Research article Special Issues

Bifurcation analysis and exact solutions for a class of generalized time-space fractional nonlinear Schrödinger equations


  • In this work, we focus on a class of generalized time-space fractional nonlinear Schrödinger equations arising in mathematical physics. After utilizing the general mapping deformation method and theory of planar dynamical systems with the aid of symbolic computation, abundant new exact complex doubly periodic solutions, solitary wave solutions and rational function solutions are obtained. Some of them are found for the first time and can be degenerated to trigonometric function solutions. Furthermore, by applying the bifurcation theory method, the periodic wave solutions and traveling wave solutions with the corresponding phase orbits are easily obtained. Moreover, some numerical simulations of these solutions are portrayed, showing the novelty and visibility of the dynamical structure and propagation behavior of this model.

    Citation: Baojian Hong. Bifurcation analysis and exact solutions for a class of generalized time-space fractional nonlinear Schrödinger equations[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14377-14394. doi: 10.3934/mbe.2023643

    Related Papers:

    [1] M. Botros, E. A. A. Ziada, I. L. EL-Kalla . Semi-analytic solutions of nonlinear multidimensional fractional differential equations. Mathematical Biosciences and Engineering, 2022, 19(12): 13306-13320. doi: 10.3934/mbe.2022623
    [2] Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217
    [3] Yang Liu, Jie Liu, Tao Yu . Sharp conditions for a class of nonlinear Schrödinger equations. Mathematical Biosciences and Engineering, 2023, 20(2): 3721-3730. doi: 10.3934/mbe.2023174
    [4] Muhammad Nadeem, Ji-Huan He, Hamid. M. Sedighi . Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative. Mathematical Biosciences and Engineering, 2023, 20(5): 8190-8207. doi: 10.3934/mbe.2023356
    [5] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [6] Noura Laksaci, Ahmed Boudaoui, Seham Mahyoub Al-Mekhlafi, Abdon Atangana . Mathematical analysis and numerical simulation for fractal-fractional cancer model. Mathematical Biosciences and Engineering, 2023, 20(10): 18083-18103. doi: 10.3934/mbe.2023803
    [7] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [8] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [9] Xian Zhang, Chen Huang . Existence, multiplicity and non-existence of solutions for modified Schrödinger-Poisson systems. Mathematical Biosciences and Engineering, 2023, 20(2): 3482-3503. doi: 10.3934/mbe.2023163
    [10] Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206
  • In this work, we focus on a class of generalized time-space fractional nonlinear Schrödinger equations arising in mathematical physics. After utilizing the general mapping deformation method and theory of planar dynamical systems with the aid of symbolic computation, abundant new exact complex doubly periodic solutions, solitary wave solutions and rational function solutions are obtained. Some of them are found for the first time and can be degenerated to trigonometric function solutions. Furthermore, by applying the bifurcation theory method, the periodic wave solutions and traveling wave solutions with the corresponding phase orbits are easily obtained. Moreover, some numerical simulations of these solutions are portrayed, showing the novelty and visibility of the dynamical structure and propagation behavior of this model.



    In recent years, due to the rapid development and wide applications in nonlinear science of fractional calculus theory, many problems of mathematical physics and engineering have been successfully modeled by fractional differential equations (FDEs), such as materials [1], plasma physics [2], chaotic oscillations [3], chemistry and biochemistry [4], hydrology [5] and so on [6,7,8,9]. To better understand the physical meanings of these models, people have constructed many efficient methods for finding the exact explicit solutions of these FDEs, including the Bäcklund transformation [10], Darboux transformation [11] and Hirota bilinear method [12], which can be used to find N-soliton solutions. Furthermore, the general algebraic method [13], projective Riccati equations method [14], Jacobi elliptic function expansion method [15], G/G-expansion method [16], sine-Gordon method [17], new Kudryashov method [18], fractional sub-equation method [19], fractional Hirota bilinear method [20], Riemann-Hilbert method [21], complex method [22], Bernoulli G/G-expansion method [23], etc. [24,25,26,27,28,29] can be used to find doubly periodic solutions, solitary wave solutions and trigonometric solutions of these models.

    As we all know, the nonlinear Schrödinger equation is highly focused in nonlinear science, and it describes many phenomena, including plasma [30], electromagnetic wave propagation [31], quantum mechanics [32], optics of nonlinear media [33], underwater acoustics [34], etc. [35]. Hence, solving this equation is highly important for researchers.

