ1−ˉζ1)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z1)l1[2ζ1ζ1−z1−1]},A4=(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2[2ζ1ζ1−z1+2ζ2ζ2−z2−2],B1=[(z1−ζ1−ˉζ1)l1(z2−ζ2−ˉζ2)l2+(−z1)l1(z2−ζ2−ˉζ2)l2+(z1−ζ1−ˉζ1)l1(−z2)l2(−1)v2]⋅[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1],B2=(−ζ1−ˉζ1)l1{(z2−ζ2−ˉζ2)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z2)l2(−1)v2[2ζ2ζ2−z2−1]},C1=[(z1−ζ1−ˉζ1)l1(z2−ζ2−ˉζ2)l2+(−z1)l1(−1)v1(z2−ζ2−ˉζ2)l2+(z1−ζ1−ˉζ1)l1(−z2)l2]⋅[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1],C2=(−ζ2−ˉζ2)l2{(z1−ζ1−ˉζ1)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z1)l1(−1)v1[2ζ1ζ1−z1−1]},D=[(z1−ζ1−ˉζ1)l1(z2−ζ2−ˉζ2)l2+(−z1)l1(−1)v1(z2−ζ2−ˉζ2)l2+(z1−ζ1−ˉζ1)l1(−z2)l2(−1)v2]⋅[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]. |
In the following, we will show that ˜ϕ(z) satisfies
ℜ∂μˉz1∂νˉz2˜ϕ(z)=gμν(z)(z∈∂0D2),ℑ∂μˉz1∂νˉz2˜ϕ(0,z2)=0=ℑ∂μˉz1∂νˉz2˜ϕ(z1,0)(z1∈D1,z2∈D2). |
By (2.3), we get that
∂μˉz1∂νˉz2˜ϕ(z)=m−1∑˜v1=μm−1∑˜v2=νˉz˜v1−μ1ˉz˜v2−ν2(˜v1−μ)!(˜v2−ν)!u˜v1˜v2(z)=m−1−μ∑v1=0m−1−ν∑v2=0ˉzv11ˉzv22v1!v2!u(v1+μ)(v2+ν)(z), | (2.5) |
where
u(v1+μ)(v2+ν)={1(2πi)2∫∂0D2m−μ−1∑l1=0m−ν−1∑l2=0g(μ+l1)(ν+l2)(ζ)l1!l2!(A1−A2−A3+A4)dζ1dζ2ζ1ζ2,{v1=0v2=0,1(2πi)2∫∂0D2m−μ−1∑l1=0m−1−v2−ν∑l2=0g(μ+l1)(v2+ν+l2)(ζ)l1!l2!(B1−B2)dζ1dζ2ζ1ζ2,{v1=00<v2≤m−1−ν,1(2πi)2∫∂0D2m−1−v1−μ∑l1=0m−ν−1∑l2=0g(v1+μ+l1)(ν+l2)(ζ)l1!l2!(C1−C2)dζ1dζ2ζ1ζ2,{0<v1≤m−1−μv2=0,1(2πi)2∫∂0D2m−1−v1−μ∑l1=0m−1−v2−ν∑l2=0g(v1+μ+l1)(v2+ν+l2)(ζ)l1!l2!Ddζ1dζ2ζ1ζ2,{0<v1≤m−1−μ0<v2≤m−1−ν. |
Therefore, for 1≤k1,k2≤m−1,
∂m−k1ˉz1∂m−k2ˉz2˜ϕ(z)=k1−1∑v1=0k2−1∑v2=0ˉzv11ˉzv22v1!v2!u(v1+m−k1)(v2+m−k2)(z), | (2.6) |
in which
u(v1+m−k1)(v2+m−k2)={∫∂0D2k1−1∑l1=0k2−1∑l2=0g(m−k1+l1)(m−k1+l2)(ζ)(2πi)2l1!l2!(A1−A2−A3+A4)dζ1dζ2ζ1ζ2,{v1=0v2=0,∫∂0D2k1−1∑l1=0k2−1−v2∑l2=0g(m−k1+l1)(m−k2+v2+l2)(ζ)(2πi)2l1!l2!(B1−B2)dζ1dζ2ζ1ζ2,{v1=00<v2≤k2−1,∫∂0D2k1−1−v1∑l1=0k2−1∑l2=0g(m−k1+v1+l1)(m−k2+l2)(ζ)(2πi)2l1!l2!(C1−C2)dζ1dζ2ζ1ζ2,{0<v1≤k1−1v2=0,∫∂0D2k1−1−v1∑l1=0k2−1−v2∑l2=0g(m−k1+v1+l1)(m−k2+v2+l2)(ζ)(2πi)2l1!l2!Ddζ1dζ2ζ1ζ2,{0<v1≤k1−10<v2≤k2−1. |
Let
ϕ1(z)=ˉzv11ˉzv22v1!v2!1(2πi)2∫∂0D2k1−1−v1∑l1=0k2−1−v2∑l2=0g(m−k1+v1+l1)(m−k2+v2+l2)(ζ)l1!l2!dζ1dζ2ζ1ζ2. |
For 1≤k1,k2≤m−1, (2.6) follows that
∂m−k1ˉz1∂m−k2ˉz2˜ϕ(z)=0∑v1=00∑v2=0ϕ1(z)(A1−A2−A3+A4)+0∑v1=0k2−1∑v2=1ϕ1(z)(B1−B2)+k1−1∑v1=10∑v2=0ϕ1(z)(C1−C2)+k1−1∑v1=1k2−1∑v2=1ϕ1(z)D=k1−1∑v1=0k2−1∑v2=0ϕ1(z)D−0∑v1=0k2−1∑v2=0ϕ1(z)B2−k1−1∑v1=00∑v2=0ϕ1(z)C2+0∑v1,v2=0ϕ1(z)A4=1(2πi)2∫∂0D2k1−1∑v1=0k1−1−v1∑l1=0k2−1∑v2=0k2−1−v2∑l2=0ˉzv11ˉzv22v1!v2!g(m−k1+v1+l1)(m−k2+v2+l2)(ζ)l1!l2![(z1−ζ1−ˉζ1)l1(z2−ζ2−ˉζ2)l2+(−z1)l1(−1)v1(z2−ζ2−ˉζ2)l2+(z1−ζ1−ˉζ1)l1(−z2)l2(−1)v2][2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]dζζ−1(2πi)2∫∂0D2k1−1∑λ1=0k2−1∑v2=0k2−1−v2∑l2=0ˉzv22v2!g(m−k1+λ1)(m−k2+v2+l2)(ζ)λ1!l2!(−ζ1−ˉζ1)λ1⋅{(z2−ζ2−ˉζ2)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z2)l2(−1)v2[2ζ2ζ2−z2−1]}dζ1dζ2ζ1ζ2−1(2πi)2∫∂0D2k1−1∑v1=0k1−1−v1∑l1=0k2−1∑λ2=0ˉzv11v1!g(m−k1+v1+l1)(m−k2+λ2)(ζ)l1!λ2!(−ζ2−ˉζ2)λ2⋅{(z1−ζ1−ˉζ1)l1[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z1)l1(−1)v1[2ζ1ζ1−z1−1]}dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2[2ζ1ζ1−z1+2ζ2ζ2−z2−2]dζζ=1(2πi)2∫∂0D2k1−1∑λ1=0k2−1∑λ2=0λ1∑v1=0λ2∑v2=0ˉzv11ˉzv22λ1!λ2!Cv1λ1Cv2λ2g(m−k1+λ1)(m−k2+λ2)[(z1−ζ1−ˉζ1)λ1−v1(z2−ζ2−ˉζ2)λ2−v2+(−z1)λ1−v1(−1)v1(z2−ζ2−ˉζ2)λ2−v2+(z1−ζ1−ˉζ1)λ1−v1(−z2)λ2−v2(−1)v2][2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]dζζ−1(2πi)2∫∂0D2k1−1∑λ1=0k2−1∑λ2=0(−ζ1−ˉζ1)λ1λ1!λ2!λ2∑v2=0Cv2λ2ˉzv22g(m−k1+λ1)(m−k2+λ2)(ζ)⋅{(z2−ζ2−ˉζ2)λ2−v2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z2)λ2−v2(−1)v2[2ζ2ζ2−z2−1]}dζ1dζ2ζ1ζ2−1(2πi)2∫∂0D2k1−1∑λ1=0k2−1∑λ2=0(−ζ2−ˉζ2)λ2λ1!λ2!λ1∑v1=0Cv1λ1ˉzv11g(m−k1+λ1)(m−k2+λ2)(ζ)⋅{(z1−ζ1−ˉζ1)λ1−v1[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z1)λ1−v1(−1)v1[2ζ1ζ1−z1−1]}dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2[2ζ1ζ1−z1+2ζ2ζ2−z2−2]dζ1dζ2ζ1ζ2=1(2πi)2∫∂0D2k1−1∑λ1=0k2−1∑λ2=01λ1!λ2!{λ1∑v1=0Cv1λ1(z1−ζ1−ˉζ1)λ1−v1ˉzv11λ2∑v2=0Cv2λ2(z2−ζ2−ˉζ2)λ2−v2ˉzv22−(−ζ1−ˉζ1)λ1λ2∑v2=0Cv2λ2(z2−ζ2−ˉζ2)λ2−v2ˉzv22+λ1∑v1=0Cv1λ1(−z1)λ1−v1(−ˉz1)v1λ2∑v2=0Cv2λ2(z2−ζ2−ˉζ2)λ2−v2ˉzv22−λ1∑v1=0Cv1λ1(z1−ζ1−ˉζ1)λ1−v1ˉzv11(−ζ2−ˉζ2)λ2+λ1∑v1=0Cv1λ1(z1−ζ1−ˉζ1)λ1−v1ˉzv11λ2∑v2=0Cv2λ2(−z2)λ2−v2(−ˉz2)v2}⋅g(m−k1+λ1)(m−k2+λ2)(ζ)[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]dζ1dζ2ζ1ζ2−1(2πi)2∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)λ1!λ2!{(−ζ1−ˉζ1)λ1λ2∑v2=0Cv2λ2(−z2)λ2−v2(−ˉz2)v2[2ζ2ζ2−z2−1]+λ1∑v1=0Cv1λ1(−z1)λ1−v1(−ˉz1)v1(−ζ2−ˉζ2)λ2[2ζ1ζ1−z1−1]−(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2[2ζ1ζ1−z1+2ζ2ζ2−z2−2]}dζζ=∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(2πi)2λ1!λ2!{(z1+ˉz1−ζ1−ˉζ1)λ1(z2+ˉz2−ζ2−ˉζ2)λ2−[(−ζ1−ˉζ1)λ1−(−z1−ˉz1)λ1]⋅(z2+ˉz2−ζ2−ˉζ2)λ2−(z1+ˉz1−ζ1−ˉζ1)λ1[(−ζ2−ˉζ2)λ2−(−z2−ˉz2)λ2]}[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1[(−ζ2−ˉζ2)λ2−(−z2−ˉz2)λ2][2ζ2ζ2−z2−1]dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(2πi)2λ1!λ2λ2[2ζ1ζ1−z1−1]dζ1dζ2ζ1ζ2. | (2.7) |
Applying the properties of the Cauchy kernels on D2 and D, for z∈∂0D2, (2.7) leads to
ℜ∂m−k1ˉz1∂m−k2ˉz2˜ϕ(z)=k1−1∑λ1=0k2−1∑λ2=0{g(m−k1+λ1)(m−k2+λ2)(ζ)λ1!λ2λ2−(z1+ˉz1−ζ1−ˉζ1)λ1[(−ζ2−ˉζ2)λ2−(−z2−ˉz2)λ2]]}|ζ1=z1ζ2=z2+∫∂D1k1−1∑λ1=0k2−1∑λ2=0(−ζ1−ˉζ1)λ12πλ1!λ2!{g(m−k1+λ1)(m−k2+λ2)(ζ)[(−ζ2−ˉζ2)λ2−(−z2−ˉz2)λ2]}|ζ2=z2dζ1iζ1+∫∂D2k1−1∑λ1=0k2−1∑λ2=0(−ζ2−ˉζ2)λ22πλ1!λ2!{g(m−k1+λ1)(m−k2+λ2)(ζ)[(−ζ1−ˉζ1)λ1−(−z1−ˉz1)λ1]}|ζ1=z1dζ2iζ2=g(m−k1)(m−k2)(z), |
which means ℜ∂μˉz1∂νˉz2˜ϕ(z)=gμν(z) for z∈∂0D2.
