In the predator-prey system, predators can affect the prey population by direct killing and inducing predation fear, which ultimately force preys to adopt some anti-predator strategies. Therefore, it proposes a predator-prey model with anti-predation sensitivity induced by fear and Holling-Ⅱ functional response in the present paper. Through investigating the system dynamics of the model, we are interested in finding how the refuge and additional food supplement impact the system stability. With the changes of the anti-predation sensitivity (the refuge and additional food), the main result shows that the stability of the system will change accordingly, and it has accompanied with periodic fluctuations. Intuitively the bubble, bistability phenomena and bifurcations are found through numerical simulations. The bifurcation thresholds of crucial parameters are also established by the Matcont software. Finally, we analyze the positive and negative impacts of these control strategies on the system stability and give some suggestions to the maintaining of ecological balance, we perform extensive numerical simulations to illustrate our analytical findings.
Citation: Jinxing Zhao, Yuanfu Shao. Bifurcations of a prey-predator system with fear, refuge and additional food[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3700-3720. doi: 10.3934/mbe.2023173
In the predator-prey system, predators can affect the prey population by direct killing and inducing predation fear, which ultimately force preys to adopt some anti-predator strategies. Therefore, it proposes a predator-prey model with anti-predation sensitivity induced by fear and Holling-Ⅱ functional response in the present paper. Through investigating the system dynamics of the model, we are interested in finding how the refuge and additional food supplement impact the system stability. With the changes of the anti-predation sensitivity (the refuge and additional food), the main result shows that the stability of the system will change accordingly, and it has accompanied with periodic fluctuations. Intuitively the bubble, bistability phenomena and bifurcations are found through numerical simulations. The bifurcation thresholds of crucial parameters are also established by the Matcont software. Finally, we analyze the positive and negative impacts of these control strategies on the system stability and give some suggestions to the maintaining of ecological balance, we perform extensive numerical simulations to illustrate our analytical findings.
[1] | A. J. Lotka, Elements Physical Biology, Williams and Wilkins, Baltimore, 1924. https://doi.org/10.1038/116461b0 |
[2] | V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0 |
[3] | P. A. Abrams, The evolution of predator-prey interactions: theory and evidence, Ann. Rev. Ecol. Syst., 31 (2000), 79–105. https://doi.org/10.1146/annurev.ecolsys.31.1.79 doi: 10.1146/annurev.ecolsys.31.1.79 |
[4] | P. W. Guiden, S. L. Bartel, N. W. Byer, A. A. Shipley, J. L. Orrock, Predator-prey interactions in the Anthropocene: reconciling multiple aspects of novelty, Trends Ecol. Evol., 34 (2019), 616–627. https://doi.org/10.1016/j.tree.2019.02.017 doi: 10.1016/j.tree.2019.02.017 |
[5] | J. B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997), 149–168. https://doi.org/10.1007/s002850050095 doi: 10.1007/s002850050095 |
[6] | K. Antwi-Fordjour, D. R. Parshad, A. M. Beauregard, Dynamics of a predator-prey model with generalized functional response and mutual interference, Math. Biosci., 360 (2020), 108407. https://doi.org/10.1016/j.mbs.2020.108407 doi: 10.1016/j.mbs.2020.108407 |
[7] | Y. Huang, F. Chen, L. Zhong, Stability analysis of a prey-predator model with holling type Ⅲ response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. https://doi.org/10.1016/j.amc.2006.04.030 doi: 10.1016/j.amc.2006.04.030 |
[8] | J. P. Tripathi, S. Abbas, M. Thakur, Dynamical analysis of a prey-predator model with Beddington- DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177–196. https://doi.org/10.1007/s11071-014-1859-2 doi: 10.1007/s11071-014-1859-2 |
[9] | C. Xu, P. Li, Oscillations for a delayed predator-prey modelwith Hassell-Varley-type functional response, Comptes Rendus Biol., 338 (2015), 227–240. https://doi.org/10.1016/j.crvi.2015.01.002 doi: 10.1016/j.crvi.2015.01.002 |
[10] | J. P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 45–69. https://doi.org/10.1016/j.cnsns.2015.06.008 doi: 10.1016/j.cnsns.2015.06.008 |
[11] | J. H. P. Dawes, M. O. Souza, A derivation of Holling's type Ⅰ, Ⅱ and Ⅲ functional responses in predator-prey systems, J. Theor. Biol., 327 (2017), 11–22. https://doi.org/10.1016/j.jtbi.2013.02.017 doi: 10.1016/j.jtbi.2013.02.017 |
[12] | Y. Shao, Global stability of a delayed predator-prey system with fear and Holling-type Ⅱ functional response in deterministic and stochastic environments, Math. Comput. Simul., 200 (2022), 65–77. https://doi.org/10.1016/j.matcom.2022.04.013 doi: 10.1016/j.matcom.2022.04.013 |
[13] | S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex, 39 (2019), 100770. https://doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770 |
[14] | S. Creel, D. Christianson, S. Liley, J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315 (2007), 960. http://doi.org/10.1126/science.1135918 doi: 10.1126/science.1135918 |
[15] | L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 398–401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908 |
[16] | W. Ripple, R. L. Beschta, Wolves and the ecology of fear: can predation risk structure ecosystems?, BioScience, 54 (2004), 755–766. https://doi.org/10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2 doi: 10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2 |
[17] | L. Y. Zanette, M. Clinchy, Ecology of fear, Curr. Biol., 29 (2019), 309–313. http://dx.doi.org/10.1016/j.cub.2019.02.042 doi: 10.1016/j.cub.2019.02.042 |
[18] | S. Eggers, M. Griesser, J. Ekman, Predator-induced plasticity in nest visitation rates in the Siberian jay (Perisoreus infaustus), Behav. Ecol., 16 (2005), 309–315. https://doi.org/10.1093/beheco/arh163 doi: 10.1093/beheco/arh163 |
[19] | F. Hua, K. E. Sieving, R. J. Fletcher, C. A. Wright, Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance, Behav. Ecol., 25 (2014), 509–519. https://doi.org/10.1093/beheco/aru017 doi: 10.1093/beheco/aru017 |
[20] | P. L. Krapivsky, S. Redner, Kinetics of a diffusive capture process: lamb besieged by a pride of lions, J. Phys. A Math. Gen., 26 (1996), 1–13. https://doi.org/10.1088/0305-4470/29/17/011 doi: 10.1088/0305-4470/29/17/011 |
[21] | V. Kumar, N. Kumari, Controlling chaos in three species food chain model with fear effect, AIMS Math., 5 (2020), 828–842. https://doi.org/10.3934/math.2020056 doi: 10.3934/math.2020056 |
[22] | V. Kumar, N. Kumari, Stability and bifurcation analysis of Hassell-Varley Prey-Predator system with fear effect, Int. J. Appl. Comput. Math., 6 (2020), 150. https://doi.org/10.1007/s40819-020-00899-y doi: 10.1007/s40819-020-00899-y |
[23] | B. Nath, N. Kumari, V. Kumar, K. P. Das, Refugia and allee effect in prey species stabilize chaos in a Tri-Trophic food chain model, Differ. Equations Dyn. Syst., 30 (2022), 631–657. https://doi.org/10.1007/s12591-019-00457-z doi: 10.1007/s12591-019-00457-z |
[24] | P. Panday, N. Pal, S. Samanta, P. Tryjanowski, J. Chattopadhyay, Dynamics of a stage-structured predator-prey model: cost and benefit of fear-induced group defense, J. Theor. Biol., 528 (2021), 110846. https://doi.org/10.1016/j.jtbi.2021.110846 doi: 10.1016/j.jtbi.2021.110846 |
[25] | D. T. Blumstein, The Nature of Fear: Survival Lessons from the Wild, Harvard University Press, 2020. |
[26] | S. Mondal, G. P. Samanta, Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator, Phys. A., 534 (2019), 122301. https://doi.org/10.1016/j.physa.2019.122301 doi: 10.1016/j.physa.2019.122301 |
[27] | S. Saha, A. Maiti, G. P. Samanta, A michaelis-menten predator-prey model with strong allee effect and disease in prey incorporating prey refuge, Int. J. Bifurcation Chaos., 28 (2018), 1850073. https://doi.org/10.1142/S0218127418500736 doi: 10.1142/S0218127418500736 |
[28] | S. Saha, G. P. Samanta, Analysis of a predator-prey model with herd behaviour and disease in prey incorporating prey refuge, Int. J. Biomath., 12 (2019), 1950007. https://doi.org/10.1142/S1793524519500074 doi: 10.1142/S1793524519500074 |
[29] | M. Das, A. Maity, G. P. Samanta, Stability analysis of a prey-predator fractional order model incorporating prey refuge, Ecol. Genet. Genomics., 7–8 (2018), 33–46. http://doi.org/10.1016/j.egg.2018.05.001 doi: 10.1016/j.egg.2018.05.001 |
[30] | H. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator–prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8 |
[31] | T. K. Kar, Stability analysis of a predator-prey model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2006), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006 |
[32] | Y. X. Xia, S. L. Yuan, Survival analysis of a stochastic predator-prey model with prey refuge and fear effect, J. BBiol. Dynam., 14 (2020), 871–892. https://doi.org/10.1080/17513758.2020.1853832 doi: 10.1080/17513758.2020.1853832 |
[33] | S. Mondal, A. Maiti, G. P. Samanta, Effects of fear and additional food in a delayed predator-prey model, Biophys. Rev. Lett., 13 (2018), 157177. https://doi.org/10.1142/S1793048018500091 doi: 10.1142/S1793048018500091 |
[34] | Moorland Working Group, Diversionary feeding of hen harriers on grouse moors a practical guide Report, Scottish Natural heritage, Inverness, 1999. |
[35] | M. J. Crawley, Plant Ecology, Wiley, New York, 1997. |
[36] | A. Das, G. P. Samanta, Modeling the fear effect on a stochastic prey-predator system with additional food for the predator, J. Phys. A Math. Theor., 51 (2018), 465601. https://doi.org/10.1088/1751-8121/aae4c6 doi: 10.1088/1751-8121/aae4c6 |
[37] | G. R. Huxel, K. McCann, G. A. Polis, Effects of partitioning allochthonous and autochthonous resources on food web stability, Ecol. Res., 17 (2002), 419–432. https://doi.org/10.1046/j.1440-1703.2002.00501.x doi: 10.1046/j.1440-1703.2002.00501.x |
[38] | P. D. N. Srinivasu, B. S. R. V. Prasad, Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation, Bull. Math. Biol., 73 (2011), 2249–2276. https://doi.org/10.1007/s11538-010-9601-9 doi: 10.1007/s11538-010-9601-9 |
[39] | L. Perko, Differential Equations and Dynamical Systems, Springer, 1996. |
[40] | V. B. Kolmanovskii, A. D. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publishers, Boston, 1992. |
[41] | A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, B. Sautois, New features of the software matcont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147–175. https://doi.org/10.1080/13873950701742754 doi: 10.1080/13873950701742754 |