Research article Special Issues

Adaptive predefined-time prescribed performance control for spacecraft systems


  • Received: 28 October 2022 Revised: 14 December 2022 Accepted: 02 January 2023 Published: 13 January 2023
  • The high-accuracy attitude maneuvering problem for spacecraft systems is investigated. A prescribed performance function and a shifting function are first employed to ensure the predefined-time stability of attitude errors and eliminate the constraints on tracking errors at the incipient stage. Subsequently, a novel predefined-time control scheme is developed by combining prescribed performance control and backstepping control procedures. Radial basis function neural network and minimum learning parameter techniques are introduced to model the function of lumped uncertainty including inertial uncertainties, actuator faults and virtual control law derivatives. According to the rigorous stability analysis, the preset tracking precision can be achieved within a predefined time and the fixed-time boundedness of all closed-loop signals is established. Finally, the efficacy of the propounded control scheme is manifested through numerical simulation results.

    Citation: Yuhan Su, Shaoping Shen. Adaptive predefined-time prescribed performance control for spacecraft systems[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5921-5948. doi: 10.3934/mbe.2023256

    Related Papers:

  • The high-accuracy attitude maneuvering problem for spacecraft systems is investigated. A prescribed performance function and a shifting function are first employed to ensure the predefined-time stability of attitude errors and eliminate the constraints on tracking errors at the incipient stage. Subsequently, a novel predefined-time control scheme is developed by combining prescribed performance control and backstepping control procedures. Radial basis function neural network and minimum learning parameter techniques are introduced to model the function of lumped uncertainty including inertial uncertainties, actuator faults and virtual control law derivatives. According to the rigorous stability analysis, the preset tracking precision can be achieved within a predefined time and the fixed-time boundedness of all closed-loop signals is established. Finally, the efficacy of the propounded control scheme is manifested through numerical simulation results.