In addition, by (2.7), we get that
ℑ∂m−k1ˉz1∂m−k2ˉz2˜ϕ(0,z2)=ℑ{∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2![(−ζ1−ˉζ1)λ1(z2+ˉz2−ζ2−ˉζ2)λ2−(−ζ1−ˉζ1)λ1⋅(z2+ˉz2−ζ2−ˉζ2)λ2−(−ζ1−ˉζ1)λ1[(−ζ2−ˉζ2)λ2−(−z2−ˉz2)λ2]](2ζ2ζ2−z2−1)dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1[(−ζ2−ˉζ2)λ2−(−z2−ˉz2)λ2][2ζ2ζ2−z2−1]dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2dζ1dζ2ζ1ζ2}=ℑ{∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2dζ1dζ2ζ1ζ2}=0. |
Similarly, we have that
ℑ∂m−k1ˉz1∂m−k2ˉz2˜ϕ(z1,0)=ℑ{∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2λ2−(z1+ˉz1−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2](2ζ1ζ1−z1−1)dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2dζ1dζ2ζ1ζ2+∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2λ2[2ζ1ζ1−z1−1]dζζ}=ℑ{∫∂0D2k1−1∑λ1=0k2−1∑λ2=0g(m−k1+λ1)(m−k2+λ2)(ζ)(2πi)2λ1!λ2!(−ζ1−ˉζ1)λ1(−ζ2−ˉζ2)λ2dζ1dζ2ζ1ζ2}=0. |
Therefore,
ℑ∂μˉz1∂νˉz2˜ϕ(0,z2)=0=ℑ∂μˉz1∂νˉz2˜ϕ(z1,0). |
2) In the expression of u~v1~v2(z) determined by (2.4),
D=[(z1−ζ1−ˉζ1)l1(z2−ζ2−ˉζ2)l2+(−z1)l1(−1)v1(z2−ζ2−ˉζ2)l2+(z1−ζ1−ˉζ1)l1(−z2)l2(−1)v2]⋅[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]=[l1∑p1=0Cp1l1zp11(−ζ1−ˉζ1)l1−p1l2∑q1=0Cq1l2zq12(−ζ2−ˉζ2)l2−q1+(−z1)l1(−1)v1l2∑q1=0Cq1l2zq12(−ζ2−ˉζ2)l2−q1+l1∑p1=0Cp1l1zp11(−ζ1−ˉζ1)l1−p1(−z2)l2(−1)v2][2∞∑j1=0zj11ζj11∞∑j2=0zj22ζj22−1]. | (2.8) |
Moreover, we have that
l1∑p1=0Cp1l1zp11(−ζ1−ˉζ1)l1−p1l2∑q1=0Cq1l2zq12(−ζ2−ˉζ2)l2−q1[2+∞∑j1=0zj11ζj11∞∑j2=0zj22ζj22−1]=2l1∑p1=0+∞∑j1=0Cp1l1(−ζ1−ˉζ1)l1−p1ˉζj11zp1+j11l2∑q1=0+∞∑j2=0Cq1l2(−ζ2−ˉζ2)l2−q1ˉζj22zq1+j22−l1∑p1=0l2∑q1=0Cp1l1Cq1l2(−ζ1−ˉζ1)l1−p1(−ζ2−ˉζ2)l2−q1zp11zq12=2+∞∑j1=0l1+j1∑m1=j1Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11zm11+∞∑j2=0l2+j2∑m2=j2Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22zm22−l1∑m1=0l2∑m2=0Cm1l1Cm2l2(−ζ1−ˉζ1)l1−m1(−ζ2−ˉζ2)l2−m2zm11zm22=2+∞∑m1=0m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11zm11+∞∑m2=0m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22zm22−l1∑m1=0l2∑m2=0Cm1l1Cm2l2(−ζ1−ˉζ1)l1−m1(−ζ2−ˉζ2)l2−m2zm11zm22=+∞∑m1,m2=0[2m1∑j1=0m2∑j2=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22−D11D12]zm11zm22, | (2.9) |
in which
D11={Cm1l1(−ζ1−ˉζ1)l1−m1,0≤m1≤l1,0,m1>l1,D12={Cm2l2(−ζ2−ˉζ2)l2−m2,0≤m2≤l2,0,m2>l2, |
and
(−z1)l1(−1)v1l2∑q1=0Cq1l2zq12(−ζ2−ˉζ2)l2−q1[2∞∑j1=0zj11ζj11+∞∑j2=0zj22ζj22−1]=2+∞∑j1=0(−1)l1+v1ˉζj11zl1+j11+∞∑j2=0l2∑q1=0Cq1l2(−ζ2−ˉζ2)l2−q1ˉζj22zq1+j22−zl11(−1)l1+v1l2∑q1=0Cq1l2(−ζ2−ˉζ2)l2−q1zq12=2+∞∑m1=l1(−1)l1+v1ˉζm1−l11zm11+∞∑m2=0m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22zm22−l2∑m2=0(−1)l1+v1Cm2l2(−ζ2−ˉζ2)l2−m2zl11zm22=+∞∑m1,m2=0[2D21m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22−D22D23]zm11zm22, | (2.10) |
where
D21={0,0≤m1<l1,(−1)l1+v1ˉζm1−l11,m1≥l1,D22={(−1)m1+v1,m1=l1,0,m1≠l1,D23={Cm2l2(−ζ2−ˉζ2)l2−m2,0≤m2≤l2,0,m2>l2. |
Similarly, we get that
l1∑p1=0Cp1l1zp11(−ζ1−ˉζ1)l1−p1(−z2)l2(−1)v2[2∞∑j1=0zj11ζj11+∞∑j2=0zj22ζj22−1]=+∞∑m1,m2=0[2D31m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−D32D33]zm11zm22, | (2.11) |
in which
D31={0,0≤m2<l2,(−1)l2+v2ˉζm2−l22,m2≥l2,D32={Cm1l1(−ζ1−ˉζ1)l1−m1,0≤m1≤l1,0,m1>l1,D33={(−1)m2+v2,m2=l2,0,m2≠l2. |
Plugging (2.9)–(2.11) into (2.8) gives that
D=2+∞∑m1,m2=0{[m1∑j1=0m2∑j2=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D21m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11]−12(D11D12+D22D23+D32D33)}zm11zm22. | (2.12) |
In addition, as the result of
(z1−ζ1−ˉζ1)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z1)l1(−1)v1[2ζ1ζ1−z1−1]=l1∑p1=0Cp1l1zp11(−ζ1−ˉζ1)l1−p1[2+∞∑j1=0zj11ζj11+∞∑j2=0zj22ζj22−1]+zl11(−1)l1+v1(2+∞∑j1=0zj11ζj11−1)=2+∞∑m1=0m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11zm11+∞∑m2=0ˉζm22zm22−l1∑p1=0Cp1l1(−ζ1−ˉζ1)l1−p1zp11+2+∞∑m1=l1(−1)l1+v1ˉζm1−l11zm11−(−1)l1+v1zl11=2+∞∑m1,m2=0[m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11ˉζm22+D21C21−12(D11+C22)C21]zm11zm22, |
in which
C21={0,m2≥1,1,m2=0,C22={(−1)m1+v1,m1=l1,0,m1≠l1, |
we have that
C2=(−ζ2−ˉζ2)l2{(z1−ζ1−ˉζ1)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z1)l1(−1)v1[2ζ1ζ1−z1−1]}=2(−ζ2−ˉζ2)l2+∞∑m1,m2=0[m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11ˉζm22+D21C21−D11+C222C21]zm11zm22, | (2.13) |
which follows that
C1−C2=D|v2=0−C2=2+∞∑m1,m2=0{m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11[m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22−(−ζ2−ˉζ2)l2ˉζm22]+D21m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31|v2=0m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−D21C21−12(D11D12+D22D23+D32D33|v2=0−D11C21−C22C21)}zm11zm22. | (2.14) |
Similarly, we have that
B2=(−ζ1−ˉζ1)l1{(z2−ζ2−ˉζ2)l2[2ζ1ζ2(ζ1−z1)(ζ2−z2)−1]+(−z2)l2(−1)v2[2ζ2ζ2−z2−1]}=2(−ζ1−ˉζ1)l1+∞∑m1,m2=0[m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22ˉζm11+B21D31−D23+B222B21]zm11zm22, | (2.15) |
and
B1−B2=D|v1=0−B2=2+∞∑m1,m2=0{[m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−(−ζ1−ˉζ1)l1ˉζm11]m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D21|v1=0m2∑j2=0Cm2−j2l2(−ζ2−ˉζ2)l2−m2+j2ˉζj22+D31m1∑j1=0Cm1−j1l1(−ζ1−ˉζ1)l1−m1+j1ˉζj11−B21D31−12(D11D12+D22|v1=0D23+D32D33−B21D23−B21B22)}zm11zm22, | (2.16) |
in which
B21={0,m1≥1,1,m1=0,B22={(−1)m2+v2,m2=l2,0,m2≠l2. |
Therefore,
A1−A2−A3+A4=D|v1=v2=0−B2|v2=0−C2|v1=0+A4=D|v1=v2=0−B2|v2=0−C2|v1=0+2+∞∑m1,m2=0(¯ζ1m1C21+B21¯ζ2m2−B21C21)(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2zm11zm22 | (2.17) |
as the result of
A4=(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2[2ζ1ζ1−z1+2ζ2ζ2−z2−2]=2(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2[+∞∑j1=0zj11ζj11++∞∑j2=0zj22ζj22−1]=2(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2[+∞∑m1=0¯ζ1m1zm11+∞∑m2=0C21zm22++∞∑m1=0B21zm11+∞∑m2=0¯ζ2m2zm22−+∞∑m1=0B21zm11+∞∑m2=0C21zm22]=2(−ζ1−ˉζ1)l1(−ζ2−ˉζ2)l2+∞∑m1,m2=0(¯ζ1m1C21+B21¯ζ2m2−B21C21)zm11zm22. |
On the other hand, due to the analyticity of the function u~v1~v2(z), it can be expressed as
u~v1~v2(z)=+∞∑m1,m2=0um−~v1,m−~v2m1,m2zm11zm22,μ≤~v1≤m−1,ν≤~v2≤m−1. | (2.18) |
Plugging (2.12), (2.14), (2.16), and (2.17) into (2.4), and considering the Eq (2.18), we get (2.2). Moreover, (2.18) and (2.3) lead to (2.1). Therefore, from the result in the first part (1), it can be concluded that ˜ϕ(z) determined by (2.1) satisfies
ℜ∂μˉz1∂νˉz2˜ϕ(z)=gμν(z)(z∈∂0D2),ℑ∂μˉz1∂νˉz2˜ϕ(0,z2)=0=ℑ∂μˉz1∂νˉz2˜ϕ(z1,0)(z1∈D1,z2∈D2). |
Theorem 3.1. Let φ∈C(∂0D2;C), λ∈R∖{−1,0,1}, and let gμν∈C(∂0D2;R) for 1≤μ,ν≤m−1 (m≥2). Then, the problem
∂ˉz1∂ˉz2f(z)=λ−14λϕ(z)+λ+14λˉϕ(z),∂mˉz1∂mˉz2ϕ(z)=0(z∈D2) |
with the conditions
f(z)=φ(z),ℜ∂μˉz1∂νˉz2ϕ(z)=gμν(z)(z∈∂0D2),ℑ∂μˉz1∂νˉz2ϕ(0,z2)=0=ℑ∂μˉz1∂νˉz2ϕ(z1,0) |
is solvable and the solution is
f(z)=λ−14λ[+∞∑m1,m2=0u0,0m1,m2zm11zm22ˉz1ˉz2++∞∑m1,m2=0m−1∑v1=μm−1∑v2=νum−v1,m−v2m1,m2zm11zm22⋅ˉzv1+11ˉzv2+12(v1+1)!(v2+1)!]+λ+14λ[+∞∑m1,m2=0¯u0,0m1,m2ˉzm1+11m1+1ˉzm2+12m2+1++∞∑m1,m2=0m−1∑v1=μm−1∑v2=νzv11zv22v1!v2!⋅¯um−v1,m−v2m1,m2ˉzm1+11m1+1ˉzm2+12m2+1]++∞∑m1,m2=0bm1,m2zm11zm22, |
where um−v1,m−v2m1,m2 is determined by (2.2) (in which ~v1 and ~v2 are replaced by v1 and v2, respectively), and u0,0m1,m2, bm1,m2 are determined by the following:
(ⅰ) for 1≤m1≤m−1 and 1≤m2≤m−1,
u0,0m1,m2=(m1+1)(m2+1){λλ+11π2∫2π0e−it1(m1+1)∫2π0e−it2(m2+1)¯φ(eit1,eit2)dt2dt1−λ−1λ+1m−μ∑v1=1m−ν∑v2=1¯uv1,v2(m−m1−v1),(m−m2−v2)(m−v1+1)!(m−v2+1)!−m−μ∑v1=1m−ν∑v2=11(m−v1)!(m−v2)!uv1,v2(m+m1−v1),(m+m2−v2)(m+m1−v1+1)(m+m2−v2+1)}; | (3.1) |
(ⅱ) for m1≥1 and m2≥1,
u0,00,0=λ+1(2π)2∫2π0e−it1∫2π0e−it2¯φ(eit1,eit2)dt2dt1−λ−1(2π)2∫2π0eit1∫2π0eit2φ(eit1,eit2)dt2dt1−m−μ∑v1=1m−ν∑v2=1uv1,v2(m−v1),(m−v2)(m−v1+1)!(m−v2+1)!, | (3.2) |
u0,00,m2=4λλ−11(2π)2∫2π0eit1∫2π0eit2(1−m2)φ(eit1,eit2)dt2dt1−m−μ∑v1=1m−ν∑v2=1uv1,v2(m−v1),(m−v2+m2)(m−v1+1)!(m−v2+1)!−λ+1λ−1{m−μ∑v1=1m−ν∑v2=11(m−v1+1)!(m−v2)!¯uv1,v2(m−v1),(m−v2−m2)m−v2−m2+1,1≤m2≤ν,m−μ∑v1=1m−m2∑v2=11(m−v1+1)!(m−v2)!¯uv1,v2(m−v1),(m−v2−m2)m−v2−m2+1,ν<m2≤m−1,0,m2>m−1, | (3.3) |
u0,0m1,0=4λλ−11(2π)2∫2π0ei(1−m1)t1∫2π0eit2φ(eit1,eit2)dt2dt1−m−μ∑v1=1m−ν∑v2=1uv1,v2(m−v1+m1),(m−v2)(m−v1+1)!(m−v2+1)!−λ+1λ−1{m−μ∑v1=1m−ν∑v2=11(m−v1)!(m−v2+1)!¯uv1,v2(m−v1−m1,(m−v2))m−v1−m1+1,1≤m1≤μ,m−m1∑v1=1m−ν∑v2=11(m−v1)!(m−v2+1)!¯uv1,v2(m−v1−m1,(m−v2))m−v1−m1+1,μ<m1≤m−1,0,m1>m−1; | (3.4) |
(ⅲ) with u0,01,1 being determined by (3.1),
b0,0=1(2π)2∫2π0∫2π0φ(eit1,eit2)dt2dt1−λ−14λ[u0,01,1+m−μ∑v1=1m−ν∑v2=1uv1,v2(m−v1+1),(m−v2+1)(m−v1+1)!(m−v2+1)!]−λ+14λm−μ∑v1=1m−ν∑v2=11(m−v1)!(m−v2)!¯uv1,v2(m−v1−1),(m−v2−1)(m−v1)(m−v2); | (3.5) |
(ⅳ) for {m1≥mm2≥m or {1≤m1≤m−1m2≥m or {m1≥m1≤m2≤m−1,
u0,0m1,m2=4λλ+1(m1+1)(m2+1)(2π)2∫2π0e−i(m1+1)t1∫2π0e−i(m2+1)t2¯φ(eit1,eit2)dt2dt1−m−μ∑v1=1m−ν∑v2=1(m1+1)(m2+1)(m−v1)!(m−v2)!uv1,v2(m−v1+m1),(m−v2+m2)(m−v1+m1+1)(m−v2+m2+1); | (3.6) |
(ⅴ) for m1,m2≥1,
bm1,m2=1(2π)2∫2π0e−im1t1∫2π0e−im2t2φ(eit1,eit2)dt2dt1−λ−14λ[u0,0(m1+1),(m2+1)+m−μ∑v1=1m−ν∑v2=1uv1,v2(m1+m−v1+1),(m2+m−v2+1)(m−v1+1)!(m−v2+1)!]−λ+14λ{m−1−m1∑v1=1m−1−m2∑v2=11(m−v1)!(m−v2)!¯uv1,v2(m−1−m1−v1),(m−1−m2−v2)(m−v1−m1)(m−v2−m2),1≤m1,m2<m−1,0,m1,m2≥m−1, | (3.7) |
bm1,0=1(2π)2∫2π0∫2π0e−im1t1φ(eit1,eit2)dt2dt1−λ−14λ[u0,0(m1+1),1+m−μ∑v1=1m−ν∑v2=1uv1,v2(m1+m−v1+1),(m−v2+1)(m−v1+1)!(m−v2+1)!]−λ+14λ{m−1−m1∑v1=1m−ν∑v2=11(m−v1)!(m−v2)!¯uv1,v2(m−1−m1−v1),(m−1−v2)(m−v1−m1)(m−v2),1≤m1<m−1,0,m1≥m−1, | (3.8) |
b0,m2=1(2π)2∫2π0∫2π0e−im2t2φ(eit1,eit2)dt2dt1−λ−14λ[u0,01,(m2+1)+m−μ∑v1=1m−ν∑v2=1uv1,v2(m−v1+1),(m2+m−v2+1)(m−v1+1)!(m−v2+1)!]−λ+14λ{m−μ∑v1=1m−1−m2∑v2=11(m−v1)!(m−v2)!¯uv1,v2(m−1−v1),(m−1−m2−v2)(m−v1)(m−v2−m2),1≤m2<m−1,0,m2≥m−1, | (3.9) |
in which u0,0(m1+1),(m2+1), u0,0(m1+1),1, and u0,01,(m2+1) are determined by (3.6).
Proof: 1) By Theorem 2.1,
ϕ(z)=+∞∑m1,m2=0m−1∑v1=μm−1∑v2=νˉzv11ˉzv22v1!v2!um−v1,m−v2m1,m2zm11zm22+u0(z), |
where um−v1,m−v2m1,m2 is determined by (2.2) (in which ~v1 and ~v2 are replaced by v1 and v2, respectively), and u0(z) is analytic on D2. Thus, u0(z) can be represented as
u0(z)=+∞∑m1,m2=0u0,0m1,m2zm11zm22, |
in which u0,0m1,m2 is to be determined.
Let
ϕ1(z)=u0(z)ˉz1ˉz2+m−1∑v1=μm−1∑v2=νuv1v2(z)(v1+1)!(v2+1)!ˉzv1+11ˉzv2+12, |
where
uv1,v2(z)=+∞∑m1,m2=0um−v1,m−v2m1,m2zm11zm22,μ≤v1≤m−1,ν≤v2≤m−1. |
Thus, ∂ˉz1∂ˉz2ϕ1(z)=ϕ(z). Let
~u0(z)=+∞∑m1,m2=0u0,0m1,m2zm1+11m1+1zm2+12m2+1, |
and let
˜uv1,v2(z)=+∞∑m1,m2=0um−v1,m−v2m1,m2zm1+11m1+1zm2+12m2+1,μ≤v1≤m−1,ν≤v2≤m−1. |
Then, we get that ∂z1∂z2~u0(z)=u0(z) and ∂z1∂z2˜uv1,v2(z)=uv1,v2(z). Let
ϕ2(z)=¯~u0(z)+m−1∑v1=μm−1∑v2=νˉzv11ˉzv22v1!v2!˜uv1v2(z), |
which follows that
∂ˉz1∂ˉz2ϕ2(z)=¯∂z1∂z2¯ϕ2=¯∂z1∂z2~u0(z)+m−1∑v1=μm−1∑v2=νˉzv11ˉzv22v1!v2!∂z1∂z2˜uv1v2(z)=¯u0(z)+m−1∑v1=μm−1∑v2=νˉzv11ˉzv22v1!v2!uv1v2(z)=¯ϕ(z). |
Therefore,
∂ˉz1∂ˉz2[λ−14λϕ1(z)+λ+14λϕ2(z)]=λ−14λϕ(z)+λ+14λˉϕ(z), |
which means that
λ−14λϕ1(z)+λ+14λϕ2(z) |
is a special solution to
∂ˉz1∂ˉz2f(z)=λ−14λϕ(z)+λ+14λˉϕ(z). |
So, the solution of the problem is
f(z)=[λ−14λϕ1(z)+λ+14λϕ2(z)]+ψ(z)=λ−14λ[u0(z)ˉz1ˉz2+m−1∑v1=μm−1∑v2=νuv1v2(z)(v1+1)!(v2+1)!ˉzv1+11ˉzv2+12]+λ+14λ[¯~u0(z)+m−1∑v1=μm−1∑v2=νzv11zv22v1!v2!¯˜uv1v2(z)]+ψ(z)=λ−14λ[+∞∑m1,m2=0u0,0m1,m2zm11zm22ˉz1ˉz2++∞∑m1,m2=0m−1∑v1=μm−1∑v2=νum−v1,m−v2m1,m2zm11zm22⋅ˉzv1+11ˉzv2+12(v1+1)!(v2+1)!]+λ+14λ[+∞∑m1,m2=0¯u0,0m1,m2ˉzm1+11m1+1ˉzm2+12m2+1++∞∑m1,m2=0m−1∑v1=μm−1∑v2=νzv11zv22v1!v2!⋅¯um−v1,m−v2m1,m2ˉzm1+11m1+1ˉzm2+12m2+1]++∞∑m1,m2=0bm1,m2zm11zm22, | (3.10) |
where ψ(z)=∑+∞m1,m2=0bm1,m2zm11zm22 is analytic on D2, and u0,0m1,m2 and bm1,m2 are to be determined.
2) In this part, we seek the expressions of u0,0m1,m2 and bm1,m2.
For z∈∂0D2, let z1=eit1 and z2=eit2 (t1,t2∈[0,2π]). Then, we get that
φ(eit1,eit2)=f(eit1,eit2)=λ−14λ[+∞∑m1,m2=0u0,0m1,m2ei(m1−1)t1ei(m2−1)t2++∞∑m1,m2=0m−μ∑~v1=1m−ν∑~v2=1u~v1,~v2m1,m2⋅eit1(m1−m+~v1−1)eit2(m2−m+~v2−1)(m−~v1+1)!(m−~v2+1)!]+λ+14λ[+∞∑m1,m2=0¯u0,0m1,m2e−it1(m1+1)m1+1e−it2(m2+1)m2+1++∞∑m1,m2=0m−μ∑~v1=1m−ν∑~v2=1e−it1(m1+1−m+~v1)e−it2(m2+1−m+~v2)(m−~v1)!(m−~v2)!¯u~v1,~v2m1,m2(m1+1)(m2+1)]++∞∑m1,m2=0bm1,m2eim1t1eim2t2=λ−14λ[0∑m1=0+∞∑m2=0u0,00,m2e−it1ei(m2−1)t2++∞∑m1=10∑m2=0u0,0m1,0ei(m1−1)t1e−it2++∞∑m1,m2=1u0,0m1,m2ei(m1−1)t1ei(m2−1)t2+m−μ∑~v1=1m−ν∑~v2=1m−~v1∑m1=0m−~v2∑m2=0u~v1,~v2m1,m2eit1(m1−(m−~v1+1))eit2(m2−(m−~v2+1))(m−~v1+1)!(m−~v2+1)!+m−μ∑~v1=1m−ν∑~v2=1+∞∑m1,m2=0u~v1,~v2(m1+(m−~v1+1)),(m2+(m−~v2+1))eim1t1eim2t2(m−~v1+1)!(m−~v2+1)!+m−μ∑~v1=1m−ν∑~v2=1m−~v1∑m1=0+∞∑m2=0u~v1,~v2m1,(m2+(m−~v2+1))eit1(m1−(m−~v1+1))eim2t2(m−~v1+1)!(m−~v2+1)!+m−μ∑~v1=1m−ν∑~v2=1+∞∑m1=0m−~v2∑m2=0u~v1,~v2(m1+(m−~v1+1)),m2eim1t1eit2(m2−(m−~v2+1))(m−~v1+1)!(m−~v2+1)!]+λ+14λ[+∞∑m1,m2=1¯u0,0(m1−1),(m2−1)e−it1m1m1e−it2m2m2++∞∑m1,m2=0m−μ∑~v1=1m−ν∑~v2=1e−it1(m1+1−m+~v1)e−it2(m2+1−m+~v2)(m−~v1)!(m−~v2)!¯u~v1,~v2m1,m2(m1+1)(m2+1)]++∞∑m1,m2=0bm1,m2eim1t1eim2t2. | (3.11) |
(ⅰ) In the case of 0\leq r_1, r_2\leq m-2 , multiplying both sides of the Eq (3.11) by e^{it_1(m-r_1)}e^{it_2(m-r_2)} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields that
\begin{aligned} &\frac{1}{(2\pi)^2}\int^{2\pi}_0e^{it_1(m-r_1)}\Big[\int^{2\pi}_0e^{it_2(m-r_2)}\varphi(e^{it_1}, e^{it_2})dt_2\Big]dt_1\\ & = \!\frac{\lambda-1}{4\lambda} \Big[\!\sum\limits_{m_2 = 0}^{+\infty}u_{0, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m-r_1-1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-1+m-r_2)}dt_2\\ &\; \; +\!\sum\limits_{m_1 = 1}^{+\infty}u_{m_1, 0}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m_1-1+m-r_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(-1+m-r_2)}dt_2\\ &\; \; +\!\sum\limits_{m_1, m_2 = 1}^{+\infty}\!\!\!u_{m_1, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m_1-1+m-r_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-1+m-r_2)}dt_2\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{m-v_2} \!\frac{u_{m_1, m_2}^{v_1, v_2}\frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1+v_1-1-r_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2+v_2-1-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\sum\limits_{m_1, m_2 = 0}^{+\infty} \frac{u_{(m_1+(m-v_1+1)), (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!\!e^{it_1(m_1+m-r_1)}dt_1\!\cdot\! \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!\!e^{it_2(m_2+m-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{+\infty} \frac{u_{m_1, (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1+v_1-1-r_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+m-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{+\infty}\sum\limits_{m_2 = 0}^{m-v_2} \frac{u_{(m_1+(m-v_1+1)), m_2}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!e^{it_1(m_1+m-r_1)}dt_1\cdot \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!e^{it_2(m_2+v_2-1-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \Big[\sum\limits_{m_1, m_2 = 1}^{+\infty}\frac{\overline{u_{(m_1-1), (m_2-1)}^{0, 0}}}{m_1m_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m-r_1-m_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m-r_2-m_2)}dt_2\\ &\; \; +\sum\limits_{m_1, m_2 = 0}^{+\infty}\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m-r_1-(m_1+1-m+v_1))}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m-r_2-(m_2+1-m+v_2))}dt_2} {(m-v_1)!(m-v_2)!}\\ &\; \; \cdot\frac{\overline{u_{m_1, m_2}^{v_1, v_2}}}{(m_1+1)(m_2+1)} \Big]+ \sum\limits_{m_1, m_2 = 0}^{+\infty}b_{m_1, m_2}\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1+m-r_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+m-r_2)}dt_2\\ & = \!\frac{\lambda-1}{4\lambda} \Big[\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{u_{(1+r_1-v_1), (1+r_2-v_2)}^{v_1, v_2}} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\!\frac{\lambda+1}{4\lambda} \Big[\frac{\overline{u_{(m-r_1-1), (m-r_2-1)}^{0, 0}}}{(m-r_1)(m-r_2)} +\!\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m-v_1)!(m-v_2)!} \frac{\overline{u_{(2m-r_1-1-v_1), (2m-r_2-1-v_2)}^{v_1, v_2}}}{(2m\!-\!r_1\!-\!v_1)(2m\!-\!r_2\!-\!v_2)} \Big], \end{aligned} |
and the last equation is due to
\frac{1}{2\pi}\!\int^{2\pi}_0e^{imt}dt = \left\{ \begin{array}{ll} 0, \quad m\neq 0 \; (m\in\mathbb{Z}), \\ 1, \quad m = 0. \end{array} \right. |
Therefore,
\begin{aligned} u_{(m-r_1-1), (m-r_2-1)}^{0, 0}&\! = \!(m\!-\!r_1)(m\!-\!r_2)\Big\{\frac{4\lambda}{\lambda\!+\!1} \frac{1}{(2\pi)^2}\!\!\int^{2\pi}_0\!\!\!\!\!e^{-it_1(m-r_1)}\!\!\!\int^{2\pi}_0\!\!\!\!e^{-it_2(m-r_2)}\overline{\varphi(e^{it_1}\!, \! e^{it_2})}dt_2dt_1\\ &\; \; -\frac{\lambda-1}{\lambda+1}\Big[\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{\overline{u_{(1+r_1-v_1), (1+r_2-v_2)}^{v_1, v_2}}}{(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; -\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m-v_1)!(m-v_2)!} \frac{u_{(2m-r_1-1-v_1), (2m-r_2-1-v_2)}^{v_1, v_2}}{(2m-r_1-v_1)(2m-r_2-v_2)} \Big\}, \end{aligned} |
which leads to (3.1) for 1\leq m_1, \; m_2\leq m-1 .
(ⅱ) Multiplying both sides of the Eq (3.11) by e^{it_1}e^{it_2} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields that
\begin{aligned} &\frac{1}{(2\pi)^2}\int^{2\pi}_0e^{it_1}\Big[\int^{2\pi}_0e^{it_2}\varphi(e^{it_1}, e^{it_2})dt_2\Big]dt_1\\ & = \!\frac{\lambda-1}{4\lambda} \Big[\sum\limits_{m_2 = 0}^{+\infty}u_{0, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{im_2t_2}dt_2 +\sum\limits_{m_1 = 1}^{+\infty}u_{m_1, 0}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{im_1t_1}dt_1\\ &\; \; +\!\sum\limits_{m_1, m_2 = 1}^{+\infty}\!\!\!u_{m_1, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{im_1t_1}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{im_2t_2}dt_2\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{m-v_2} \!\frac{u_{m_1, m_2}^{v_1, v_2}\frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-m+v_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\!\!\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\sum\limits_{m_1, m_2 = 0}^{+\infty} \!\!\!\!\!\frac{u_{(m_1+(m-v_1+1)), (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!\!e^{it_1(m_1+1)}dt_1\!\cdot\! \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!\!e^{it_2(m_2+1)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{+\infty} \!\frac{u_{m_1, (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+1)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{+\infty}\sum\limits_{m_2 = 0}^{m-v_2} \!\frac{u_{(m_1+(m-v_1+1)), m_2}^{v_1, v_2} \frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1+1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-m+v_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \Big[\sum\limits_{m_1, m_2 = 1}^{+\infty}\frac{\overline{u_{(m_1-1), (m_2-1)}^{0, 0}}}{m_1m_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(1-m_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(1-m_2)}dt_2\\ &\; \; +\sum\limits_{m_1, m_2 = 0}^{+\infty}\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{-it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{-it_2(m_2-m+v_2)}dt_2} {(m-v_1)!(m-v_2)!}\\ &\; \; \cdot\frac{\overline{u_{m_1, m_2}^{v_1, v_2}}}{(m_1+1)(m_2+1)} \Big]+ \sum\limits_{m_1, m_2 = 0}^{+\infty}b_{m_1, m_2}\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1+1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+1)}dt_2\\ & = \!\frac{\lambda-1}{4\lambda} \Big[u_{0, 0}^{0, 0}+\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{u_{(m-v_1), (m-v_2)}^{v_1, v_2}} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \Big[\overline{u_{0, 0}^{0, 0}} +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\overline{u_{(m-v_1), (m-v_2)}^{v_1, v_2}}}{(m-v_1+1)!(m-v_2+1)!} \Big], \end{aligned} |
which leads to (3.2).
Additionally, for r_2\geq 1 , multiplying both sides of the Eq (3.11) by e^{it_1}e^{i(1-r_2)t_2} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields that
\begin{aligned} &\frac{1}{(2\pi)^2}\int^{2\pi}_0e^{it_1}\Big[\int^{2\pi}_0e^{it_2(1-r_2)}\varphi(e^{it_1}, e^{it_2})dt_2\Big]dt_1\\ & = \!\frac{\lambda-1}{4\lambda} \Big[\!\sum\limits_{m_2 = 0}^{+\infty}u_{0, m_2}^{0, 0} \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-r_2)}dt_2 +\!\sum\limits_{m_1 = 1}^{+\infty}u_{m_1, 0}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{im_1t_1}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{-ir_2t_2}dt_2\\ &\; \; +\!\sum\limits_{m_1, m_2 = 1}^{+\infty}\!\!\!u_{m_1, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{im_1t_1}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-r_2)}dt_2\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{m-v_2} \!\frac{u_{m_1, m_2}^{v_1, v_2}\frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-m+v_2-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\sum\limits_{m_1, m_2 = 0}^{+\infty} \!\!\!\!\!\frac{u_{(m_1+(m-v_1+1)), (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!\!e^{it_1(m_1+1)}dt_1\!\cdot\! \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!\!e^{it_2(m_2+1-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{+\infty} \!\frac{u_{m_1, (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+1-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{+\infty}\sum\limits_{m_2 = 0}^{m-v_2} \!\frac{u_{(m_1+(m-v_1+1)), m_2}^{v_1, v_2} \frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1+1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-m+v_2-r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \Big[\sum\limits_{m_1, m_2 = 1}^{+\infty}\frac{\overline{u_{(m_1-1), (m_2-1)}^{0, 0}}}{m_1m_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(1-m_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(1-r_2-m_2)}dt_2\\ &\; \; +\sum\limits_{m_1, m_2 = 0}^{+\infty}\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{-it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{-it_2(m_2-m+v_2+r_2)}dt_2} {(m-v_1)!(m-v_2)!}\\ &\; \; \cdot\frac{\overline{u_{m_1, m_2}^{v_1, v_2}}}{(m_1+1)(m_2+1)} \Big]+ \sum\limits_{m_1, m_2 = 0}^{+\infty}b_{m_1, m_2}\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1+1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+1-r_2)}dt_2\\ & = \!\frac{\lambda-1}{4\lambda} \Big[u^{0, 0}_{0, r_2}+\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{u_{(m-v_1), (m-v_2+r_2)}^{v_1, v_2}} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda}\left\{ \begin{array}{ll} \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m-v_1+1)!(m-v_2)!} \frac{\overline{u_{(m-v_1), (m-v_2-r_2)}^{v_1, v_2}}}{m-v_2-r_2+1}, \quad 1\leq r_2\leq \nu, \\ \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-r_2}_{v_2 = 1} \frac{1}{(m-v_1+1)!(m-v_2)!} \frac{\overline{u_{(m-v_1), (m-v_2-r_2)}^{v_1, v_2}}}{m-v_2-r_2+1}, \quad \nu < r_2\leq m-1, \\ 0, \quad r_2 > m-1, \end{array} \right. \end{aligned} |
and the last equation is due to
\begin{aligned} &\sum\limits_{m_1, m_2 = 0}^{+\infty}\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{-it_1(m_1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{-it_2(m_2-m+v_2+r_2)}dt_2} {(m-v_1)!(m-v_2)!} \frac{\overline{u_{m_1, m_2}^{v_1, v_2}}}{(m_1+1)(m_2+1)}\\ & = \left\{ \begin{array}{ll} \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m-v_1+1)!(m-v_2)!} \frac{\overline{u_{(m-v_1), (m-v_2-r_2)}^{v_1, v_2}}}{m-v_2-r_2+1}, \quad 1\leq r_2\leq \nu, \\ \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-r_2}_{v_2 = 1} \frac{1}{(m-v_1+1)!(m-v_2)!} \frac{\overline{u_{(m-v_1), (m-v_2-r_2)}^{v_1, v_2}}}{m-v_2-r_2+1}, \quad \nu < r_2\leq m-1, \\ 0, \quad r_2 > m-1. \end{array} \right. \end{aligned} |
Therefore, for r_2\geq 1 ,
\begin{equation} \begin{aligned} u^{0, 0}_{0, r_2}& = \!\frac{4\lambda}{\lambda-1} \frac{1}{(2\pi)^2}\!\!\int^{2\pi}_0\!\!e^{it_1}\!\!\int^{2\pi}_0\!\!e^{it_2(1-r_2)}\varphi(e^{it_1}, e^{it_2})dt_2dt_1 \!-\!\!\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{u_{(m-v_1), (m-v_2+r_2)}^{v_1, v_2}} {(m\!-\!v_1\!+\!1)!(m\!-\!v_2\!+\!1)!}\\ &\; \; -\frac{\lambda+1}{\lambda-1}\left\{ \begin{array}{ll} \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m\!-\!v_1\!+\!1)!(m\!-\!v_2)!} \frac{\overline{u_{(m-v_1), (m-v_2-r_2)}^{v_1, v_2}}}{m\!-\!v_2\!-\!r_2\!+\!1}, \quad 1\leq r_2\leq \nu, \\ \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-r_2}_{v_2 = 1} \frac{1}{(m\!-\!v_1\!+\!1)!(m\!-\!v_2)!} \frac{\overline{u_{(m-v_1), (m-v_2-r_2)}^{v_1, v_2}}}{m-v_2-r_2+1}, \quad \nu < r_2\leq m-1, \\ 0, \quad r_2 > m-1. \end{array} \right. \end{aligned} \end{equation} | (3.12) |
For r_1\geq 1 , multiplying both sides of the equation (3.11) by e^{i(1-r_1)t_1}e^{it_2} and then integrating with respect to t_1, t_2\in[0, 2\pi] , similar to (3.12), yields that
\begin{equation} \begin{aligned} u^{0, 0}_{r_1, 0}& = \!\frac{4\lambda}{\lambda-1} \frac{1}{(2\pi)^2}\!\!\int^{2\pi}_0\!\!e^{i(1-r_1)t_1}\!\!\int^{2\pi}_0\!\!e^{it_2}\varphi(e^{it_1}, e^{it_2})dt_2dt_1 \!-\!\!\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{u_{(m-v_1+r_1), (m-v_2)}^{v_1, v_2}} {(m\!-\!v_1\!+\!1)!(m\!-\!v_2\!+\!1)!}\\ &\; \; -\frac{\lambda+1}{\lambda-1}\left\{ \begin{array}{ll} \!\! \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m\!-\!v_1)!(m\!-\!v_2\!+\!1)!} \frac{\overline{u_{(m-v_1-r_1, (m-v_2))}^{v_1, v_2}}}{m-v_1-r_1+1}, \quad 1\!\leq\! r_1\!\leq\! \mu, \\ \!\! \sum\limits^{m-r_1}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m\!-\!v_1)!(m\!-\!v_2\!+\!1)!} \frac{\overline{u_{(m-v_1-r_1, (m-v_2))}^{v_1, v_2}}}{m-v_1-r_1+1}, \quad \mu\! < \! r_1\!\leq\! m\!-\!1, \\ \!0, \quad r_1 > m-1. \end{array} \right. \end{aligned} \end{equation} | (3.13) |
(ⅲ) In addition, integrating both sides of the Eq (3.11) with respect to t_1, t_2\in[0, 2\pi] yields that
\begin{aligned} &\frac{1}{(2\pi)^2}\int^{2\pi}_0\int^{2\pi}_0\varphi(e^{it_1}, e^{it_2})dt_2dt_1\\ & = \!\frac{\lambda-1}{4\lambda} \Big[\!\sum\limits_{m_2 = 0}^{+\infty}u_{0, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-1)}dt_2\\ &\; \; +\!\sum\limits_{m_1 = 1}^{+\infty}u_{m_1, 0}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m_1-1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{-it_2}dt_2\\ &\; \; +\!\sum\limits_{m_1, m_2 = 1}^{+\infty}u_{m_1, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m_1-1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-1)}dt_2\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{m-v_2} \!\frac{u_{m_1, m_2}^{v_1, v_2}\frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1+v_1-1-m)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2+v_2-1-m)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\sum\limits_{m_1, m_2 = 0}^{+\infty} \frac{u_{(m_1+(m-v_1+1)), (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!\!e^{im_1t_1}dt_1\!\cdot\! \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!\!e^{im_2t_2}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{+\infty} \frac{u_{m_1, (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1+v_1-1-m)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{im_2t_2}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{+\infty}\sum\limits_{m_2 = 0}^{m-v_2} \frac{u_{(m_1+(m-v_1+1)), m_2}^{v_1, v_2} \frac{1}{2\pi}\int^{2\pi}_0 e^{im_1t_1}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2+v_2-1-m)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \Big[\sum\limits_{m_1, m_2 = 1}^{+\infty}\frac{\overline{u_{(m_1-1), (m_2-1)}^{0, 0}}}{m_1m_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{-im_1t_1}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{-im_2t_2}dt_2\\ &\; \; +\sum\limits_{m_1, m_2 = 0}^{+\infty}\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{-it_1(m_1+1-m+v_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{-it_2(m_2+1-m+v_2)}dt_2} {(m-v_1)!(m-v_2)!}\\ &\; \; \cdot\frac{\overline{u_{m_1, m_2}^{v_1, v_2}}}{(m_1+1)(m_2+1)} \Big]+ \sum\limits_{m_1, m_2 = 0}^{+\infty}b_{m_1, m_2}\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{im_1t_1}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{im_2t_2}dt_2\\ & = \!\frac{\lambda-1}{4\lambda} \Big[u^{0, 0}_{1, 1}+\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\frac{u_{(m-v_1+1), (m-v_2+1)}^{v_1, v_2}} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m-v_1)!(m-v_2)!} \frac{\overline{u_{(m-v_1-1), (m-v_2-1)}^{v_1, v_2}}}{(m-v_1)(m-v_2)}+b_{0, 0}, \end{aligned} |
which follows (3.5), where u^{0, 0}_{1, 1} is determined by (3.1).
(ⅳ) In the case of r_1, r_2\geq m+1 , multiplying both sides of the Eq (3.11) by e^{ir_1t_1}e^{ir_2t_2} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields that
\begin{aligned} &\frac{1}{(2\pi)^2}\int^{2\pi}_0e^{ir_1t_1}\Big[\int^{2\pi}_0e^{ir_2t_2}\varphi(e^{it_1}, e^{it_2})dt_2\Big]dt_1\\ & = \!\frac{\lambda-1}{4\lambda} \Big[\!\sum\limits_{m_2 = 0}^{+\infty}u_{0, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(r_1-1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-1+r_2)}dt_2\\ &\; \; +\!\sum\limits_{m_1 = 1}^{+\infty}u_{m_1, 0}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m_1-1+r_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(-1+r_2)}dt_2\\ &\; \; +\!\sum\limits_{m_1, m_2 = 1}^{+\infty}\!\!\!u_{m_1, m_2}^{0, 0}\frac{1}{2\pi}\int^{2\pi}_0e^{it_1(m_1-1+r_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-1+r_2)}dt_2\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{m-v_2} \frac{u_{m_1, m_2}^{v_1, v_2}\frac{1}{2\pi}\int^{2\pi}_0 e^{it_1(m_1-(m-v_1+1)+r_1)}dt_1\cdot \frac{1}{2\pi}\int^{2\pi}_0e^{it_2(m_2-(m-v_2+1)+r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \!\sum\limits_{m_1, m_2 = 0}^{+\infty} \frac{u_{(m_1+(m-v_1+1)), (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!\!e^{it_1(m_1+r_1)}dt_1\!\cdot\! \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!\!e^{it_2(m_2+r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{m-v_1}\sum\limits_{m_2 = 0}^{+\infty} \frac{u_{m_1, (m_2+(m-v_2+1))}^{v_1, v_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1-(m-v_1+1)+r_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\\ &\; \; +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \sum\limits_{m_1 = 0}^{+\infty}\sum\limits_{m_2 = 0}^{m-v_2} \frac{u_{(m_1+(m-v_1+1)), m_2}^{v_1, v_2} \frac{1}{2\pi}\!\!\int^{2\pi}_0 \!\!e^{it_1(m_1+r_1)}dt_1\cdot \frac{1}{2\pi}\!\!\int^{2\pi}_0\!\!e^{it_2(m_2-(m-v_2+1)+r_2)}dt_2} {(m-v_1+1)!(m-v_2+1)!}\Big]\\ &\; \; +\frac{\lambda+1}{4\lambda} \Big[\sum\limits_{m_1, m_2 = 1}^{+\infty}\frac{\overline{u_{(m_1-1), (m_2-1)}^{0, 0}}}{m_1m_2} \frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(-m_1+r_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(-m_2+r_2)}dt_2\\ &\; \; +\sum\limits_{m_1, m_2 = 0}^{+\infty}\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{-it_1(m_1+1-m+v_1-r_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{-it_2(m_2+1-m+v_2-r_2)}dt_2} {(m-v_1)!(m-v_2)!}\\ &\; \; \cdot\frac{\overline{u_{m_1, m_2}^{v_1, v_2}}}{(m_1+1)(m_2+1)} \Big]+ \sum\limits_{m_1, m_2 = 0}^{+\infty}b_{m_1, m_2}\frac{1}{2\pi}\!\int^{2\pi}_0 \!e^{it_1(m_1+r_1)}dt_1\cdot \frac{1}{2\pi}\!\int^{2\pi}_0\!e^{it_2(m_2+r_2)}dt_2\\ & = \frac{\lambda+1}{4\lambda} \Big[\frac{\overline{u_{(r_1-1), (r_2-1)}^{0, 0}}}{r_1r_2} +\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{1}{(m-v_1)!(m-v_2)!} \frac{\overline{u_{(m-v_1+r_1-1), (m-v_2+r_2-1)}^{v_1, v_2}}}{(m-v_1+r_1)(m-v_2+r_2)} \Big]. \end{aligned} |
Therefore,
\begin{equation} \begin{aligned} u_{r_1, r_2}^{0, 0}& = \frac{4\lambda}{\lambda+1} \frac{(r_1+1)(r_2+1)}{(2\pi)^2}\int^{2\pi}_0e^{-i(r_1+1)t_1}\int^{2\pi}_0e^{-i(r_2+1)t_2} \overline{\varphi(e^{it_1}, e^{it_2})}dt_2dt_1\\ &\; \; -\sum\limits^{m-\mu}_{v_1 = 1}\sum\limits^{m-\nu}_{v_2 = 1} \frac{(r_1+1)(r_2+1)}{(m-v_1)!(m-v_2)!} \frac{u_{(m-v_1+r_1), (m-v_2+r_2)}^{v_1, v_2}}{(m-v_1+r_1+1)(m-v_2+r_2+1)}, \end{aligned} \end{equation} | (3.14) |
for r_1, r_2\geq m .
Similarly, in the case of r_1\geq m+1 and 0\leq r_2\leq m-2 , multiplying both sides of the Eq (3.11) by e^{ir_1t_1}e^{it_2(m-r_2)} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields that u_{r_1, r_2}^{0, 0} ( r_1\geq m, \; 1\leq r_2\leq m-1 ) has the same representation as (3.14). In the case of 0\leq r_1\leq m-2 and r_2\geq m+1 , multiplying both sides of the Eq (3.11) by e^{it_1(m-r_1)}e^{ir_2t_2} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields that u_{r_1, r_2}^{0, 0} ( 1\leq r_1\leq m-1, \; r_2\geq m ) has the same representation as (3.14).
(ⅴ) Similarly, for r_1, r_2\geq 1 , multiplying both sides of the Eq (3.11) by e^{-ir_1t_1}e^{-ir_2t_2} , and then integrating with respect to t_1, t_2\in[0, 2\pi] , we can get the expression of b_{r_1r_2} which leads to (3.7). For r_1\geq 1 , multiplying both sides of the Eq (3.11) by e^{-ir_1t_1} , and then integrating with respect to t_1, t_2\in[0, 2\pi] yields the expression of b_{r_10} which leads to (3.8). For r_2\geq 1 , we can get b_{0r_2} which leads to (3.9).
Remark 3.2. The results obtained in this article extend the existing conclusions about ployanalytic functions and bi-ployanalytic functions. On this basis, we can study other partial differential equation problems. For example, it would be interesting to discuss whether bi-polyanalytic or even ployanalytical function solutions exist for some nonlocal integrable partial differential equations (see, e.g., [24]), which need to explore the solutions to the corresponding Riemann-Hilbert problems. Additionally, the non-existence of solutions to Cauchy problems on the real line for first-order nonlocal differential equations (see, e.g., [25]) indicates that we can attempt to discuss the generalizations of analytical solutions for partial differential equation problems.
With the help of the series expansion of polyanalytic functions, and applying the properties of Cauchy kernels on the bicylinder and the unit disk, we first discuss a class of Schwarz problems with the conditions concerning the real and imaginary parts of high-order partial differentiation for polyanalytic functions on the bicylinder. On this basis, we investigate a type of boundary value problem for bi-polyanalytic functions with Dirichlet boundary conditions on the bicylinder. From the perspective of series, we obtain the specific representation of the solution to the Dirichlet problem. The method used in this article, with the help of series expansion, is different from the previous methods for solving boundary value problems. It is a very effective method and can be used to solve other types of problems regarding complex partial differential equations of bi-polyanalytic functions in high-dimensional complex spaces. The conclusions of this article also lay a necessary foundation for further research on polyanalytic and bi-polyanalytic functions.
Yanyan Cui: conceptualization, project administration, writing original, writing-review and editing; Chaojun Wang: investigation, writing original, writing-review and editing. All authors have read and approved the final version of the manuscript for publication.
The authors are grateful to the anonymous referees for their valuable comments and suggestions which improved the quality of this article. This work was supported by the NSF of China (No. 11601543), the NSF of Henan Province (Nos. 222300420397 and 242300421394), and the Science and Technology Research Projects of Henan Provincial Education Department (No. 19B110016).
The authors declare no conflict of interest.
[1] |
E. Domingo, Mechanisms of viral emergence, Vet. Res., 41 (2010), 38. https://doi.org/10.1051/vetres/2010010 doi: 10.1051/vetres/2010010
![]() |
[2] |
S. T. Nichol, J. Arikawa, Y. Kawaoka, Emerging viral diseases, Proc. Natl. Acad. Sci., 97 (2000), 12411–12412. https://doi.org/10.1073/pnas.210382297 doi: 10.1073/pnas.210382297
![]() |
[3] |
Q. Abid, T. Nishant, T. Himani, K. Manoj, AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses, Nucleic Acids Res., 42 (2014), D1147–D1153. https://doi.org/10.1093/nar/gkt1191 doi: 10.1093/nar/gkt1191
![]() |
[4] |
T. Phan. Genetic diversity and evolution of SARS-CoV2, Infect. Genet. Evol., 81 (2020), 104260. https://doi.org/10.1016/j.meegid.2020.104260 doi: 10.1016/j.meegid.2020.104260
![]() |
[5] |
E. Sherif, A. Maha, The potential of antimicrobial peptides as an antiviral therapy against COVID-19, ACS Pharmacol. Transl. Sci., 3 (2020), 780–782. https://doi.org/10.1021/acsptsci.0c00059 doi: 10.1021/acsptsci.0c00059
![]() |
[6] |
T. Uhlig, T. Kyprianou, F. G. Martinelli, C. A. Oppici, D. Heiligers, D. Hills, et al., The emergence of peptides in the pharmaceutical business: From exploration to exploitation, EuPA Open Proteomics, 4 (2014), 58–69. https://doi.org/10.1016/j.euprot.2014.05.003 doi: 10.1016/j.euprot.2014.05.003
![]() |
[7] |
L. Otvos, Peptide-based drug design: here and now, Methods Mol. Biol., 494 (2008), 1–8. https://doi.org/10.1007/978-1-59745-419-3 doi: 10.1007/978-1-59745-419-3
![]() |
[8] |
R. E. W. Hancock, H. G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 24 (2006), 1551–1557. https://doi.org/10.1038/nbt1267 doi: 10.1038/nbt1267
![]() |
[9] |
A, Furka, F. Sebestyén, M. Asgedom, G. Dibó, General method for rapid synthesis of multicomponent peptide mixtures, Int. J. Pept. Protein Res., 37 (1991), 487–493. https://doi.org/10.1111/j.1399-3011.1991.tb00765.x doi: 10.1111/j.1399-3011.1991.tb00765.x
![]() |
[10] |
K. Bozovičar, T. Bratkovič, Evolving a peptide: library platforms and diversification strategies, Int. J. Mol. Sci., 21 (2019), 215. https://doi.org/10.3390/ijms21010215 doi: 10.3390/ijms21010215
![]() |
[11] |
Z. Y. Lou, Y. N. Sun, Z. H. Rao, Current progress in antiviral strategies. Trends Pharmacol. Sci., 35 (2014), 86–102. https://doi.org/10.1016/j.tips.2013.11.006 doi: 10.1016/j.tips.2013.11.006
![]() |
[12] |
F. Yu, L. Lu, L. Y. Du, X. J. Zhu, A. K. Debnath, S. Jiang, Approaches for identification of HIV-1 entry inhibitors targeting gp41 pocket, Viruses, 5 (2013), 127–149. https://doi.org/10.3390/v5010127 doi: 10.3390/v5010127
![]() |
[13] | C. K. McDonald, D. R. Kuritzkes, Human immunodeficiency virus type 1 protease inhibitors, Arch. Intern. Med., 157 (1997), 951–959. |
[14] |
J. J. Kiser, C. Flexner, Direct-acting antiviral agents for hepatitis C virus infection, Annu. Rev. Pharmacol. Toxicol., 53 (2013), 427–449. https://doi.org/10.1146/annurev-pharmtox-011112-140254 doi: 10.1146/annurev-pharmtox-011112-140254
![]() |
[15] |
R. Eléonore, R. Jean-Christophe, B. Véronique, J. Corinne, P. Pierre, T, Noël, et al., Antiviral drug discovery strategy using combinatorial libraries of structurally constrained peptides, J. Virol., 78 (2004), 7410–7417. https://doi.org/10.1128/JVI.78.14.7410-7417.2004 doi: 10.1128/JVI.78.14.7410-7417.2004
![]() |
[16] |
G. Castel, M. Chtéoui, B. Heyd, N. Tordo, Phage display of combinatorial peptide libraries: application to antiviral research, Molecules, 16 (2011), 3499–3518. https://doi.org/10.3390/molecules16053499 doi: 10.3390/molecules16053499
![]() |
[17] |
M. F. Chew, K. S. Poh, C. L. Poh, Peptides as therapeutic agents for dengue virus, Int. J. Med. Sci., 14 (2017), 1342–1359. https://doi.org/10.7150/ijms.21875. doi: 10.7150/ijms.21875
![]() |
[18] | S. Saheli, Vaccination: the present and the future, Yale J. Biol. Med., 84 (2011), 353–359. |
[19] |
H. B. Jiang, Y. D. Xu, L. Li, L. Y. Weng, Q. Wang, S. J. Zhang, et al., Inhibition of influenza virus replication by constrained peptides targeting nucleoprotein, Antiviral Chem. Chemother., 22 (2011), 119–130. https://doi.org/10.3851/IMP1902 doi: 10.3851/IMP1902
![]() |
[20] |
T. Nishant, Q. Abid, K. Manoj, AVPpred: collection and prediction of highly effective antiviral peptides, Nucleic Acids Res., 40 (2012), W199–W204. https://doi.org/10.1093/nar/gks450 doi: 10.1093/nar/gks450
![]() |
[21] |
K. Y. Chang, J. R. Yang, Analysis and prediction of highly effective antiviral peptides based on random forests, PloS One, 8 (2013), e70166. https://doi.org/10.1371/journal.pone.0070166 doi: 10.1371/journal.pone.0070166
![]() |
[22] |
M. Zare, H. Mohabatkar, F. K. Faramarzi, M. M. Beigi, M. Behbahani, Using Chou's pseudo amino acid composition and machine learning method to predict the antiviral peptides, Open Bioinf. J., 9 (2015), 13–19. https://doi.org/10.2174/1875036201509010013 doi: 10.2174/1875036201509010013
![]() |
[23] |
B. F. J. Lissabet, H. L. Belén, G. J. Farias, AntiVPP 1.0: A portable tool for prediction of antiviral peptides, Comput. Biol. Med., 107 (2019), 127–130. https://doi.org/10.1016/j.compbiomed.2019.02.011 doi: 10.1016/j.compbiomed.2019.02.011
![]() |
[24] |
N. Schaduangrat, C. Nantasenamat, V. Prachayasittikul, W. Shoombuatong, Meta-iAVP: a sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation, Int. J. Mol. Sci., 20 (2019), 5743. https://doi.org/10.3390/ijms20225743 doi: 10.3390/ijms20225743
![]() |
[25] |
S. C. Abu, M. R. Sarah, K. H. Kylene, B. Barney, M. W. R. Bobbie-Jo, Better understanding and prediction of antiviral peptides through primary and secondary structure feature importance, Sci. Rep., 10 (2020), 19260. https://doi.org/10.1038/s41598-020-76161-8 doi: 10.1038/s41598-020-76161-8
![]() |
[26] |
J. W. Li, Y. Q. Pu, J. J. Tang, Q. Zou, F. Guo, DeepAVP: a dual-channel deep neural network for identifying variable-length antiviral peptides, IEEE J. Biomed. Health, 24 (2020), 3012–3019. https://doi.org/10.1109/JBHI.2020.2977091 doi: 10.1109/JBHI.2020.2977091
![]() |
[27] |
Y. X. Pang, Z. Wang, J. H. Jhong, T. Y. Lee, Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies, Briefings Bioinf., 22 (2021), 1085–1095. https://doi.org/10.1093/bib/bbaa423 doi: 10.1093/bib/bbaa423
![]() |
[28] |
Y. Pang, L. Yao, J. H. Jhong, Z. Wang, T. Y. Lee, AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches, Brief. Bioinform., 22 (2021), bbab263. https://doi.org/10.1093/bib/bbab263 doi: 10.1093/bib/bbab263
![]() |
[29] |
P. B. Timmons, C. M. Hewage, ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides, Briefings Bioinf., 22 (2021), bbab258. https://doi.org/10.1093/bib/bbab258 doi: 10.1093/bib/bbab258
![]() |
[30] |
G. Agarwal, R. Gabrani, Antiviral peptides: identification and validation, Int. J. Pept. Res. Ther., 27 (2021), 149–168. https://doi.org/10.1007/s10989-020-10072-0 doi: 10.1007/s10989-020-10072-0
![]() |
[31] |
P. Charoenkwan, N. Anuwongcharoen, C. Nantasenamat, M. M. Hasan, W. Shoombuatong, In silico approaches for the prediction and analysis of antiviral peptides: a review, Curr. Pharm. Design, 27 (2021), 2180–2188. https://doi.org/10.2174/1381612826666201102105827 doi: 10.2174/1381612826666201102105827
![]() |
[32] |
B. Manavalan, S. Basith, G. Lee, Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2, Briefings Bioinf., 23 (2022), bbab412. https://doi.org/10.1093/bib/bbab412 doi: 10.1093/bib/bbab412
![]() |
[33] |
H. Kurata, S. Tsukiyama, B. Manavalan, iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model, Briefings Bioinf., 23 (2022), bbac265. https://doi.org/10.1093/bib/bbac265 doi: 10.1093/bib/bbac265
![]() |
[34] |
M. K. Pirtskhalava, A. A. Amstrong, M. Grigolava, M. Chubinidze, E. Alimbarashvili, B. M. Vishnepolsky, DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics, Nucleic. Acids Res., 49 (2021), D288–D297. https://doi.org/10.1093/nar/gkaa991 doi: 10.1093/nar/gkaa991
![]() |
[35] |
F. H. Waghu, L. Gopi, R. S. Barai, P. Ramteke, B. Nizami, S. Idicula-Thomas, CAMP: Collection of sequences and structures of antimicrobial peptides, Nucleic. Acids Res., 42 (2014), D1154–D1158. https://doi.org/10.1093/nar/gkt1157 doi: 10.1093/nar/gkt1157
![]() |
[36] |
G. S. Wang, X. Li, Z. Wang, APD3: the antimicrobial peptide database as a tool for research and education, Nucleic. Acids Res., 44 (2016), D1087–D1093. https://doi.org/10.1093/nar/gkv1278 doi: 10.1093/nar/gkv1278
![]() |
[37] |
S. Lata, N. K. Mishra, G. P. S. Raghava, AntiBP2: improved version of antibacterial peptide prediction, BMC Bioinf., 11 (2010), S19. https://doi.org/10.1186/1471-2105-11-S1-S19 doi: 10.1186/1471-2105-11-S1-S19
![]() |
[38] |
N. Bupi, V. K. Sangaraju, L. T. Phan, A. Lal, T. T. B. Vo, P. T. Ho, et al., An effective integrated machine learning framework for identifying severity of tomato yellow leaf curl virus and their experimental validation, Research, 6 (2023), 16. https://doi.org/10.34133/research.0016 doi: 10.34133/research.0016
![]() |
[39] |
H. Y. Shi, S. L. Zhang, Accurate prediction of anti-hypertensive peptides based on convolutional neural network and gated recurrent unit, Interdiscip. Sci., 14 (2022), 879–894. https://doi.org/10.1007/s12539-022-00521-3 doi: 10.1007/s12539-022-00521-3
![]() |
[40] |
S. L. Zhang, X. J. Li, Pep-CNN: An improved convolutional neural network for predicting therapeutic peptides, Chemometr. Intell. Lab., 221 (2022), 104490. https://doi.org/10.1016/j.chemolab.2022.104490 doi: 10.1016/j.chemolab.2022.104490
![]() |
[41] |
M. M. Hasan, Y. Zhou, X. T. Lu, J. Y. Li, J. N. Song, Z. D. Zhang, Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs, PloS One, 10 (2015), e0129635. https://doi.org/10.1371/journal.pone.0129635 doi: 10.1371/journal.pone.0129635
![]() |
[42] |
Z. Ju, J. Z. Cao, Prediction of protein N-formylation using the composition of k-spaced amino acid pairs, Anal. Biochem., 534 (2017), 40–45. https://doi.org/10.1016/j.ab.2017.07.011 doi: 10.1016/j.ab.2017.07.011
![]() |
[43] |
Z. Ju, S. Y. Wang, Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components, Genomics, 112 (2020), 859–866. https://doi.org/10.1016/j.ygeno.2019.05.027 doi: 10.1016/j.ygeno.2019.05.027
![]() |
[44] |
M. M. Hasan, M. S. Khatun, M. N. H. Mollah, Y. Cao, D. J. Guo, NTyroSite: Computational identification of protein nitrotyrosine sites using sequence evolutionary features, Molecules, 23 (2018), 1667. https://doi.org/10.3390/molecules23071667 doi: 10.3390/molecules23071667
![]() |
[45] |
H. L. Fu, Y. X. Yang, X. B. Wang, H. Wang, Y. Xu, DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins, BMC Bioinf., 20 (2019), 86. https://doi.org/10.1186/s12859-019-2677-9 doi: 10.1186/s12859-019-2677-9
![]() |
[46] |
J. N. Song, Y. N. Wang, F. Y. Li, T. Akutsu, N. D. Rawlings, G. I. Webb, K. C. Chou, iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites, Briefings Bioinf., 20 (2019), 638–658. https://doi.org/10.1093/bib/bby028 doi: 10.1093/bib/bby028
![]() |
[47] |
M. Usman, S. Khan, J. A. Lee, Afp-lse: Antifreeze proteins prediction using latent space encoding of composition of k-spaced amino acid pairs, Sci. Rep., 10 (2020), 7197. https://doi.org/10.1038/s41598-020-63259-2 doi: 10.1038/s41598-020-63259-2
![]() |
[48] |
Z. Chen, P. Zhao, F. Y. Li, A. Leier, T. T. Marquez-Lago, Y. N. Wang, et al., iFeature: a python package and web server for features extraction and selection from protein and peptide sequences, Bioinformatics, 34 (2018), 2499–2502. https://doi.org/10.1093/bioinformatics/bty140 doi: 10.1093/bioinformatics/bty140
![]() |
[49] |
Y. Zhu, C. Z. Jia, F. Y. Li, J. N. Song, Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling, Anal. Biochem., 593 (2020), 113592. https://doi.org/10.1016/j.ab.2020.113592 doi: 10.1016/j.ab.2020.113592
![]() |
[50] |
C. R. Chung, T. R. Kuo, L. C. Wu, T. Y. Lee, J. T. Horng, Characterization and identification of antimicrobial peptides with different functional activities, Briefings Bioinf., 21 (2020), 1098–1114. https://doi.org/10.1093/bib/bbz043 doi: 10.1093/bib/bbz043
![]() |
[51] |
Y. J. Wang, Q. Zhang, M. A. Sun, D. J. Guo, High-accuracy prediction of bacterial type Ⅲ secreted effectors based on position specific amino acid composition profiles, Bioinformatics, 27 (2011), 777–784. https://doi.org/10.1093/bioinformatics/btr021 doi: 10.1093/bioinformatics/btr021
![]() |
[52] |
T. Y. Lee, Z. Q. Lin, S. J. Hsieh, N. A. Bretana, C. T. Lu, Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences, Bioinformatics, 27 (2011), 1780–1787. https://doi.org/10.1093/bioinformatics/btr291 doi: 10.1093/bioinformatics/btr291
![]() |
[53] |
X. Y. Wang, B. Yu, A. J. Ma, C. Chen, B. Q. Liu, Q. Ma, Protein-protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique, Bioinformatics, 35 (2019), 2395–2402. https://doi.org/10.1093/bioinformatics/bty995 doi: 10.1093/bioinformatics/bty995
![]() |
[54] |
B. G. Tian, X. Wu, C. Chen, W. Y. Qiu, Q. Ma, B. Yu, Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach, J. Theor. Biol., 462 (2019), 329–346. https://doi.org/10.1016/j.jtbi.2018.11.011 doi: 10.1016/j.jtbi.2018.11.011
![]() |
[55] |
Z. H. Zhang, Z. H. Wang, Z. R. Zhang, Y. X. Wang, A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine, FEBS Lett., 580 (2006), 6169–6174. https://doi.org/10.1016/j.febslet.2006.10.017 doi: 10.1016/j.febslet.2006.10.017
![]() |
[56] |
I. Dubchak, I. Muchnik, S. R. Holbrook, S. H. Kim, Prediction of protein folding class using global description of amino acid sequence, Proc. Natl. Acad. Sci., 92 (1995), 8700–8704. https://doi.org/10.2307/2368330 doi: 10.2307/2368330
![]() |
[57] |
Z. R. Li, H. H. Lin, L. Y. Han, L. Jiang, X. Chen, Y. Z. Chen, PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence, Nucleic. Acids Res., 34 (2006), W32–W37. https://doi.org/10.1093/nar/gkl305 doi: 10.1093/nar/gkl305
![]() |
[58] |
H. Lv, F. Y. Dao, Z. X. Guan, H. Yang, Y. W. Li, H. Lin, Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method, Briefings Bioinf., 22 (2021), bbaa255. https://doi.org/10.1093/bib/bbaa255 doi: 10.1093/bib/bbaa255
![]() |
[59] |
S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
![]() |
[60] |
A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Networks, 18 (2005), 602–610. https://doi.org/10.1016/j.neunet.2005.06.042 doi: 10.1016/j.neunet.2005.06.042
![]() |
[61] |
J. W. Li, Y. Q. Pu, J. J. Tang, Q. Zou, F. Guo, DeepATT: a hybrid category attention neural network for identifying functional effects of DNA sequences, Briefings Bioinf., 22 (2021), bbaa159. https://doi.org/10.1093/bib/bbaa159 doi: 10.1093/bib/bbaa159
![]() |
[62] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, Deep residual learning for image recognition, Comput. Sci., (2016), 770–778. https://doi.org/10.48550/arXiv.1512.03385 doi: 10.48550/arXiv.1512.03385
![]() |
[63] | R. Zhou, X. Q. Hu, B. Yuan, Q. W. Xu, Lithology classification system for well logging based on bidirectional gated recurrent unit, in 2021 4th International conference on artificial intelligence and big data (ICAIBD), (2021), 599–603. https://doi.org/10.1109/ICAIBD51990.2021.9459000 |
[64] |
S. L. Zhang, Y. Y. Jing, PreVFs-RG: A deep hybrid model for identifying virulence factors based on residual block and gated recurrent unit, IEEE/ACM Trans. Comput. Biol. Bioinf., 20 (2022), 1926–1934. https://doi.org/10.1109/TCBB.2022.3223038 doi: 10.1109/TCBB.2022.3223038
![]() |
[65] | K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, Identity mappings in deep residual networks, in Computer Vision–ECCV 2016: 14th European Conference, (2016), 630–645. https://doi.org/10.48550/arXiv.1603.05027 |
[66] | K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation, preprint, arXiv: 1406.1078. https://doi.org/10.48550/arXiv.1406.1078 |
[67] |
K. Abdelli, J. Y. Cho, F. Azendorf, H. Griesser, C. Tropschug, S. Pachnicke, Machine-learning-based anomaly detection in optical fiber monitoring, J. Opt. Commun. Networking, 14 (2022), 365–375. https://doi.org/10.1364/JOCN.451289 doi: 10.1364/JOCN.451289
![]() |
[68] |
Q. H. Kha, Q. T. Ho, N. Q. K. Le, Identifying SNARE proteins using an alignment-free method based on multiscan convolutional neural network and PSSM profiles, J. Chem. Inf. Model., 62 (2022), 4820–4826. https://doi.org/10.1021/acs.jcim.2c01034 doi: 10.1021/acs.jcim.2c01034
![]() |
[69] |
N. Q. K. Le, T. T. D. Nguyen, Y. Y. Ou, Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties, J. Mol. Graph. Model., 73 (2017), 166–178. https://doi.org/10.1016/j.jmgm.2017.01.003 doi: 10.1016/j.jmgm.2017.01.003
![]() |
[70] |
W. Shoombuatong, S. Basith, T. Pitti, G. Lee, B. Manavalan, THRONE: a new approach for accurate prediction of human RNA N7-methylguanosine sites, J. Mol. Biol., 434 (2022), 167549. https://doi.org/10.1016/j.jmb.2022.167549 doi: 10.1016/j.jmb.2022.167549
![]() |
[71] |
L. Y. Wei, W. J. He, A. Malik, R. Su, L. Z. Cui, B. Manavalan, Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework, Briefings Bioinf., 22 (2021), bbaa275. https://doi.org/10.1093/bib/bbaa275 doi: 10.1093/bib/bbaa275
![]() |
[72] |
M. M. Hasan, S. Tsukiyama, J. Y. Cho, H. Kurata, M. A. Alam, X. W. Liu, et al., Deepm5C: a deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy, Mol. Ther., 30 (2022), 2856–2867. https://doi.org/10.1016/j.ymthe.2022.05.001 doi: 10.1016/j.ymthe.2022.05.001
![]() |
[73] |
P. Charoenkwan, W. Chiangjong, C. Nantasenamat, M. M. Hasan, B. Manavalan, W. Shoombuatong, StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides, Briefings Bioinf., 22 (2021), bbab172. https://doi.org/10.1093/bib/bbab172 doi: 10.1093/bib/bbab172
![]() |
[74] |
V. Vacic, L. M. Iakoucheva, P. Radivojac, Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments, Bioinformatics, 22 (2006), 1536–1537. https://doi.org/10.1093/bioinformatics/btl151 doi: 10.1093/bioinformatics/btl151
![]() |
[75] |
M. Y. Liu, H. M. Liu, T. Wu, Y. X. Zhu, Y. W. Zhou, Z. R. Huang, et al., ACP‑Dnnel: anti‑coronavirus peptides' prediction based on deep neural network ensemble learning, Amino Acids, 55 (2023), 1121–1136. https://doi.org/10.1007/s00726-023-03300-6 doi: 10.1007/s00726-023-03300-6
![]() |
1. | Yanyan Cui, Chaojun Wang, Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder, 2025, 10, 2473-6988, 4792, 10.3934/math.2025220 |