    In this article, let us consider the following generalized time-space fractional nonlinear Schrödinger equation (GTSFNLS) mentioned in [36,37,38,39,40,41,42,43,44,45,46]:

    iDαtu+aD2βxu+γ|u|2su+vu=0,t>0,0<α,β1,s1. (1)

    D2βxu=Dβx(Dβxu),u=u(x,t),i=1, and a,γ,v are real parameters. When a=1,s=1, v=γ=2λ, Eq (1) turns into an unstable nonlinear Schrödinger equation describing the bilayer baroclinic instability of some long waves [36]. When a=1,s=1,v=0, Eq (1) occurs in various fields of physics, including optical fiber communication, quantum mechanics, fluid mechanics, superconductivity, plasma physics, etc. [37,38,39,40,41]. The authors studied its approximate solution by Adomian expansion in [37]. When a=1,γ=12μ, s=1,v=0, some exact solutions were obtained by direct method in [38]. When α=β=1, a=1,s=1,v=0, it translates into the classical nonlinear Schrödinger equation [39,40,41]. In addition, Eq (1) has many special cases, and related studies can be found in [42,43,44,45,46,47,48]. The main purpose of this paper is to find the new exact solution of Eq (1) under the famous Caputo fractional derivative definition by using the general mapping deformation method and to study the structure of these solutions by using the theory of planar dynamical systems. Next, let us review some definitions about classical fractional calculus [49,50,51].

    Definition 1. For a function f(t):[0,)R, we define the Riemann-Liouville fractional integral operator of order α>0 as [49,50,51]

    Jαtf(t)=1Γ(α)t0(tξ)α1f(ξ)dξ,α>0,t>0,J0tf(t)=f(t).

    It admits the following properties:

    JαJβf(t)=Jα+βf(t),JαJβf(t)=JβJαf(t),Jαtγ=Γ(γ+1)Γ(α+γ+1)tα+γ.

    Definition 2. For α>0, the Caputo fractional derivative operator of order α is defined as [49,50,51]

    Dαf(t)=JnαDnf(t)={1Γ(nα)t0(tξ)nα1f(n)(ξ)dξ,n1<α<n,nN,d(n)f(t)dtn,α=nN.

    Moreover, we have the following properties:

    Dαtγ={Γ(γ+1)Γ(γα+1)tγα,γ>α1,0,γα1.

    This article is organized as follows: The general mapping deformation method is described in Section 2. In Section 3, some new exact solutions and bifurcation structures of the GTSFNLS are found by utilizing the proposed method and the planar dynamic system theory method. Finally, the conclusion is presented in Section 4.

    Consider the following partial differential equation:

    E(u,ut,ux,uxx,)=0. (2)

    We assume Eq (2) has solutions as follows:

    u(η)=ni=0AiFi(η)+ni=1AiFi(η). (3)

    n is a balance number, and the coefficients Ai, Ai and variable function η=η(x,t) are determined later. F(η) satisfies the following auxiliary equation:

    F2(η)=4i=0aiFi(η). (4)

    Substituting Eqs (3) and (4) into Eq (2), collecting the coefficients of Fj(η)4i=0aiFi(η) and Fi(η)(i,j=0,±1,±2,) to zero yields algebraic equations (AEs) for a0,a1,a2,a3,a4, Ai,Ai and η. Utilizing mathematical software to solve the AEs and substituting each F(η) into Eq (3), we obtain the solutions of Eq (2). For finding some new general solutions of Eq (4), we assume

    F(η)=b0+b1e+b2f+b3g+b4h+b1e1+b2f1+b3g1+b4h1. (5)

    bi(i=0,±1,,±4) are undetermined coefficients, and the functions e=e(η),f=f(η), g=g(η),h=h(η) are constructed as below [15,52,53]:

    e=1p+qsnη+rcnη+ldnη,f=snηp+qsnη+rcnη+ldnη,g=cnηp+qsnη+rcnη+ldnη,h=dnηp+qsnη+rcnη+ldnη.

    p,q,r,l are undetermined coefficients, and e,f,g,h satisfy the nexus (4) and (5a–5d) mentioned in [15,52,53].

    Remark 1. Our method proposed here can be used to extend many other traditional methods such as the generalized Jacobi elliptic functions expansion method [15,53], the extended projective Riccati equations method [14], many other algebra expansion methods [18,19,38,46], etc.

    If we let Dαtu=αutα,D2βxu=2βux2β, Eq (1) can be rewritten as follows:

    iαutα+a2βux2β+γu|u|2s+vu=0,t>0,0<α,β1,s1. (6)

    Let us give a functional transformation [46,54,55]

    u=φ(η)eiξ, (7)
    ξ=k1xβΓ(1+β)+c1tαΓ(1+α),η=k2xβΓ(1+β)+c2tαΓ(1+α). (8)

    k1,k2,c1,c2 are parameters to be determined later. Substituting Eqs (7) and (8) into Eq (6), separating the real part and the imaginary part, we obtain

    {ak22φηη(η)+(vc1ak21)φ(η)+γφ2s+1(η)=0,(9.1)(c2+2ak1k2)φη(η)=0.(9.2) (9)

    Here, φηη(η)=d2φ(η)dη2,φη(ξ)=dφ(η)dη.