    加载中


    [1] K. Xia, Y. Eun, T. Lee, S. Y. Park, Integrated adaptive control for spacecraft attitude and orbit tracking using disturbance observer, Int. J. Aeronaut. Space Sci., 22 (2021), 936–947. https://doi.org/10.1007/s42405-021-00359-x doi: 10.1007/s42405-021-00359-x
    [2] X. Chen, L. Zhao, Observer-based finite-time attitude containment control of multiple spacecraft systems, IEEE Trans. Circuits Syst. II Express Briefs, 68 (2020), 1273–1277. https://doi.org/10.1109/TCSII.2020.3024941 doi: 10.1109/TCSII.2020.3024941
    [3] R. Nadafi, M. Kabganian, Robust nonlinear attitude tracking control of an underactuated spacecraft under saturation and time-varying uncertainties, Eur. J. Control, 63 (2022), 133–142. https://doi.org/10.1016/j.ejcon.2021.09.003 doi: 10.1016/j.ejcon.2021.09.003
    [4] Q. Hu, B. Li, M. I. Friswell, Observer-based fault diagnosis incorporating online control allocation for spacecraft attitude stabilization under actuator failures, J. Astronaut. Sci., 60 (2013), 211–236. https://doi.org/10.1007/s40295-014-0021-1 doi: 10.1007/s40295-014-0021-1
    [5] M. Z. Dai, B. Xiao, C. Zhang, J. Wu, Event-triggered policy to spacecraft attitude stabilization with actuator output nonlinearities, IEEE Trans. Circuits Syst. II Express Briefs, 68 (2021), 2855–2859. https://doi.org/10.1109/TCSII.2021.3056761 doi: 10.1109/TCSII.2021.3056761
    [6] Q. Liu, M. Liu, G. Duan, Adaptive fuzzy backstepping control for attitude stabilization of flexible spacecraft with signal quantization and actuator faults, Sci. China Inf. Sci., 64 (2021), 1–16. https://doi.org/10.1007/s11432-020-2949-5 doi: 10.1007/s11432-020-2949-5
    [7] S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358
    [8] Z. Xiong, X. Li, M. Ye, Q. Zhang, Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by lévy process with time-varying delay, Math. Biosci. Eng., 18 (2021), 8462–8498. https://doi.org/10.3934/mbe.2021419 doi: 10.3934/mbe.2021419
    [9] Y. Wang, B. Zhu, H. Zhang, W. X. Zheng, Functional observer-based finite-time adaptive ismc for continuous systems with unknown nonlinear function, Automatica, 125 (2021), 109468. https://doi.org/10.1016/j.automatica.2020.109468 doi: 10.1016/j.automatica.2020.109468
    [10] F. Wang, B. Chen, Y. Sun, Y. Gao, C. Lin, Finite-time fuzzy control of stochastic nonlinear systems, IEEE Trans. Cybern., 50 (2019), 2617–2626. https://doi.org/10.1109/TCYB.2019.2925573 doi: 10.1109/TCYB.2019.2925573
    [11] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [12] M. L. Zhuang, S. M. Song, Fixed-time coordinated attitude tracking control for spacecraft formation flying considering input amplitude constraint, Int. J. Control Autom. Syst., 20 (2022), 2129–2147. https://doi.org/10.1007/s12555-021-0366-8 doi: 10.1007/s12555-021-0366-8
    [13] S. M. Esmaeilzadeh, M. Golestani, A. Fekih, Adaptive attitude stabilization of flexible spacecraft with fast fixed-time convergence, Iran. J. Sci. Technol. Trans. Mech. Eng., 46 (2022), 195–208. https://doi.org/10.1007/s40997-020-00415-z doi: 10.1007/s40997-020-00415-z
    [14] S. Kang, P. X. Liu, H. Wang, Fixed-time adaptive fuzzy command filtering control for a class of uncertain nonlinear systems with input saturation and dead zone, Nonlinear Dyn., 110 (2022), 2401–2414. https://doi.org/10.1007/s11071-022-07731-w doi: 10.1007/s11071-022-07731-w
    [15] H. Yang, D. Ye, Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: An information classification mechanism, Inf. Sci., 459 (2018), 238–254. https://doi.org/10.1016/j.ins.2018.04.016 doi: 10.1016/j.ins.2018.04.016
    [16] L. Zhao, J. Yu, X. Chen, Neural-network-based adaptive finite-time output feedback control for spacecraft attitude tracking, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022), 1–8. https://doi.org/10.1109/TNNLS.2022.3144493 doi: 10.1109/TNNLS.2022.3144493
    [17] X. Liu, D. Tong, Q. Chen, W. Zhou, K. Liao, Observer-based adaptive nn tracking control for nonstrict-feedback systems with input saturation, Neural Process. Lett., 53 (2021), 3757–3781. https://doi.org/10.1007/s11063-021-10575-x doi: 10.1007/s11063-021-10575-x
    [18] E. Jiménez-Rodríguez, J. D. Sánchez-Torres, A. G. Loukianov, Predefined-time backstepping control for tracking a class of mechanical systems, IFAC-PapersOnLine, 50 (2017), 1680–1685. https://doi.org/10.1016/j.ifacol.2017.08.492 doi: 10.1016/j.ifacol.2017.08.492
    [19] S. Xie, Q. Chen, Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2021), 189–193. https://doi.org/10.1109/TCSII.2021.3078708 doi: 10.1109/TCSII.2021.3078708
    [20] J. Ni, L. Liu, Y. Tang, C. Liu, Predefined-time consensus tracking of second-order multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2550–2560. https://doi.org/10.1109/TSMC.2019.2916257 doi: 10.1109/TSMC.2019.2916257
    [21] E. Jiménez-Rodríguez, A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, A. G. Loukianov, A lyapunov-like characterization of predefined-time stability, IEEE Trans. Autom. Control, 65 (2020), 4922–4927. https://doi.org/10.1109/TAC.2020.2967555 doi: 10.1109/TAC.2020.2967555
    [22] C. P. Bechlioulis, G. A. Rovithakis, Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance, IEEE Trans. Autom. Control, 53 (2008), 2090–2099. https://doi.org/10.1109/TAC.2008.929402 doi: 10.1109/TAC.2008.929402
    [23] C. Wei, J. Luo, H. Dai, G. Duan, Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed performance, IEEE Trans. Cybern., 49 (2019), 4004–4016. https://doi.org/10.1109/TCYB.2018.2857400 doi: 10.1109/TCYB.2018.2857400
    [24] C. Zhang, G. Ma, Y. Sun, C. Li, Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression, Nonlinear Dyn., 96 (2019), 1909–1926. https://doi.org/10.1007/s11071-019-04894-x doi: 10.1007/s11071-019-04894-x
    [25] L. Zhang, S. Xu, X. Ju, N. Cui, Flexible satellite control via fixed-time prescribed performance control and fully adaptive component synthesis vibration suppression, Nonlinear Dyn., 100 (2020), 3413–3432. https://doi.org/10.1007/s11071-020-05662-y doi: 10.1007/s11071-020-05662-y
    [26] S. Gao, X. Liu, Y. Jing, G. M. Dimirovski, A novel finite-time prescribed performance control scheme for spacecraft attitude tracking, Aerosp. Sci. Technol., 118 (2021), 107044. https://doi.org/10.1016/j.ast.2021.107044 doi: 10.1016/j.ast.2021.107044
    [27] R. Chen, Z. Wang, W. Che, Adaptive sliding mode attitude-tracking control of spacecraft with prescribed time performance, Mathematics, 10 (2022), 401. https://doi.org/10.3390/math10030401 doi: 10.3390/math10030401
    [28] X. Bu, B. Jiang, H. Lei, Performance guaranteed finite-time non-affine control of waverider vehicles without function-approximation, IEEE Trans. Intell. Transp. Syst., 2022 (2022), 1–11. https://doi.org/10.1109/TITS.2022.3224424 doi: 10.1109/TITS.2022.3224424
    [29] X. Bu, B. Jiang, H. Lei, Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation, IEEE Trans. Aerosp. Electron. Syst., 58 (2022), 3538–3548. https://doi.org/10.1109/TAES.2022.3153429 doi: 10.1109/TAES.2022.3153429
    [30] X. Bu, Q. Qi, B. Jiang, A simplified finite-time fuzzy neural controller with prescribed performance applied to waverider aircraft, IEEE Trans. Fuzzy Syst., 30 (2022), 2529–2537. https://doi.org/10.1109/TFUZZ.2021.3089031 doi: 10.1109/TFUZZ.2021.3089031
    [31] C. Qian, W. Lin, Non-lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, Syst. Control Lett., 42 (2001), 185–200. https://doi.org/10.1016/S0167-6911(00)00089-X doi: 10.1016/S0167-6911(00)00089-X
    [32] Y. Sun, L. Zhang, Fixed-time adaptive fuzzy control for uncertain strict feedback switched systems, Inf. Sci., 546 (2021), 742–752. https://doi.org/10.1016/j.ins.2020.08.059 doi: 10.1016/j.ins.2020.08.059
    [33] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge university press, 1952.
    [34] B. Xiao, S. Yin, Velocity-free fault-tolerant and uncertainty attenuation control for a class of nonlinear systems, IEEE Trans. Ind. Electron., 63 (2016), 4400–4411. https://doi.org/10.1109/TIE.2016.2532284 doi: 10.1109/TIE.2016.2532284
    [35] M. Golestani, S. M. Esmaeilzadeh, S. Mobayen, Fixed-time control for high-precision attitude stabilization of flexible spacecraft, Eur. J. Control., 57 (2021), 222–231. https://doi.org/10.1016/j.ejcon.2020.05.006 doi: 10.1016/j.ejcon.2020.05.006
    [36] Q. Hu, B. Chi, M. R. Akella, Anti-unwinding attitude control of spacecraft with forbidden pointing constraints, J. Guid. Control Dyn., 42 (2019), 822–835. https://doi.org/10.2514/1.G003606 doi: 10.2514/1.G003606
    [37] H. Sai, Z. Xu, C. Xia, X. Sun, Approximate continuous fixed-time terminal sliding mode control with prescribed performance for uncertain robotic manipulators, Nonlinear Dyn., 110 (2022), 431–448. https://doi.org/10.1007/s11071-022-07650-w doi: 10.1007/s11071-022-07650-w
    [38] M. Golestani, S. M. Esmaeilzadeh, B. Xiao, Fault-tolerant attitude control for flexible spacecraft subject to input and state constraint, Trans. Inst. Meas. Control, 42 (2020), 2660–2674. https://doi.org/10.1177/0142331220923780 doi: 10.1177/0142331220923780
    [39] P. Yang, Y. Su, Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators, IEEE/ASME Trans. Mechatron., 27 (2022), 3275–3285. https://doi.org/10.1109/TMECH.2021.3107150 doi: 10.1109/TMECH.2021.3107150
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1974) PDF downloads(203) Cited by(3)

Article outline

Figures and Tables

Figures(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog