Research article Special Issues

Modeling the epidemic trend of middle eastern respiratory syndrome coronavirus with optimal control


  • Received: 23 December 2022 Revised: 04 April 2023 Accepted: 22 April 2023 Published: 09 May 2023
  • Since the outbreak of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 in the Middle East, we have proposed a deterministic theoretical model to understand its transmission between individuals and MERS-CoV reservoirs such as camels. We aim to calculate the basic reproduction number ($ \mathcal{R}_{0} $) of the model to examine its airborne transmission. By applying stability theory, we can analyze and visualize the local and global features of the model to determine its stability. We also study the sensitivity of $ \mathcal{R}_{0} $ to determine the impact of each parameter on the transmission of the disease. Our model is designed with optimal control in mind to minimize the number of infected individuals while keeping intervention costs low. The model includes time-dependent control variables such as supportive care, the use of surgical masks, government campaigns promoting the importance of masks, and treatment. To support our analytical work, we present numerical simulation results for the proposed model.

    Citation: Bibi Fatima, Mehmet Yavuz, Mati ur Rahman, Fuad S. Al-Duais. Modeling the epidemic trend of middle eastern respiratory syndrome coronavirus with optimal control[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 11847-11874. doi: 10.3934/mbe.2023527

    Related Papers:

  • Since the outbreak of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 in the Middle East, we have proposed a deterministic theoretical model to understand its transmission between individuals and MERS-CoV reservoirs such as camels. We aim to calculate the basic reproduction number ($ \mathcal{R}_{0} $) of the model to examine its airborne transmission. By applying stability theory, we can analyze and visualize the local and global features of the model to determine its stability. We also study the sensitivity of $ \mathcal{R}_{0} $ to determine the impact of each parameter on the transmission of the disease. Our model is designed with optimal control in mind to minimize the number of infected individuals while keeping intervention costs low. The model includes time-dependent control variables such as supportive care, the use of surgical masks, government campaigns promoting the importance of masks, and treatment. To support our analytical work, we present numerical simulation results for the proposed model.



    加载中


    [1] E. I. Azhar, S. A. El-Kafrawy, S. A. Farraj, A. M. Hassan, M. S. Al-Saeed, A. M. Hashem, et al., Evidence for camel-to-human transmission of MERS coronavirus, New Eng. J. Med., 370 (2014), 2499–2505. https://doi.org/10.1056/NEJMoa1401505 doi: 10.1056/NEJMoa1401505
    [2] World Health Organization, Novel Coronavirus—China, Disease outbreak news: Update. Available from: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.
    [3] J. A. Al-Tawfiq, K. Hinedi, J. Ghandour, H. Khairalla, S. Musleh, A. Ujayli, et al., Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients, Clin. Infect. Dis., 59 (2014), 160–165.
    [4] Y. M. Arabi, A. A. Arifi, H. H. Balkhy, H. Najm, A. S. Aldawood, A. Ghabashi, et al., Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection, Ann. Intern. Med., 160 (2014), 389–397. https://doi.org/10.7326/M13-2486 doi: 10.7326/M13-2486
    [5] I. U. Haq, M. Yavuz, N. Ali, A. Akgül, A SARS-CoV-2 fractional-order mathematical model via the modified Euler method, Math. Comput. Appl., 27 (2022), 82. https://doi.org/10.3390/mca27050082 doi: 10.3390/mca27050082
    [6] H. R. Thieme, Modelling in Population Biology, Princeton University Press, Princeton, 2003.
    [7] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics, part 1, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [8] Y. Kim, S. Lee, C. Chu, S. Choe, S. Hong, Y. Shin, The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea, Osong Public Health Res. Perspect., 7 (2016), 49–55.
    [9] A. N. Alagaili, T. Briese, N. Mishra, V. Kapoor, S. C. Sameroff, Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia, MBio, 5 (2014), e01002-–e01014. https://doi.org/10.1128/mBio.01002-14 doi: 10.1128/mBio.01002-14
    [10] A. Assiri, J. A. Al-Tawfiq, A. A. Al-Rabeeah, F. A. Al-Rabiah, S. Al-Hajjar, A. Al-Barrak, et al., Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study, Lancet Infec. Dis., 13 (2013), 752–761.
    [11] A. Zumla, D. S. Hui, S. Perlman, Middle East respiratory syndrome, Lancet, 386 (9997), 995–1007. https://doi.org/10.1016/S0140-6736(15)60454-8 doi: 10.1016/S0140-6736(15)60454-8
    [12] C. Poletto, C. Pelat, D. Levy-Bruhl, Y. Yazdanpanah, P. Y. Boelle, V. Colizza, Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach, Eurosurveillance, 19 (2014), 20824.
    [13] K. Wang, W. Hao, H. Zhao, Aggregation and classification of spatial dynamics of vector-borne disease in advective heterogeneous environment, J. Differ. Equations, 343 (2023), 285–331. https://doi.org/10.1016/j.jde.2022.10.013 doi: 10.1016/j.jde.2022.10.013
    [14] X. Ma, G. Q. Sun, Z. H. Wang, Y. M. Chu, Z. Jin, L. B. Li, Transmission dynamics of brucellosis in Jilin province, China: Effects of different control measures, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106702. https://doi.org/10.1016/j.cnsns.2022.106702 doi: 10.1016/j.cnsns.2022.106702
    [15] G. Q. Sun, H. T. Zhang, L. L. Chang, Z. Jin, H. Wang, S. Ruan, On the dynamics of a diffusive foot-and-mouth disease model with nonlocal infections, SIAM J. Appl. Math., 82 (2022), 1587–1610. https://doi.org/10.1137/21M1412992 doi: 10.1137/21M1412992
    [16] M. Rahman, M. Arfan, D. Baleanu, Piecewise fractional analysis of the migration effect in plant-pathogen-herbivore interactions, Bull. Biomath., 1 (2023), 1–23.
    [17] B. Li, Z. Eskandari, Z. Avazzadeh, Dynamical behaviors of an SIR epidemic model with discrete time, Fractal Fractional, 6 (2022), 659. https://doi.org/10.3390/fractalfract6110659 doi: 10.3390/fractalfract6110659
    [18] F. Evirgen, E. Uçar, S. Uçar, N. Özdemir, Modelling Influenza A disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates, Math. Model. Numer. Simul. Appl., 3 (2023), 58–72.
    [19] A. G. C. Pérez, D. A. Oluyori, A model for COVID-19 and bacterial pneumonia coinfection with community-and hospital-acquired infections, Math. Model. Numer. Simul. Appl., 2 (2022), 197–210.
    [20] X. Jiang, J. Li, B. Li, W. Yin, L. Sun, X. Chen, Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system, Int. J. Nonlinear Sci. Numer. Simul., 3 (2023), 58–73.
    [21] B. Li, Z. Eskandari, Z. Avazzadeh, Strong resonance bifurcations for a discrete-time prey–predator model, J. Appl. Math. Comput., 2023 (2023), 1–18. https://doi.org/10.1051/mmnp/2022036 doi: 10.1051/mmnp/2022036
    [22] H. Joshi, M. Yavuz, S. Townley, B. K. Jha, Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate, Phys. Scr., 98 (2023), 045216. https://doi.org/10.1088/1402-4896/acbe7a doi: 10.1088/1402-4896/acbe7a
    [23] M. Yavuz, F. Özköse, M. Susam, M. Kalidass, A new modeling of fractional-order and sensitivity analysis for Hepatitis-B disease with real data, Fractal Fractional, 7 (2023), 165. https://doi.org/10.3390/fractalfract7020165 doi: 10.3390/fractalfract7020165
    [24] P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401.
    [25] F. Özköse, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos Solitons Fractals, 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954 doi: 10.1016/j.chaos.2022.111954
    [26] H. Joshi, M. Yavuz, I. Stamova, Analysis of the disturbance effect in intracellular calcium dynamic on fibroblast cells with an exponential kernel law, Bull. Biomath., 1 (2023), 24–39.
    [27] U. K. Nwajeri, A. O. Atede, A. B. Panle, K. U. Egeonu, Malaria and cholera co-dynamic model analysis furnished with fractional-order differential equations, Math. Model. Numer. Simul. Appl., 3 (2023), 33–57.
    [28] A. Moustafid, Set-valued analysis of anti-angiogenic therapy and radiotherapy, Math. Model. Numer. Simul. Appl., 2 (2022), 187–196.
    [29] V. Raghavendra, P. Veeresha, Analysing the market for digital payments in India using the predator-prey model, Int. J. Optim. Control Theor. Appl., 13 (2023), 104–115. https://doi.org/10.11121/ijocta.2023.1306 doi: 10.11121/ijocta.2023.1306
    [30] S. Pak, Solitary wave solutions for the RLW equation by He's semi inverse method, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 505–508.
    [31] G. F. Webb, Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology, Springer, Berlin, Heidelberg, 2008.
    [32] H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 69.
    [33] P. V. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [34] T. Khan, Z. Ullah, N. Ali, G. Zaman, Modeling and control of the hepatitis B virus spreading using an epidemic model, Chaos Solitons Fractals, 124 (2019), 1–9. https://doi.org/10.1016/j.chaos.2019.04.033 doi: 10.1016/j.chaos.2019.04.033
    [35] T. Khan, G. Zaman, M. I. Chohan, The transmission dynamic of different hepatitis B-infected individuals with the effect of hospitalization, J. Biol. Dyn., 12 (2018), 611–631. https://doi.org/10.1080/17513758.2018.1500649 doi: 10.1080/17513758.2018.1500649
    [36] J. P. LaSalle, The Stability of Dynamical System SIAM, Philadelphia, PA, 1976. https://doi.org/10.21236/ADA031020
    [37] J. P. LaSalle, Stability of nonautonomous system, in Brown University Providence Ri-LEFSCHETZ Center for Dynamical Systems, (1976), 83–90. https://doi.org/10.1016/0362-546X(76)90011-0
    [38] T. Zhang, K. Wang, X. Zhang, Modeling and analyzing the transmission dynamics of HBV epidemic in Xinjiang, China, PloS One, 10 (2015), e0138765. https://doi.org/10.1371/journal.pone.0138765 doi: 10.1371/journal.pone.0138765
    [39] M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal., 27 (1996), 1070–1083. https://doi.org/10.1137/S0036141094266449 doi: 10.1137/S0036141094266449
    [40] C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. A. Yakubu, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, Springer Science Business Media, 2002.
    [41] R. H. Martin, Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl, 45 (1974), 432–454. https://doi.org/10.1016/0022-247X(74)90084-5 doi: 10.1016/0022-247X(74)90084-5
    [42] T. Khan, G. Zaman, M. I. Chohan, The transmission dynamic and optimal control of acute and chronic hepatitis B, J. Biol. Dyn., 11 (2017), 172–189. https://doi.org/10.1080/17513758.2016.1256441 doi: 10.1080/17513758.2016.1256441
    [43] D. Aldila, H. Padma, K. Khotimah, B. Desjwiandra, H. Tasman, Analyzing the MERS disease control strategy through an optimal control problem, Int. J. Appl. Math. Comput. Sci., 28 (2018), 169–184.
    [44] M. Kamien, N. Schwartz, Dynamic optimization, vol. 31 of advanced textbooks in economics, North Holl Amsterdam Neth., 1991.
    [45] S. M. Aseev, A. V. Kryazhimskii, The Pontryagin maximum principle and optimal economic growth problems, in Proceedings of the Steklov Institute of Mathematics, 257 (2007).
    [46] A. A. Lashari, G. Zaman, Global dynamics of vector-borne diseases with horizontal transmission in host population, Comput. Math. Appl., 61 (2001), 745–754. https://doi.org/10.1111/0033-3352.00148 doi: 10.1111/0033-3352.00148
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1783) PDF downloads(91) Cited by(20)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog