This paper studies a class of nonlinear Schrödinger equations in two space dimensions. By constructing a variational problem and the so-called invariant manifolds of the evolution flow, we get a sharp condition for global existence and blow-up of solutions.
Citation: Yang Liu, Jie Liu, Tao Yu. Sharp conditions for a class of nonlinear Schrödinger equations[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3721-3730. doi: 10.3934/mbe.2023174
This paper studies a class of nonlinear Schrödinger equations in two space dimensions. By constructing a variational problem and the so-called invariant manifolds of the evolution flow, we get a sharp condition for global existence and blow-up of solutions.
[1] | V. D. Dinh, On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation, J. Dynam. Differ. Equations, 31 (2019), 1793–1823. https://doi.org/10.1007/S10884-018-9690-Y doi: 10.1007/S10884-018-9690-Y |
[2] | B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equations, 4 (2007), 197–225. https://doi.org/10.4310/DPDE.2007.v4.n3.a1 doi: 10.4310/DPDE.2007.v4.n3.a1 |
[3] | R. Xu, Q. Lin, S. Chen, G. Wen, W. Lian, Difficulties in obtaining finite time blowup for fourth-order semilinear Schrödinger equations in the variational method frame, Electron. J. Differ. Equations, 2019 (2019), Paper No. 83, 22 pp. |
[4] | T. Saanouni, Remarks on the semilinear Schrödinger equation, J. Math. Anal. Appl., 400 (2013), 331–344. https://doi.org/10.1016/j.jmaa.2012.11.037 doi: 10.1016/j.jmaa.2012.11.037 |
[5] | J. F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma, Phys. Fluids, 20 (1997), 1176–1179. https://doi.org/10.1063/1.861679 doi: 10.1063/1.861679 |
[6] | T. Cazenave, Equations de Schrödinger non linéaires en dimension deux, Proc. Roy. Soc. Edinburgh Sect. A, 84 (1979), 327–346. https://doi.org/10.1017/S0308210500017182 doi: 10.1017/S0308210500017182 |
[7] | S. Adachi, K. Tanaka, Trudinger type inequalities in $R^N$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051–2057. https://doi.org/10.1090/S0002-9939-99-05180-1 doi: 10.1090/S0002-9939-99-05180-1 |
[8] | B. Ruf, A sharp Moser-Trudinger type inequality for unbounded domains in $\mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340–367. https://doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013 |
[9] | W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016 |
[10] | J. Shu, J. Zhang, Instability of standing waves for a class of nonlinear Schrödinger equations, J. Math. Anal. Appl., 327 (2007), 878–890. https://doi.org/10.1016/j.jmaa.2006.04.082 doi: 10.1016/j.jmaa.2006.04.082 |
[11] | R. Xu, Y. Chen, Y. Yang, S. Chen, J. Shen, T. Yu, et al., Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrödinger equations, Electron. J. Differential Equations, 2018 (2018), Paper No. 55, 52 pp. |
[12] | R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010 |
[13] | R. Xu, C. Xu, Sharp conditions of global existence for second-order derivative nonlinear Schrödinger equations with combined power-type nonlinearities, ZAMM Z. Angew. Math. Mech., 93 (2013), 29–37. https://doi.org/10.1002/zamm.201200083 doi: 10.1002/zamm.201200083 |
[14] | J. Colliander, S. Ibrahim, M. Majdoub, N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equations, 6 (2009), 549–575. https://doi.org/10.1142/S0219891609001927 doi: 10.1142/S0219891609001927 |
[15] | W. Lian, J. Shen, R. Xu, Y. Yang, Infinite sharp conditions by Nehari manifolds for nonlinear Schrödinger equations, J. Geom. Anal., 30 (2020), 1865–1886. https://doi.org/10.1007/s12220-019-00281-5 doi: 10.1007/s12220-019-00281-5 |
[16] | W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914-4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047 |
[17] | Y. Liu, Existence and blow-up of solutions to a parabolic equation with nonstandard growth conditions, Bull. Aust. Math. Soc., 99 (2019), 242–249. https://doi.org/10.1017/S0004972718001181 doi: 10.1017/S0004972718001181 |
[18] | Y. Liu, P. Lv, C. Da, Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy, Ann. Polon. Math., 117 (2016), 89–99. https://doi.org/10.4064/ap3807-1-2016 doi: 10.4064/ap3807-1-2016 |
[19] | Y. Liu, J. Mu, Y. Jiao, A class of fourth order damped wave equations with arbitrary positive initial energy, Proc. Edinburgh Math. Soc., 62 (2019), 165–178. https://doi.org/10.1017/S0013091518000330 doi: 10.1017/S0013091518000330 |
[20] | Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011 |
[21] | Y. Luo, R. Xu, C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Calc. Var. Partial Differ. Equations, 61 (2022), Paper No. 210, 47pp. https://doi.org/10.1007/s00526-022-02316-2 |
[22] | X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudoparabolic equation, Adv. Nonlinear Anal, 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141 |
[23] | M. Zhang, M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882–894. https://doi.org/10.1515/anona-2020-0031 doi: 10.1515/anona-2020-0031 |
[24] | T. Cazenave, Semilinear Schrödinger Equations, in Courant Lecture Notes in Mathematics, vol. 10, American Mathematical Society, Providence, RI, 2003. https://doi.org/10.1090/cln/010 |
[25] | H. T. Nguyen, N. A. Tuan, C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations, Discrete Contin. Dyn. Syst., 42 (2022), 2637–2665. https://doi.org/10.3934/dcds.2021206 doi: 10.3934/dcds.2021206 |
[26] | A. T. Nguyen, N. H. Tuan, C. Yang, On Cauchy problem for fractional parabolic-elliptic Keller-Segel model, Adv. Nonlinear Anal, 12 (2023), 97–116. https://doi.org/10.3934/dcds.2021206 doi: 10.3934/dcds.2021206 |