    Using the transformation ψ=ψ(η)=φs(η)=φs for (9.1) yields

    ak22(1s)(ψη)2+ak22sψψηη+(vc1ak21)s2ψ2+γs2ψ4=0. (10)

    Clearly, the balance number n=1, and we assume solutions of Eq (10) have the form

    ψ=ψ(η)=A0+A1F(η)+A1F1(η)=A0+A1F+A1F1, (11)

    where F2=4i=0aiFi,F=F(η) and F=dF(η)dη.

    Substituting Eq (4) and (11) into Eq (10) and by utilizing the GMDM with the aid of mathematical software, we get the following solutions:

    Family 1. φ(η)=C.

    We find the trivial solution of Eq (6)

    u0=2sc1+ak21vγei(k1xβΓ(1+β)+c1tαΓ(1+α)),(γ0).

    Remark 2. If we select c1=c2s0a+v,k1=cs0,γ=2a,α=β=1 in u0, we have the solution u01=c0ei(k1x+c1t), which can be obtained by many authors by using approximate methods such as VIM or HAM [37,39].

    Family 2. c2+2ak1k2=0.

    Case 1

    s=1,A0=0,A1=±2aa4γk2,A1=0,c2=2ak1k2,c1=aa2k22ak21+v,a1=a3=0.

    Case 2

    s=1,A0=0,A1=±2aa4γk2,A1=±2aa0γk2,c2=2ak1k2,c1=a(a26a0a4)k22ak21+v,a1=a3=0.

    We obtain two types of solutions for Eq (6):

    u1=±2aa4γk2F(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(aa2k22ak21+v)tαΓ(1+α)),
    u2=[±2aa4γk2F(k2xβΓ(1+β)2ak1k2tαΓ(1+α))±2aa0γk2F1(k2xβΓ(1+β)2ak1k2tαΓ(1+α))]E,E=ei(k1xβΓ(1+β)+(a(a26a0a4)k22ak21+v)tαΓ(1+α)).

    Fi is an arbitrary solution of the auxiliary equation Fi2=a0+a2Fi2+a4Fi4 in u1,u2, and the coefficients a0,a2,a4 are arbitrary constants. Many types of Fi have been found in a large number of papers, such as [53,56,57]. Let us choose a0=1m2,a2=2m21, a4=m2,F1=cnξ. Thus,

    u1.1=±2am2γk2cn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(a(2m21)k22ak21+v)tαΓ(1+α)),

    and the solution u1.1 is translated into a bell-soliton solution when α=β=1,m=1.

    u1.2=±2aγk2sech(k2x2ak1k2t)ei(k1x+(ak22ak21+v)t).

    If we let a0=1,a2=m21,a4=m2,F0=snξ, then

    u2.1=[±2am2γk2sn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))±2aγk2ns(k2xβΓ(1+β)2ak1k2tαΓ(1+α))]E,E=ei(k1xβΓ(1+β)+(a(1m26m)k22ak21+v)tαΓ(1+α)).

    Case 3

    s=1,A0=0,A1=±2aγk2q,A1=0,c2=2ak1k2,c1=ak21+v,a0=a1=a3=0,a4=q2.

    Case 4

    s=1,A0=a2γk2,A1=0,A1=±a2γk2,c2=2ak1k2,c1=a(1+m2)k22ak21+v,a0=14,a1=1,a2=12m2,a3=1+2m2,a4=34+3m2.

    Case 5

    s=1,A0=2aγk2,A1=0,A1=±2aγk2,c2=2ak1k2,c1=2a(1+m2)k22ak21+v,a0=1,a1=4,a2=8+2m2,a3=84m2,a4=4+m4.

    We find the following solutions of Eq (6), respectively:

    u3=±2aγk2q1+q(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(ak21+v)tαΓ(1+α)),
    u4=a2γk2[1±cn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))sn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))sn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))1±cn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))]ei(k1xβΓ(1+β)+(a(1+m2)k22ak21+v)tαΓ(1+α)),
    u5=±2aγk2cs(k2xβΓ(1+β)2ak1k2tαΓ(1+α))dn(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(2a(1+m2)k22ak21+v)tαΓ(1+α)),

    If we let m=1 or m=0, solution u5 is degenerated to the following form:

    u5.1=±2aγk2csch(k2xβΓ(1+β)2ak1k2tαΓ(1+α))sech(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(4ak22ak21+v)tαΓ(1+α)),
    u5.2=±2aγk2cot(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(2ak22ak21+v)tαΓ(1+α)).

    Case 6

    A0=0,A1=±(1+s)(c1+ak21v)γ,A1=0,k2=±sc1+ak21va,c2=2ak1k2,a0=a1=a3=0,a2=1,a4=1.

    Case 7

    A0=0,A1=±1s(1+s)ak22γ,A1=0,c1=ak21+ak22s2+v,c2=2ak1k2,a0=a1=a3=0,a2=1,a4=1.

    Case 8

    A0=0,A1=±1s(1+s)ak22γ,A1=0,c1=ak21ak22s2+v,c2=2ak1k2,a0=a1=a3=0,a2=1,a4=1.

    With the same process, we obtain

    u6=±2s(1+s)(c1+ak21v)γsech1s(±sc1+ak21vaxβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+c1tαΓ(1+α)),
    u7=±2s(1+s)ak22γs2csch1s(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(ak21+ak22s2+v)tαΓ(1+α)),
    u8.1=±2s(1+s)ak22γs2sec1s(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(ak21ak22s2+v)tαΓ(1+α)),
    u8.2=±2s(1+s)ak22γs2csc1s(k2xβΓ(1+β)2ak1k2tαΓ(1+α))ei(k1xβΓ(1+β)+(ak21ak22s2+v)tαΓ(1+α)).

    If selecting k1=0,v=0 in u6, we get

    u6.1=2s(1+s)c1γsech1s[c1asxβΓ(1+β)]eic1tαΓ(1+α),

    Remark 3. If we select k1=0,v=0, α=β=1,a=1,γ=1,k2=1,c1=ω,s=p12, u6 turns into the following solution mentioned in [58].

    uscipio=(p+12)1p1ω1p1sech2p1[p12ωx]eiωt.

    We simulate some structures of the periodic and solitary solutions for Eq (1) below. Some optical waves of the GTSFNLS are propagated by a periodic wave pattern in Figures 1 and 2 or a bright-soliton wave pattern in Figure 3 and blow-up wave pattern in Figure 4 with the fractional order α=0.4,β=0.8. The density plots of Reu4,Imu5,|u6| and |u8.1| are shown in Figure 5.

    Figure 1.  The real part of u4 at k1=k2=1,a=1,v=2,γ=0.5,m=0.1,α=0.6,β=0.7 and t=0.01.
    Figure 2.  The plot of Im u5 at α=β=k1=k2=1,a=1,v=2,γ=2,m=0.1 and t=0.05.
    Figure 3.  The modulus plot of u6 at s=2,α=β=k1=k2=a=c1=v=1,γ=3,m=1 and t=1.
    Figure 4.  The modulus plot of u8.1 at s=2,k1=k2=a=c1=v=1,γ=0.75,α=0.4,β=0.8, and t=1.
    Figure 5.  The density plots of Reu4,Imu5,|u6| and |u8.1|.

    Below, let us discuss the plane phase portrait structure of Eq (9) by using the plane dynamic system theory [59,60]. Without loss of generality, select k1=k2=1, a=0.5,c2=1. Thus,

    φηη(η)[1+2(c1v)]φ(η)+2γφ2s+1(η)=0. (12)

    Let dφdη=y, and clearly, Eq (12) is equivalent to the following regular system:

    {dφdη=y,dydη=[1+2(c1v)]φ2γφ2s+1. (13)

    We can get the following Hamiltonian of Eq (13):

    H=H(φ,y)=y2[1+2(c1v)]φ2+2γ1+sφ2s+2=h,hR. (14)

    Indeed, system (13) has three equilibrium points P(φ,y)=P(φ,φ) on the φ-axis:

    P0(0,0),P1(2s1+2(c1v)2γ,0),P2(2s1+2(c1v)2γ,0).

    The coefficient matrix of system (13) is defined as M(φ,y), and J(Pi)=detM(φi,yi),i=0,1,2 is the determinant of M(φ,y) about Pi.

    J(P)=|011+2(c1v)2γ(2s+1)φ2s0|=[1+2(c1v)]+2γ(2s+1)φ2s.

    By the dynamical bifurcation theory of planar systems, as we all know, the equilibrium point Pi of system (13) is a center if J(Pi)>0, it is a saddle if J(Pi)<0, and it is a cusp if J(Pi)=0. Let us analyze the bifurcation structures of system (13) by using mathematical software and the above facts.

    Case 1. c1v=1,γ=12,sZ+.

    Notice that J(P0)=3<0, J(P1)=J(P2)=6s>0. Hence, P1,P2 are center points, and the origin P0 is a saddle point. Let us discuss three situations of Eq (14) with s=1 and

    (φη)2=12φ4+3φ2+h.

    (i) When h<0,h(4.5,0), we can find two clusters of doubly periodic solutions for the periodic orbits of Eq (13) defined by the following integral equation (see Figure 6(a)):

    Figure 6.  The phase graphs of system (13) for case 1 and case 2.
    dφdη=±12φ4+3φ2+h=±12(φ2φ21)(φ2+φ22),

    Integrate this equation along the periodic orbits thus:

    φ2φdφ12φ4+3φ2+h=φ2φdφ(φ2φ21)(φ2+φ22)=±12η.

    We get the following smooth doubly periodic solutions:

    φh<0=±φ2dn[φ212η,φ22φ21φ2],
    u1.h<0=±φ2dn[φ212(xβΓ(1+β)tαΓ(1+α)),φ22φ21φ2]ei(xβΓ(1+β)+(1+v)tαΓ(1+α)),

    where φ1=39+2h,φ2=3+9+2h.

    (ii) When h=0, there exist two clusters of bell-soliton wave solutions for the symmetric homoclinic orbits of system (13) with the following form:

    φh=0=±6sech(3η),
    u1.h=0=±6sech[3(xβΓ(1+β)tαΓ(1+α))]ei(xβΓ(1+β)+(1+v)tαΓ(1+α)).

    (iii) When h>0, we obtain the Jacobi cosine wave solutions for the periodic orbit of system (13) with the following form:

    φh>0=φ2cn[φ21+φ222η,φ22φ21+φ22],
    u1.h>0=φ2cn[φ21+φ222(xβΓ(1+β)tαΓ(1+α)),φ22φ21+φ22]ei(xβΓ(1+β)+(1+v)tαΓ(1+α)),

    where φ21=9+2h3,φ22=9+2h+3.

    Case 2. c1v=1,γ=12,sZ+.

    Clearly, J(P0)=1>0, J(P1)=J(P2)=2s<0. Hence, P1,P2 are saddle points, and P0 is a center point (see Figure 6(b)). Let s=1,(φη)2=12φ4φ2+h, and we can discuss the solutions of Eq (12) with the same process. Due to space limitations, we only give the solutions. When h(0,0.5), we can obtain two clusters of Jacobi sine wave solutions for the periodic orbits. When h=0.5, there exist two kink and antikink solutions corresponding to the solutions of two symmetric heteroclinic orbits.

    When h<0, there exist two blow-up wave solutions for the corresponding orbits.

    u2.h>0=±φ1sn[±φ212(xβΓ(1+β)tαΓ(1+α)),φ1φ2]ei(xβΓ(1+β)+(v1)tαΓ(1+α)),h(0,0.5),

    where φ1=112h,φ2=1+12h.

    u2.h=0.5=±tanh[±12(xβΓ(1+β)tαΓ(1+α))]ei(xβΓ(1+β)+(v1)tαΓ(1+α)),
    u2.h<0=±φ2nc[±φ21+φ222(xβΓ(1+β)tαΓ(1+α)),φ21φ21+φ22]ei(xβΓ(1+β)+(v1)tαΓ(1+α)),

    where φ21=12h1,φ22=12h+1.

    Some planar phase graphs of system (13) with the parameter s1 are shown in Figure 7. From Figure 7(a), (γ=1.25,c1v=4,s=1.5), and we can find that there exist a periodic solution and a bell-soliton solution, while there are not these two types of solutions in Figure 7(b) (γ=2.5,c1v=0.5,s=4).

    Figure 7.  The phase graphs of system (13) when s1.

    Remark 4. It is notable that with the increase of h, the periodic wave solution is degenerated into a solitary wave solution and then into another periodic solution in Figure 6(a). The periodic wave solution is transformed into a kink or antikink wave solution and then into an unbounded solution in Figure 6(b).

    In brief, many types of new exact solutions for the GTSFNLS have been found after utilizing the GMDM. Some dynamic behaviors of these solutions are discussed using bifurcation theory. We simulate the 3D plots, 2D plots, density plots and phase graphs of the partial solutions in Figures 17, which show that these doubly periodic wave solutions, solitary wave solutions and single periodic solutions can be mutually transformed along with the concomitant energy constant and its corresponding orbits. These efficient and significant two methods can be used for many other nonlinear models, such as the Korteweg–de Vries (KdV) equation, Ginzburg-Landau equation, Burgers-BBM (Benjamin-Bona-Mahony) equation, etc.

    The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the practical innovation training program projects for the university students of Jiangsu Province (Grant No. 202311276081Y; 202211276054Y)).

    The author declare that he has no competing interests in this paper.



    [1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [2] R. Hilfer, Applications of Fractional Calculus in Physics, Academic Press, Orlando, 1999.
    [3] M. S. Tavazoei, M. Haeri, S. Jafari, S. Bolouki, M. Siami, Some applications of fractional calculus in suppression of chaotic oscillations, IEEE Trans. Ind. Electron., 55 (2008), 4094–4101. https://doi.org/10.1109/TIE.2008.925774 doi: 10.1109/TIE.2008.925774
    [4] L. Acedo, S. B. Yuste, K. Lindenberg, Reaction front in an a+b→c reaction-subdiffusion process, Phys. Rev. E, 69 (2004), 136–144. https://doi.org/10.1103/PhysRevE.69.036126 doi: 10.1103/PhysRevE.69.036126
    [5] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, The fractional-order governing equation of lévy motion, Water Resour. Res., 36 (2000), 1413–1423. https://doi.org/10.1029/2000WR900032 doi: 10.1029/2000WR900032
    [6] J. H. He, Fractal calculus and its geometrical explanation, Results Phys., 10 (2018), 272–276. https://doi.org/10.1016/j.rinp.2018.06.011 doi: 10.1016/j.rinp.2018.06.011
    [7] J. H. He, A modified Li-He's variational principle for plasma, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1369–1372. https://doi.org/10.1108/HFF-06-2019-0523 doi: 10.1108/HFF-06-2019-0523
    [8] D. D. Dai, T. T. Ban, Y. L. Wang, W. Zhang, The piecewise reproducing kernel method for the time variable fractional order advection-reaction-diffusion equations, Therm. Sci., 25 (2021), 1261–1268. https://doi.org/10.2298/TSCI200302021D doi: 10.2298/TSCI200302021D
    [9] Q. T. Ain, J. H. He, N. Anjum, M. Ali, The Fractional complex transform: A novel approach to the time fractional Schrödinger equation, Fractals, 28 (2020), 2050141. https://doi.org/10.1142/S0218348X20501418 doi: 10.1142/S0218348X20501418
    [10] D. C. Lu, B. J. Hong, Bäcklund transformation and n-soliton-like solutions to the combined KdV-Burgers equation with variable coefficients, Int. J. Nonlinear Sci., 1 (2006), 3–10.
    [11] V. A. Matveev, M. A. Salle, Darboux Transformations and Solitons, Heidelberg: Springer Verlag, Berlin, 1991. https://doi.org/10.1007/978-3-662-00922-2
    [12] J. J. Fang, D. S. Mou, H. C. Zhang, Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model, Optik, 228 (2021), 166186. https://doi.org/10.1016/j.ijleo.2020.166186 doi: 10.1016/j.ijleo.2020.166186
    [13] B. J. Hong, D. C. Lu, New exact Jacobi elliptic function solutions for the coupled Schrödinger-Boussinesq equations, J. Appl. Math., 2013 (2013), 170835. https://doi.org/10.1155/2013/170835 doi: 10.1155/2013/170835
    [14] D. C. Lu, B. J. Hong, L. X. Tian, New explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system, Comput. Math. Appl., 53 (2007), 1181–1190. https://doi.org/10.1016/j.camwa.2006.08.047 doi: 10.1016/j.camwa.2006.08.047
    [15] B. J. Hong, New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation, Appl. Math. Comput., 215 (2009), 2908–2913. https://doi.org/10.1016/j.amc.2009.09.035 doi: 10.1016/j.amc.2009.09.035
    [16] S. K. Mohanty, O. V. Kravchenko, A. N. Dev, Exact traveling wave solutions of the Schamel Burgers equation by using generalized-improved and generalized G'/G -expansion methods, Results Phys., 33 (2022), 105124. https://doi.org/10.1016/j.rinp.2021.105124 doi: 10.1016/j.rinp.2021.105124
    [17] P. R. Kundu, M. R. A. Fahim, M. E. Islam, M. A. Akbar, The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis, Heliyon, 7 (2021), e06459. https://doi.org/10.1016/j.heliyon.2021.e06459 doi: 10.1016/j.heliyon.2021.e06459
    [18] S. M. Mirhosseini-Alizamini, N. Ullah, J. Sabi'u, H. Rezazadeh, M. Inc, New exact solutions for nonlinear Atangana conformable Boussinesq-like equations by new Kudryashov method, Int. J. Modern Phys. B, 35 (2021), 2150163. https://doi.org/10.1142/S0217979221501630 doi: 10.1142/S0217979221501630
    [19] S. Zhang, H. Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 375 (2011), 1069–1073. https://doi.org/10.1016/j.physleta.2011.01.029 doi: 10.1016/j.physleta.2011.01.029
    [20] B. Xu, Y. F. Zhang, S. Zhang, Line soliton interactions for shallow ocean-waves and novel solutions with peakon, ring, conical, columnar and lump structures based on fractional KP equation, Adv. Math. Phys., 2021 (2021), 6664039. https://doi.org/10.1155/2021/6664039
    [21] B. Xu, S. Zhang, Riemann-Hilbert approach for constructing analytical solutions and conservation laws of a local time-fractional nonlinear Schrödinger equation, Symmetry, 13 (2021), 13091593. https://doi.org/10.3390/sym13091593 doi: 10.3390/sym13091593
    [22] Y. Y. Gu, L. W. Liao, Closed form solutions of Gerdjikov-Ivanov equation in nonlinear fiber optics involving the beta derivatives, Int. J. Modern Phys. B, 36 (2022), 2250116. https://doi.org/10.1142/S0217979222501168
    [23] Y. Y. Gu, N. Aminakbari, Bernoulli (G'/G)-expansion method for nonlinear Schrödinger equation with third-order dispersion, Modern Phys. Lett. B, 36 (2022), 2250028. https://doi.org/10.1007/s11082-021-02807-0 doi: 10.1007/s11082-021-02807-0
    [24] S. Zhang, Y. Y. Wei, B. Xu, Fractional soliton dynamics and spectral transform of time-fractional nonlinear systems: an concrete example, Complexity, 2019 (2019), 7952871. https://doi.org/10.1155/2019/7952871 doi: 10.1155/2019/7952871
    [25] K. L. Geng, D. S. Mou, C. Q. Dai, Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations, Nonlinear Dyn., 111 (2023), 603–617. https://doi.org/10.1007/s11071-022-07833-5 doi: 10.1007/s11071-022-07833-5
    [26] W. B. Bo, R. R. Wang, Y. Fang, Y. Y. Wang, C. Q. Dai, Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity, Nonlinear Dyn., 111 (2023), 1577–1588. https://doi.org/10.1007/s11071-022-07884-8 doi: 10.1007/s11071-022-07884-8
    [27] R. R. Wang, Y. Y. Wang, C. Q. Dai, Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser, Opt. Laser Technol., 152 (2022), 108103. https://doi.org/10.1016/j.optlastec.2022.108103 doi: 10.1016/j.optlastec.2022.108103
    [28] S. L. He, B. A. Malomed, D. Mihalache, X. Peng, X. Yu, Y. J. He, et al., Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation, Chaos, Solitons Fractals, 142 (2021), 110470. https://doi.org/10.1016/j.chaos.2020.110470 doi: 10.1016/j.chaos.2020.110470
    [29] S. L. He, Z. W. Mo, J. L. Tu, Z. L. Lu, Y. Zhang, X. Peng, et al., Chirped Lommel Gaussian vortex beams in strongly nonlocal nonlinear fractional Schrödinger equations, Results Phys., 42 (2022), 106014. https://doi.org/10.1016/j.rinp.2022.106014 doi: 10.1016/j.rinp.2022.106014
    [30] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London-New York, 1982.
    [31] M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, Institution of Electrical Engineers (IEE), London, 2000.
    [32] A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Des., 6 (1998), 38298. https://doi.org/10.1155/1998/38298 doi: 10.1155/1998/38298
    [33] Y. S. Kivshar, G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003.
    [34] F. D. Tappert, The Parabolic Approximation Method, Springer, Berlin. https://doi.org/10.1007/3-540-08527-0_5
    [35] M. Hosseininia, M. H. Heydari, C. Cattani, N. Khanna, A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 2273–2295. https://doi.org/10.1016/j.camwa.2019.06.008 doi: 10.1016/j.camwa.2019.06.008
    [36] A. Somayeh, N. Mohammad, Exact solitary wave solutions of the complex nonlinear Schrödinger equations, Opt. Int. J. Light Electron. Opt., 127 (2016), 4682–4688. https://doi.org/10.1016/j.ijleo.2016.02.008 doi: 10.1016/j.ijleo.2016.02.008
    [37] M. A. E. Herzallah, K. A. Gepreel, Approximate solution to the time–space fractional cubic nonlinear Schrödinger equation, Appl. Math. Modell., 36 (2012), 5678–5685. https://doi.org/10.1016/j.apm.2012.01.012 doi: 10.1016/j.apm.2012.01.012
    [38] H. Gündodu, M. F. Gzükzl, Cubic nonlinear fractional Schrödinger equation with conformable derivative and its new travelling wave solutions, J. Appl. Math. Comput. Mech., 20 (2021), 29–41. https://doi.org/10.17512/jamcm.2021.2.03 doi: 10.17512/jamcm.2021.2.03
    [39] A. M. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Solitons Fractals, 37 (2008), 1136–1142. https://doi.org/10.1016/j.chaos.2006.10.009 doi: 10.1016/j.chaos.2006.10.009
    [40] A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Ⅱ. Normal dispersion, Appl. Phys. Lett., 23 (1973), 171–172. https://doi.org/10.1063/1.1654836 doi: 10.1063/1.1654836
    [41] A. Ebaid, S. M. Khaled, New types of exact solutions for nonlinear Schrödinger equation with cubic nonlinearity, J. Comput. Appl. Math., 235 (2011), 1984–1992. https://doi.org/10.1016/j.cam.2010.09.024 doi: 10.1016/j.cam.2010.09.024
    [42] A. Demir, M. A. Bayrak, E. Ozbilge, New approaches for the solution of space-time fractional Schrödinger equation, Adv. Differ. Equations, 2020 (2020), 1–21. https://doi.org/10.1186/s13662-020-02581-5 doi: 10.1186/s13662-020-02581-5
    [43] N. A. Kudryashov, Method for finding optical solitons of generalized nonlinear Schrödinger equations, Opt. Int. J. Light Electron. Opt., 261 (2022), 169163. https://doi.org/10.1016/j.ijleo.2022.169163 doi: 10.1016/j.ijleo.2022.169163
    [44] B. Ghanbari, K. S. Nisar, M. Aldhaifallah, Abundant solitary wave solutions to an extended nonlinear Schrödinger equation with conformable derivative using an efficient integration method, Adv. Differ. Equations, 328 (2020), 1–25. https://doi.org/10.1186/s13662-020-02787-7 doi: 10.1186/s13662-020-02787-7
    [45] M. T. Darvishi, M. Najafi, A. M. Wazwaz, Conformable space-time fractional nonlinear (1+1)- dimensional Schrödinger-type models and their traveling wave solutions, Chaos Solitons Fractals, 150 (2021), 111187. https://doi.org/10.1016/j.chaos.2021.111187 doi: 10.1016/j.chaos.2021.111187
    [46] T. Mathanaranjan, Optical singular and dark solitons to the (2+1)-dimensional time-space fractional nonlinear Schrödinger equation, Results Phys., 22 (2021), 103870. https://doi.org/10.1016/j.rinp.2021.103870 doi: 10.1016/j.rinp.2021.103870
    [47] Y. X. Chen, X. Xiao, Z. L. Mei, Optical soliton solutions of the (1+1)-dimensional space-time fractional single and coupled nonlinear Schrödinger equations, Results Phys., 18 (2020), 103211. https://doi.org/10.1016/j.rinp.2020.103211 doi: 10.1016/j.rinp.2020.103211
    [48] E. K. Jaradat, O. Alomari, M. Abudayah, A. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 1–11. https://doi.org/10.1155/2018/6765021 doi: 10.1155/2018/6765021
    [49] M. G. Sakar, F. Erdogan, A. Yzldzrzm, Variational iteration method for the time-fractional Fornberg-Whitham equation, Comput. Math. Appl., 63 (2012), 1382–1388. https://doi.org/10.1016/j.camwa.2012.01.031 doi: 10.1016/j.camwa.2012.01.031
    [50] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22 (2009), 378–385. https://doi.org/10.1016/j.aml.2008.06.003 doi: 10.1016/j.aml.2008.06.003
    [51] B. J. Hong, D. C. Lu, W. Chen, Exact and approximate solutions for the fractional Schrödinger equation with variable coefficients, Adv. Differ. Equations, 2019 (2019), 1–10. https://doi.org/10.1186/s13662-019-2313-z doi: 10.1186/s13662-019-2313-z
    [52] B. J. Hong, D. C. Lu, New exact solutions for the generalized variable-coefficient Gardner equation with forcing term, Appl. Math. Comput., 219 (2012), 2732–2738 https://doi.org/10.1016/j.amc.2012.08.104 doi: 10.1016/j.amc.2012.08.104
    [53] B. J. Hong, New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system, Appl. Math. Comput., 217 (2010), 472–479. https://doi.org/10.1016/j.amc.2010.05.079 doi: 10.1016/j.amc.2010.05.079
    [54] J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376 (2012), 257–259. https://doi.org/10.1016/j.physleta.2011.11.030 doi: 10.1016/j.physleta.2011.11.030
    [55] Z. B. Li, J. H. He, Fractional complex transformation for fractional differential equation, Math. Comput. Appl., 15 (2010), 970–973. https://doi.org/10.3390/mca15050970 doi: 10.3390/mca15050970
    [56] A. Ebaid, E. H. Aly, Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions, Wave Motion, 49 (2012), 296–308. https://doi.org/10.1016/j.wavemoti.2011.11.003 doi: 10.1016/j.wavemoti.2011.11.003
    [57] M. H. Bashar, S. M. R. Islam, Exact solutions to the (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation by using modifified simple equation and improve F-expansion methods, Phys. Open, 5 (2020), 100027. https://doi.org/10.1016/j.physo.2020.100027 doi: 10.1016/j.physo.2020.100027
    [58] C. Scipio, An invariant set in energy space for supercritical NLS in 1D, J. Math. Anal. Appl., 352 (2009), 634–644. https://doi.org/10.1016/j.jmaa.2008.11.023 doi: 10.1016/j.jmaa.2008.11.023
    [59] L. J. Zhang, P. Y. Yuan, J. L. Fu, C. M. Khalique, Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation, Discrete Contin. Dyn. Syst. S, 13 (2018), 2927–2939. https://doi.org/10.3934/dcdss.2020214 doi: 10.3934/dcdss.2020214
    [60] G. A. Xu, Y. Zhan, J. B. Li, Exact solitary wave and periodic-peakon solutions of the complex Ginzburg-Landau equation: Dynamical system approach, Math. Comput. Simul., 191 (2022), 157–167. https://doi.org/10.1016/j.matcom.2021.08.007 doi: 10.1016/j.matcom.2021.08.007
  • This article has been cited by:

    1. Yasin Asghari, Mostafa Eslami, Mashallah Matinfar, Hadi Rezazadeh, Novel soliton solution of discrete nonlinear Schrödinger system in nonlinear optical fiber, 2024, 90, 11100168, 7, 10.1016/j.aej.2024.01.024
    2. Bo Liu, Zhou-Bo Duan, Li-Fang Niu, Soliton solutions of the TWPA-SNAIL transmission line circuit equation under continuum approximation via the Jacobi elliptic function expansion method, 2024, 98, 0973-7111, 10.1007/s12043-024-02791-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1532) PDF downloads(70) Cited by(2)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog