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Abstract: Since the outbreak of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)
in 2012 in the Middle East, we have proposed a deterministic theoretical model to understand its
transmission between individuals and MERS-CoV reservoirs such as camels. We aim to calculate
the basic reproduction number (R0) of the model to examine its airborne transmission. By applying
stability theory, we can analyze and visualize the local and global features of the model to determine
its stability. We also study the sensitivity of R0 to determine the impact of each parameter on the
transmission of the disease. Our model is designed with optimal control in mind to minimize the
number of infected individuals while keeping intervention costs low. The model includes time-
dependent control variables such as supportive care, the use of surgical masks, government campaigns
promoting the importance of masks, and treatment. To support our analytical work, we present
numerical simulation results for the proposed model.

Keywords: epidemic model; MERS-CoV; next generation matrix technique; stability analysis;
sensitivity analysis; optimal control; numerical simulations

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023527


11848

1. Introduction

The coronavirus family comprises a diverse range of viruses that can be found in different animal
species, including cats, camels, bats, and cattle. In rare cases, animal coronaviruses can infect humans
and spread among them, as has been seen with SARS, MERS, and the current COVID-19 pandemic [1,
2]. Since it first emerged in Saudi Arabia in 2012, the Middle East respiratory syndrome (MERS-CoV)
has claimed the lives of 1791 individuals, according to various sources [3, 4]. Meanwhile, the 2003
outbreak of severe acute respiratory syndrome (SARS) resulted in the deaths of 774 individuals [5].

Camels have been identified as the primary carriers of the MERS-CoV virus according to scientific
research. Human-to-human transmission is the leading cause of MERS-CoV cases, responsible for 75
to 88 percent of all cases, while the remaining cases are caused by transmission from camels to humans.
It is important to note that the virus can spread through respiratory discharge from infected individuals,
such as coughing. In addition, close contact, including caring for or living with an infected person, can
also result in the transmission of the virus. Since the discovery of MERS-CoV in April 2012, there
have been a total of 536 reported cases, with 145 resulting in death. This gives a case fatality rate of 27
percent. The majority of cases have been recorded in the Middle East, specifically in countries such
as Saudi Arabia, Jordan, and Qatar, as noted in [6]. It is crucial to maintain awareness of this disease
and take appropriate precautions, particularly in areas where the virus has been reported, in order to
prevent its spread.

The transmission of MERS-CoV between camels and humans is influenced by various
environmental factors. The Hajj and Umrah pilgrimages are significant contributors to the spread of
the virus, as these events attract more than 10 million individuals from different parts of the world to
Saudi Arabia. Mathematical modeling has proven to be a valuable tool for understanding the
outbreak, developing effective control strategies, and exploring the immune response to MERS-CoV.
Several modeling studies have been conducted to investigate the MERS-CoV outbreak, as highlighted
in [7–9]. One of the most extensive MERS-CoV epidemics was documented by Assire et al. in [10],
who provided evidence suggesting that the virus can be transmitted from person to person. The
Kingdom of Saudi Arabia (KSA) has reported the highest number of cases, with most of the cases
being recorded there. It is imperative to take appropriate measures to mitigate the spread of the virus,
especially in areas that have reported cases, in order to prevent further outbreaks. The consumption of
unpasteurized camel milk, which is a common practice in KSA, is a potential cause of
camel-to-human transmission of MERS-CoV, as suggested by [11]. Furthermore, Poletto et al. have
proposed that the movement and mingling of individuals during the Hajj and Umrah events may play
a significant role in the spread of MERS-CoV, as noted in [12]. Other activities, such as camel racing
and the opening and closing of camel markets, have also been identified as potential contributors to
the transmission of MERS-CoV. Several researchers have constructed mathematical models to study
various diseases and real-world problems, including MERS-CoV, as mentioned in [13–16]. These
models have proven to be useful in predicting the spread of the virus, designing effective control
strategies, and exploring the immune response to MERS-CoV. It is important to continue this research
in order to better understand the disease and limit its impact on public health.

This study utilizes the next-generation matrix (NGM) approach to model the transmission and
spread of MERS-CoV between humans and camels. The researchers calculate the fundamental
reproductive number and determine the local stability of the model using the Routh-Hurwitz (RH)
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criterion. Furthermore, the global stability of the model is assessed through the Castillo-Chavez and
Lyapunov type function methods, and the stability conditions are determined in terms of R0. The
parameters that impact the transmission of the disease are analyzed through sensitivity analysis of the
fundamental reproductive numbers. On the other hand, there have been numerous effective studies
have been conducted related to the modelling of infectious diseases [17–19], their stability
analyses [20–22], bifurcation and chaos properties [23–30].

In addition, the study employs an optimal control analysis to minimize the number of infected
individuals and increase the number of cured individuals in the community. By identifying the factors
that contribute to the spread of MERS-CoV, this research can inform effective control strategies and
minimize the impact of the disease on public health.

2. Formulation of the model

In this section, we introduce a transmission model for MERS-CoV that accounts for transmission
between people-camel and human-human. The model is formulated using a set of differential equations
that describe the dynamics of six distinct population groups. These groups include the susceptible
population (S(t)), the exposed population (E(t)), the symptomatic and infectious population (I(t)), the
asymptomatic but infectious population (A(t)), the hospitalized population (H(t)), and the recovered
population (R(t)). To simplify the modeling process, we make the following four assumptions.

a. All the parameters and variables are non-negative.

b. Four transmission routes are considered for the disease transmission, which is from individuals
symptomatic to asymptomatic, from which to hospitalize, and then reservoir, which are camels
for MERS-CoV.

c. The rate of death because of MERS-CoV is considered in the compartment that contains the
infection.

d. We suppose two types of recoveries, the first one is natural and the second one is with treatment.

Utilizing the above-considered assumptions, we obtain the non-linear system of ODEs as,

Ṡ(t) = ϕ − η1I(t)S(t) − η2ϕA(t)S(t) − η3qH(t)S(t) − η4C(t)S(t) −ϖ0S(t),
Ė(t) = η1I(t)S(t) + η2ϕA(t)S(t) + η3qH(t)S(t) + η4C(t)S(t) − (ξ +ϖ0)E(t),
İ(t) = ξρE − (σ1 + σ2)I − I(t)(ϖ0 +ϖ1),
Ȧ(t) = (1 − ρ)ξE(t) − (ν +ϖ0)A(t),
Ḣ(t) = σ1I(t) + νA(t) − (σ3 +ϖ0)H(t),
Ṙ(t) = σ2I(t) + σ3H(t) −ϖ0R(t),
Ċ(t) = ψ1I(t) + ψ2A(t) − θC(t),

(2.1)

with the initial conditions

Ics = {S(0), I(0), E(0), H(0), A(0), C(0),R(0)} ≥ 0. (2.2)
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Table 1. The description of control parameters in the considered model (2.1).

Parameter Description
ϕ New born ratio
η1, η2, η3, η4 Transmission rates
ξ Progression towards Infected I(t)
σ1 Hospitalization rate (symtomatic)
σ2 Recovery rate (without hospitalization)
σ3 Recovery rate (hospitalized)
θ Lifetime (Camels)
ψ1 Virus transmission rate from C(t) (by symptomatic)
ψ2 Virus transmission rate from C(t) (by asymptomatic)
ν The rate at which asymptomatic individuals become hospitalized
ϖ0 The natural death rate
ϖ1 The death rate due to MERS-CoV
ρ The rate at which exposed individuals become infected

3. Model well-posedness

Consider, Np(t) which represents the total population of humans in such a manner that Np(t) =
E(t) + A(t) + S(t) + I(t) + R(t) + H(t), then Np(t) is bounded with lower bound to be 0 and the upper-
bound ϕ

ϖ0
, i.e., 0 ≤ Np(t) ≤ ϕ

ϖ0
.

Using this fact, we present the following theorem:

Theorem 1. If Np(t) represents the number of human and 0 ≤ Np(t) ≤ ϕ

ϖ0
and Np(t) ≤ ϕ

ϖ0
, then

suggested model (2.1) is well defined in the region as follows:

ψh =

{
(S, I,E,H,A,R,C ∈ R7

+, where Np(t) ≤
ϕ

ϖ0
,C ≤

(ψ1 + ψ2)ϕ
ϖ0

}
.

Let us adopt B as Banach space, and positive u = t+, so

B =ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u), (3.1)

where the norm on the space B is supposed to be as ∥Π∥ =
∑7

i=1 ∥Π j∥ = (Π1,Π2,Π3,Π4,Π5,Π6,Π7) ∈
B.

Further, B+ represents cone(+ive) of ϖ1(0, u), so from Eq (3.1), B+ is given as

B =ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u) ×ϖ1(0, u).

Hence the state space of system (2.1) yields:

∆ =

{
S, I,E,H,A,C,R ∈ B+ ∋ 0 ≤ Np(t) ≤

ϕ

ϖ0
,

0 < S(t) + H(t) + A(t) + R(t) + I(t) ≤
ϕ

ϖ0
,C ≤

(ψ1 + ψ2)ϕ
ϖ0

}
.
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We suppose an operator which is linear as L and vector ψ = (S, I,A,E,H,C,R), implies that Lψ =
(Li)T , here i = 1, 2, . . . , 7 where

L1 = (−
dS
dt
−ϖ0S, 0, 0, 0, 0, 0, 0),

L2 = (0,−
dE
dt
− (ξ +ϖ0), 0, 0, 0, 0, 0),

L3 = (0, ξρ,−
dI
dt
− (σ1 + σ2 +ϖ0 +ϖ1), 0, 0, 0, 0),

L4 = (0, ξ(1 − ρ),−
dA
dt
− (ν +ϖ0)A, 0, 0, 0, 0),

L5 = (0, 0,σ1, ν,−
dH
dt
− (σ3 +ϖ0)H, 0, 0),

L6 = (0, 0,σ2, 0,σ3,−
dR
dt
−ϖ0R, 0),

L7 = (0, 0, ψ1, ψ2, 0, 0,−
dC
dt
− θ),

and domainD(L) is

D(L) =
{
ϕ ∈ B : ψ ∈ LC[0, u), ϕ(0) = Ics

}
. Here, LC[0, u) represent the set containing

continuous functions which is defined on the [0, u). Consider O is the nonlinear operator, that is
O : B→ B defined as,

O(ψ) =



ϕ − η1IS − η2ϕAS − η3qHS − η4CS
η1IS + η2ϕAS + η3qHS + η4CS

0
0
0
0
0


. (3.2)

Suppose V(t) = (S(t), I(t),H(t),E(t),A(t),R(t),C(t)) then the suggested system can be written as

dv
dt
= L(V(t)) + O(V(t)),V(0) ∈ B,

where V0 = (Ics)T . Utilizing the results in [31, 32], we present the existence of the system’s (3.2)
solution, so we define following theorem:

Theorem 2. For each V0 ∈ B+, there arises an interval (maximal) [0, t0), and unique continuous
solution V(t,V0), in such a way that,

V(t) = V(0)eLt +

∫
eL(t−r)O(V(σ)).

Theorem 3. The suggested system (2.1) is invariant (positively) subjected to the non-negative R7+.
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Proof. Considerψ and h1 = (ξ+ϖ0), h2 = (σ1+σ2+ϖ0+ϖ1), h3 = (ν+ϖ0), h4 = (σ1+ν), h5 = (θϖ0),

dϕ
dt
= Lϕ + D.

L =



−ϖ0 0 0 0 0 0
0 −h1 0 0 0 0
0 ξρ −h2 0 0 0
0 ξ(1 − ρ) 0 −h3 0 0
0 0 σ2 ν −h4 0
0 0 ψ1 ψ2 0 −h5


, D =



ϕ

0
0
0
0
0


. (3.3)

It could be noted from Eq (3.3), matrix D is positive, while the off-diagonal of L are non-negative, so
the properties of Metzler type matrix holds. Thus the suggested system is invariant in R7. □

Theorem 4. We assume a positive initial population value for the problem specified in Eq (2.2) and, if
the solutions to the model in Eq (2.1) exist, they will be positive for all u.

Proof. Let us consider the first equation

dS
dt
= ϕ − η1I(t)S(t) − η2ϕA(t)S(t) − η3qH(t)S(t) − η4C(t)S(t) −ϖ0S(t). (3.4)

By constant formula of alternation, we obtain the solution (3.4),

S(t) = S(0) exp[−dt −
∫

(η1I(t)S(t) − η2ϕA(t)S(t) − η3qH(t)S(t) − η4C(t)S(t))]dx

+ ϕ exp[−dt −
∫

(η1I(t)S(t) − η2ϕA(t)S(t) − η3qH(t)S(t) − η4C(t)S(t))]dx

× [dt +
∫

(η1I(t)S(t) + η2ϕA(t)S(t) + η3qH(t)S(t) + η4C(t)S(t))]dx.

□

S(t) > 0, in the same pattern one can present that, the remaining equations in (2.1) are positive.

4. Stability analysis

The main focus of our study is to examine the mathematical and biological plausibility of the
system described in Eq (2.1). To achieve this, we carry out a qualitative analysis of the system
dynamics. Initially, we compute the threshold parameter R0, which is commonly referred to as the
basic reproduction number. This metric allows us to evaluate the inherent capacity of the disease to
spread, and determine whether or not an epidemic will persist or eventually fade out. Additionally, we
investigate the equilibria of the system and discuss the factors that lead to system stability.
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4.1. Equilibria and basic reproductive number

In this study, we have performed a qualitative analysis of the suggested system in order to identify
the conditions under which it remains stable. To achieve this, we have calculated the equilibria of the
mathematical model described in Eq (2.1).

One of the most important equilibrium points for this system is the disease-free equilibrium (DFE),
which represents the state of the system when no disease is present. In order to determine the DFE
point for the system, we equate the right-hand side of the equations to zero, with the exception of the
susceptible class S, which we set to its initial value S0. By doing so, we are able to obtain the DFE
point, which we denote as D0. This point represents an important baseline for the system, against
which we can compare the behavior of the system in the presence of disease.

Overall, our qualitative analysis of the suggested system has allowed us to gain a deeper
understanding of its behavior under various conditions, including the DFE point which is a key
reference point for the system.

D0 =

(
ϕ

ϖ0
, 0

)
.

We utilize linear stability to study the dynamics of the DFE point and calculate the condition if the
equilibrium point turns towards stability and the model becomes under control.

The endemic equilibrium (EE) point is expressed by D1 = (S∗,E∗, I∗,A∗,H∗,R∗,C∗), and it occurs
in the presence of disease

S∗ =
ϕ(ν +ϖ0)ξρ + (σ3 +ϖ0)Q

((η1 + ν(1 − ρ)(σ1 + σ2 +ϖ0))ϖ2)
,

E∗ =
(σ1 + σ2 +ϖ0)(Q1)

(ξρ)(σ3 +ϖ0)Q
I∗,

I∗ =
ξ(1 − ρ)(σ1 + σ2 +ϖ0)(R0 − 1)

(ν +ϖ0)νρ
,

A∗ =
η2ϕξ(1 − ρ)(σ1 + σ2 +ϖ0)

(ν +ϖ0)ξρQ2
I∗,

H∗ =
σ1(ν +ϖ0)(1 − ρ)(R0 − 1)

(σ3 +ϖ0)(ξ +ϖ0)ν
I∗,

R∗ =
σ2(σ3 +ϖ0)(ν +ϖ0)ξ + σ1QI∗

(σ3 +ϖ0)(ν +ϖ0)
,

C∗ =
ψ1(ν +ϖ0)ξρI∗ + ψ2ξ(1 − ρ)(R0 − 1)

(ν +ϖ0)ξρ
.

The above equations present that, EE of the model (2.1) exists only, if R0 is greater than one. Thus we
state the following theorem.

Theorem 5. The EE pointD1 = (S∗,E∗, I∗,A∗,H∗,R∗,C∗) exists only in case R0 is greater than one.

The definition of (R0) can be described as the number of individuals who become infected after
being in contact with an infected individual in a population that is initially fully susceptible and without
any prior infections. If R0 > 1, it means that an epidemic is likely to occur, while if R0 < 1, an outbreak
is unlikely. The value of R0 is crucial in determining the strength of control measures that need to be
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implemented to contain the epidemic. In order to calculate R0 for the suggested model (2.1), we use
the method described in [33], we have

F =


0 η1S0 η2ϕS0 η3qS0 η4S0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

V =


b1 0 0 0 0
−ξρ b2 0 0 0
b3 0 b4 0 0
0 −σ1 −ν b5 0
0 −ψ1 −ψ2 0 ϖ2


,

where b1 = (ξ + ϖ0), b2 = (σ1 + σ2 + ϖ0 + ϖ1), b3 = −ξ(1 − ρ), b4 = (ν + ϖ0) b5 = (σ3 + ϖ0). R0

represents spectral-radius of NGM H̄ = FV−1.
So R0 for model (2.1) is

R0 =
η1ξρS0

Q
+

η2ϕS0(1 − ρ)
(ν +ϖ0)(ξ +ϖ0)

+
η3qS0Q1

(ν +ϖ0)(σ3 +ϖ0)Q
+

η4S0Q2

ϖ2(ν +ϖ0)Q
, (4.1)

where

Q = (ξ +ϖ0)(σ1 + σ2 +ϖ0 +ϖ1),
Q1 = ξϖ2

0ψ2 − ξσ
2
1ϖ2 − ξσ1σ2ϖ2 − ξσ1ϖ0ϖ2 − ξσ1ϖ1ϖ2 + ξσ1σ3ψ2 + ξσ2σ3ψ2 + ξσ1ϖ0ψ2 + ξσ2ϖ0ψ2

+ξσ3ϖ0ψ2 + ξσ3ϖ1ψ2 + ξϖ0ϖ1ψ2 + ρξσ
2
1ϖ2 + ξρϖ

2
0ψ2 + νρξσ3ψ1 + νρξϖ0

+ξρσ1σ2ϖ2 + ξρσ1ϖ1ϖ2 − ξρσ1σ3ψ2 − ξρσ2σ3ψ2 − ξρσ1ϖ0ψ2 + ξρσ3ϖ0ψ1

−ξρσ3ϖ0ψ2 − ξρσ3ϖ1ψ2 − ξρϖ0ϖ1ψ2,

Q2 = η4S0(ξψ2σ2 + ξψ2σ1 + ξψ2ϖ0 + νξρψ1 − ξρψ2σ2 − ξρψ2σ1 + ξρψ1ϖ0 − ξρψ2ϖ0).

The R0 of this model is composed of four components: transmission from individuals who are
symptomatic to those who are asymptomatic, transmission from asymptomatic individuals to those
who require hospitalization, transmission from hospitalization to the reservoir (camels for
MERS-CoV), and transmission from the reservoir to susceptible individuals. These four modes of
transmission collectively determine the risk of disease spread during this epidemic.

We study the dynamics of the proposed system (2.1) at DFE with aid of Theorem 6 as follows:

Theorem 6. The DFE point D0 = (S0, I0,E0,H0,A0,C0,R0), is asymptotically stable (locally) if R0 ≤

1.
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Proof. The Jacobian-matrix of the model at DFE point (D0, 0, 0, 0, 0, 0), is:

J0 =



−ϖ0 0 −η1S −η2ϕS −η3qS −η4S
0 −(ξ +ϖ0) η1S η2ϕS η3qS η4S
0 ξρ −(σ1 + σ2 +ϖ0 +ϖ1) 0 0 0
0 ξ(1 − ρ) 0 −(ν +ϖ0) 0 0
0 0 σ1 ν −(σ3 +ϖ0) 0
0 0 ψ1 ψ2 0 −ϖ2


. (4.2)

Characteristic equation of Jacobian matrix (4.2) is:

(ζ +ϖ0)(δ + ζ)(a1ζ
3 + ζ4 + a2ζ

2 + a4 + a3ζ) = 0, (4.3)

where

a1 = σ1 + σ2 + νϖ0 + σ3ϖ0ν,

a2 = σ2 +ϖ0 + ξϖ0σ1(1 − R0),
a3 = 2ϖ2

0 + σ1 + σ2 + σ3 +ϖ0 + νσ1 + σ3 + σ1ϖ0 + σ1ξ + ξ(1 − ρ) + ξν,
a4 = η3qSξ(1 − ρ) + ξνσ1 +ϖ0ξ(1 − ρ)σ1η3Sqϖ0νρ.

a1a3a2 > a2
2a4 + a2

2 if R0 < 1. By RH criteria the real parts of all the roots for characteristic polynomial
P(ζ) are negative, which shows that D0 is asymptotically local stable [34, 35]. □

4.2. Global stability analysis

The upcoming proof presents the global stability at DFE point D0. To analyze the global stability
analysis at F0 we introduce the Lyapunov function as follows.

Theorem 7. When the reproductive number R0 is less than 1, the disease-free equilibrium of the system
is globally and asymptotically stable.

Proof. Consider the Lyapunov function as

U(t) =
1
2

[(S − S0) + E(t) + I(t) + A(t) + H(t) + (C − C0)]2 + [d1S(t) + d2E(t) + d3A(t)

+d4H(t) + d5C(t)]. (4.4)

Here di for i = 1, 2, 3, 4, 5 are arbitrary constants, to be considered after differentiating Eq (4.4) , and
using (2.1), so we obtain

U′(t) = [(S − S0) + E + A + I + H + (C − C0)][ϕ −ϖ0Np(t) + ψ1I + ψ2A −ϖ2C
+QQ1(ϕ − (1 − R0) −ϖ0E(t))].

By considering the +ive parameter d1 = d2 = d3 = QQ1, d4 =
1

Q2
, d5 = ϖ0 and after the interpretation

we obtain

U
′(t) = −[(S − S0) + E + I + A + H + (C − C0)][ϖ0(ϕ − Np(t)) − ψ1Iψ2A −ϖ2W
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− QQ1(ϕ − (1 − R0) −ϖ0E(t))],

where
F0 =

bN
ϖ0

.

U′(t) is negative when S > S0 and R0 < 1 and U′(t) = 0 in case if S = S0 by the LaSalle’s invariance
principle [36, 37], and E = A = I = H = C = 0. Thus the DFE is globally asymptotic stable in F0. □

Theorem 8. If the threshold value is greater than 1, then the model (2.1) around EE pointD1 is locally
as well as globally asymptotically stable.

Proof. The linearization of model (2.1) around EE pointD1 is,

J0 =



A 0 −η1S∗ −η2ϕS∗ −η3qS∗ −η4S∗

A1 −(ξ +ϖ0) η1S∗ η2ϕS∗ η3qS∗ η4S∗

0 ξρ −A1 0 0 0
0 ξ(1 − ρ) 0 −(ν +ϖ0) 0 0
0 0 σ1 ν −A2 0
0 0 ψ1 ψ2 0 −ϖ2


,

where

A = η1I∗ + η2ϕ
∗A∗ + η3qH∗ + η4S∗,

A1 = (σ1 + σ2 +ϖ0),
A2 = (σ3 +ϖ0).

Using row transformation, we obtain:

J0 =



−A 0 −η1S∗ −η2ϕS∗ −η3qS∗ −η4S∗

0 −B −η1S∗ −η2ϕS∗ −η3qS∗ −η4S∗

0 0 −B1 −η2ϕS∗ −η3qS∗ −η4S∗

0 0 0 −B2 −η3qS∗ −η4S∗

0 0 0 0 −B3 0
0 0 0 0 0 −B4


, (4.5)

whereB = (ξ+ϖ0)(η1I∗+η2ϕA∗+η3qH∗+η4S∗),B1 = (σ1+σ2+ϖ0+ϖ1)(ξ+ϖ0)A∗,B2(ν+ϖ0)(ξ+
ϖ0)(R0 − 1)A∗,B3(σ1 + σ2 +ϖ0 +ϖ1)(σ3 +ϖ0), B4 = ϖ2ξρ(σ1 + σ2 +ϖ0 +ϖ1).

Ξ1 = −A < 0,Ξ2 = −B < 0,

Ξ3 = −B1 < 0,Ξ4 = −B2 < 0,

Ξ5 = −B3 < 0,Ξ6 = −B4 < 0.

When R0 > 1 the real parts of eigenvalues are negative, hence the model (2.1) is asymptotically locally
stable at D1 [38]. □
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Theorem 9. If R0 is greater than 1, then EE point D1 is globally asymptotically stable and is not stable
if less than 1.

Proof. In order to show the asymptotic global stability of the considered model (2.1) at EE point D1,
we utilize the Castillo-Chavez technique [39, 40]. Now let us take the sub-system of (2.1),

dS(t)
dt
= ϕ − η1IS − η2ϕAS − η3qHS − η4CS −ϖ0S,

dE(t)
dt
= η1IS + η2ϕAS + η3qHS + η4CS − (ξ +ϖ0)E,

dI(t)
dt
= ξρE − (σ1 + σ2)I − (ϖ0 +ϖ1)I. (4.6)

Consider P and P|2| be the linearized matrix and second-additive of the model which contains the first
three equations of system (2.1), which becomes

P =


−δ11 0 −δ13

δ21 δ22 δ23

0 0 −δ33

 , P|2| =


−(δ11 + δ22) δ23 −δ13

δ32 −(δ11 + δ33) δ12

−δ31 δ21 −(δ22 + δ33)

 . (4.7)

Let Q(χ) = Q(S(t),E(t), I(t)) = diag
{

S
E ,

S
E ,

S
E

}
, then Q−1(χ) = diag

{
E
S ,

E
S ,

E
S

}
, the derivative of Q f (χ)

w.r.t time, implies that

Q f (χ) = diag
{

Ṡ
E
− Ė

S
E2 ,

Ṡ
E
− Ė

S
E2 ,

Ṡ
E
−

SĖ
E2

}
. (4.8)

Now Q fQ
−1 = diag{K1,K1,K1} and QP|2|2 Q

−1 = P
|2|
2 , where K1 = ṠS − Ė

E A = Q fQ
−1 +QP

|2|
2 Q

−1, and

A =
(

A11 A12

A21 A22

)
, (4.9)

A11 =
Ṡ
S
−

Ė
E
− η1I − η2ϕA − η3qH − (ν +ϖ0),

A12 =
[
η1S η2S

]
, A21 =

[
ξρ

0

]
,

A22 =

[
u11 0
u21 u22

]
.

u11 =
Ṡ
S
−

Ė
E
− η1I − η2ϕA − η3qH −ϖ0,

u21 = η1I − η2ϕA − η3qH − η4C,

u22 =
Ṡ
S
−

Ė
E
− ξ − 2ϖ0.

Let (n1, n2, n3) be vector in R3 and ∥.∥ of (n1, n2, n3) presented by,

∥n1, n2, n3∥ = max{∥n1∥, ∥n2∥ + ∥n3∥}. (4.10)
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Here we consider the Lozinski-measure introduced in [41],
δ(A) ≤ sup{ϱ1, ϱ2} = sup{δ(A11) + ∥A12∥, δ(A22) + ∥A21∥}, where hi = δ(Aii) + ∥Ai j∥ for i = 1, 2 and
i , j,⇒

ϱ1 = δ(A11) + ∥A12∥, ϱ2 = δ(A22) + ∥A21∥, (4.11)

where δ(A11) = Ṡ
S − Ė

E − η1I − η2ϕA − η3qH − (ξ + ϖ0),
δ(A22) = max

{
Ṡ
S −

Ė
E − η1I − η2ϕA − η3qH −ϖ0, η1I − η2ϕA − η3qH − η4C

}
= Ṡ

S −
Ė
E − η1I − η2ϕA − η3qH − η4C}, ∥A12∥ = η1S and ∥A21∥ = max{ξρ, 0} = ξρ. Therefore ϱ1 and ϱ2

become, i.e, ϱ1 ≤
Ṡ
S − 2ϖ0 − ξρ and ϱ2 ≤

Ṡ
S − 2ϖ0 − ξ − min{σ1, νρ}, which presents

δ(A) ≤
{

Ṡ
S + σ1 − min{ξ,σ1} − 2ϖ0

}
. Hence δ(B) ≤ Ṡ

S − 2ϖ0. Integrating δ(A) in [0, t] and also
considering limt→∞, we have

lim
t→∞

sup sup
1
t

∫ t

0
δ(A)dt < −2ϖ0, (4.12)

k̄ = lim
t→∞

sup sup
1
t

∫ t

0
δ(A)dt < 0.

So that the system of the first three compartments of model (2.1) is globally asymptotically stable. □

4.3. Sensitivity analysis

To find the relation of parameters to R0 in the disease transmission we use the formula ∆R0
h =

∂R0
∂k

h
R0

where h is the parameter, introduced by [34, 35]. This makes it easy to identify the variables that have
a substantial impact on reproduction number, using the above formula we have

∆R0
η1
=
∂R0

∂η1

η1

R0
= 0.60143 > 0, ∆R0

η2
=
∂R0

∂η2

η2

R0
= 0.0020302 > 0,

∆R0
η3
=
∂R0

∂η3

η3

R0
= 0.083624 > 0, ∆R0

η4
=
∂R0

∂η4

η4

R0
= 0.90820 > 0,

∆
R0
ξ =

∂R0

∂ξ

ξ

R0
= 0.130434 > 0, ∆R0

ϖ2
=
∂R0

∂ϖ2

ϖ2

R0
= −1.002654 < 0,

∆R0
ϖ0
=
∂R0

∂ϖ0

ϖ0

R0
= −1.33673 < 0, ∆R0

ϖ1
=
∂R0t

∂ϖ1

ϖ1

R0
= 0.0043 > 0,

∆
R0
ψ1
=
∂R0

∂ψ1

ψ1

R0
= 0.006549 > 0, ∆R0

ϕ =
∂R0

∂ϕ

ϕ

R0
= .9999999997 > 0,

∆
R0
ψ2
=
∂R0

∂ψ2

ψ2

R0
= 0.996194 > 0, ∆R0

ν =
∂R0

∂ν

ν

R0
= −0.843190 < 0,

∆R0
σ1
=
∂R0

∂σ1

σ1

R0
= −0.012374 < 0, ∆R0

σ2
=
∂R0

∂σ2

σ2

R0
= −0.00773 < 0.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11847–11874.



11859

1

0.03395

0.034

1

0.03405

0.0341

0.8

β
2

0.5

0.03415

0.6

β
1

0.4
0.2

0 0

(a) R0 vs η1 and η2

0
1

0.05

0.1

1
0.8

0.15

κ

0.5 0.6

β
1

0.2

0.4
0.2

0 0

(b) R0 vs η1 and ν

0.034

1

0.0341

0.0342

1

0.0343

0.0344

0.8

0.0345

µ
1

0.5

0.0346

0.6

β
1

0.4
0.2

0 0

(c) R0 vs η1 and ϖ1

0.034
1

0.0345

1

0.035

0.8

τ
2

0.5

0.0355

0.6

β
1

0.4
0.2

0 0

(d) R0 vs η1 and σ2

Figure 1. The graphs show the affect of various parameters on R0 and the variations in them.

These demonstrate the relevance of many factors in disease transmission. It also measures the
change in R0 as a function of a parameter modification. The sensitivity indices show that there is
indeed a direct relationship between R0 and a set of variables S 1 = [η1, η2, η3, η4, ϕ, ψ1, ψ2], while has
an inverse relation with S2 = [ϖ0, ϖ2,σ1,σ2, ν]. This demonstrates that higher the value of parameters
S1 increases the value of threshold quantity greatly, but increasing the value for parameters S2 decreases
the value of threshold value.
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Figure 2. The graphs show the affect of various parameters on R0 and the variations in them.

5. Numerical simulation

In this part, we validate our analytical conclusion. We employ the Runge-Kutta technique of fourth
order [42]. Some factors are chosen for demonstration purposes, while others are derived from
publicly available data. The parameters are chosen in a way that is more biologically realistic. For the
simulation, we use the following parameters. ϕ = 0.00004; η1 = 0.007;ϖ0 = 0.0003; η2 =

0.003;ψ2 = 0.00008;ϖ1 = 0.0001; η3 = 0.005; ξ = 0.002; η4 = 0.0001;σ2 = 0.000001; ϕ = 0.016; q =
0.00007;ϖ2 = 0.00003;σ1 = 0.001;σ3 = 0.0007;ψ1 = 0.0006; ν = 0.000002. Figures 3 and 4 depict
the performance of the proposed model based on the aforementioned parameters, which validate the
theorem’s analytical discovery (6). According to the theoretical understanding of these findings,
whenever R0 < 1, each curve of solution of the sensitive population takes 150–300 days to achieve
equilibrium. Likewise, the exposed community takes 250 to 150 days, the infected populace takes 200
to 100 days, and the asymptomatic populace, hospitalized, and recovered requires 100 to 50 days.
Camel dynamics initially grow and then achieve an equilibrium state, as seen in illustration 0.
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Figure 3. The demonstration of dynamics of S, I,E,A compartments population in case
R0 < 1 .
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Figure 4. The demonstration of dynamics of various compartments populations
(Hospitalized individuals, Recovered population, and Reservoir (MERS CoV), such that
camel’s in case R0 < 1).
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Next, we consider the parameters η1 = 0.007; σ1 = 0.001; ϖ1 = 0.0001; ψ1 = 0.0006; η2 = 0.003;
ϖ2 = 0.00003; ϕ = 0.00004; σ2 = 0.000001; η3 = 0.005; ϖ0 = 0.0003; η4 = 0.0001; ξ = 0.002;
ϕ = 0.016; σ3 = 0.0007; q = 0.00007; ν = 0.000002. ψ2 = 0.00008; and find R0 = 9.89887 which
is greater than 1. We investigate the dynamics of the given model in the vicinity of the EE point. The
numerical simulations based on the aforementioned settings are displayed in Figures (5) and (6), which
validate the finding presented in Theorem (8).
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Figure 5. The demonstration of dynamics of S, I,E,A compartments populations in case
R0 > 1 .
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Figure 6. The demonstration of dynamics of various compartments population (Hospitalized
individuals, Recovered populace, and (MERS CoV) reservoir, such that camel’s in case R0 >

1).
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6. Optimal control (OC) strategy for the reduction of infected with MERS-CoV

We develop control techniques based on sensitivity as well as model dynamics (2.1). The maximal
sensitivity indices parameter is (η1, η2, η3, η4), and increasing this value by 10 percent, raises the
threshold value. To limit the progress of the illness, we must minimize these parameters by using the
control variables E1(t),E2(t),E3(t),E4(t) to represent (awareness about the mask, isolation people
(infected), oxygen therapies, ventilation and self-care from the camels.)

Our main goals are the reduction of MERS-CoV in the populace with increasing R(t) and
decreasing I(t), A(t) and H(t), reservoir C(t) with applying control parameters (time-dependent)
E1(t),E2(t),E3(t),E4(t).

i. E1(t) represents the control parameter (time-dependent) represents the awareness concerning
surgical masks and hand washing.

ii. E2(t) represents the control parameter (time-dependent) represents quarantining of infected
persons.

iii. E3(t) represents the control parameter (time-dependent) represents mechanical ventilation
(oxygen therapy).

iv. E4(t) represents the control parameter (time-dependent) self-care that is keeping distance from
camels, avoiding raw milk, or eating improperly cooked meat.

By the use of these control parameters in our suggested optimal control problem which we obtain
by modifying model (2.1):

dS(t)
dt
= ϕ − η1IS(1 − E1(t)) − η2ϕAS(1 − E1(t)) − η3qHS(1 − E1(t))

− η4CS(1 − E1(t)) −ϖ0S,
dE(t)

dt
= η1IS(1 − E1(t)) + η2ϕAS(1 − E1(t)) + η3qHS(1 − E1(t)) + η4CS(1 − E1(t))

− (ξ +ϖ0 + E1(t))E,
dI(t)
dt
= ξρE − (σ1 + σ2)I − (ϖ0 +ϖ1)I − E2(t)I,

dA(t)
dt
= ξE(1 − ρ) − (ν +ϖ0)A − E2(t)A,

dH(t)
dt
= σ1I + νA − (σ3 +ϖ0)H − E3(t)H,

dR(t)
dt
= σ1IE2(t) + σ3HE3(t) −ϖ0R,

dC(t)
dt
= ψ1I + ψ2A −ϖ2C(t) − E4(t)C(t),

(6.1)

with the initial conditions

Ics = {S(0), I(0), E(0), H(0), A(0), C(0),R(0)} ≥ 0

The purpose here is to demonstrate that it is feasible to apply time-dependent control mechanisms
while reducing the expense of doing so. We assume that the expenses of control schemes are nonlinear
and take a quadratic shape, [43], which are cost variables that balance the size and importance of the
sections of the optimization problem. As a result, we select the observable (cost) function as,
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J(E1,E2,E3,E4) =
∫ T

0
[ζ1I + ζ2A + ζ3H + ζ4C +

1
2

(ζ5E
2
1(t) + ζ6E

2
2(t) + ζ7E

2
3(t) + ζ8E

2
4(t)]dt. (6.2)

In Eq (6.2) ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8, stand for weight constants. ζ1, ζ2, ζ3, ζ4 express relative
costs of infected (I), asymptomatic (A), hospitalized (H) and reservoir (C), while ζ5, ζ6, ζ7, ζ8 show
associated-cost of control parameters. 1

2ζ5E
2
1, 1

2ζ8E
2
4, 1

2ζ6E
2
2, 1

2ζ7E
2
3, describe self care, treatment and

isolation.
Our objective is to obtain OC pair E∗1, E∗2, E∗3, E∗4, i.e.,

J(E∗1,E
∗
2,E

∗
3,E

∗
4) = min{J(E1,E2,E3,E4),E1,E2,E3,E4 ∈ U}, (6.3)

dependent on model (6.1), we consider, the control-set of parameters as:

U = {(E1,E2,E3,E4)/uI(t) is Lebesgue-measurable on the [0, 1], 0 ≤ uI(t) ≤ 1, i = 1, 2, 3, 4}. (6.4)

We obey the result [44], stating that the solution of the system exists in the case when control
parameters are bounded as well as Lebesgue measurable. So, we consider that the suggested control
system can be presented as:

dΩ
dt
= AΩ +BΩ.

In above system Ω = (S, I,E,H,A,C), A(Ω) and B(Ω) represent linear and nonlinear bounded
coefficient, respectively, so that

A =



−ϖ0 0 0 0 0 0
0 −y1 0 0 0 0
0 νρ −y2 0 0 0
0 ν(−ρ + 1) 0 −y3 0 0
0 0 σ1 ϵ −(σ2 +ϖ0 + E3) 0
0 0 ψ1 ψ2 0 −(θ + E4)


, (6.5)

where y1 = (ν +ϖ0 + E1) , y2 = (σ1 + σ2 +ϖ0 +ϖ1 + E2),y3 = (ϵ +ϖ0 +ϖ2 + E2).

B(Ω) =



ϕ − η1IS(1 − E1(t)) − ηθAϕS(1 − E1(t)) − η3qHS(1 − E1(t)) − η4CS(1 − E1(t))
η1IS(1 − E1(t)) + η2ϕAS(1 − E1(t)) + η3qHS(1 − E1(t)) + η4CS(1 − E1(t))

0
0
0
0


.

Considering L(Ω) = FΩ + AΩ,

|F(Ω1) − F(Ω2| ≤ p1|S1 − S2| + p2|E1 − E2| + p3|I1 − I2| + p4|A1 − A2|

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11847–11874.



11867

+ p5|H1 − H2| + p6|C1 − C2|

≤ P|S1 − S2| + |E1 − E2| + |C1 − C2| + |I1 − I2|

+ |H1 − H2| + |A1 − A2|.

Here P = max(p1, p2, p3, p4, p5, p6, p7, p8) does not depend on the suggested model state-classes. We
can also express

|L(Ω1) − L(Ω2)| ≤ |W(Ω1) −W(Ω2)|,

where W = (P, ∥A∥) is less than ∞, L is continuous in the Lipschitz sense, and from the description
the system classes are non-negative, it obviously shows that the solution of model (6.1) exists. For the
existence of the solution let us consider, and prove the following theorem:

Theorem 10. There exist an OC E∗ = (E∗1,E
∗
2,E

∗
3,E

∗
4) ∈ E, to control-system presented in Eqs (6.1)

and (6.2).

Proof. As it is obvious that the control and system variables are not negative. It is also worth noting that
U (set of variables) is closed and convex by expression. Furthermore, the control problem is bounded,
indicating the problem’s compactness. The expression ζ1I + ζ2A + ζ3H + ζ4C + 1

2 (ζ5E
2
1(t) + ζ6E

2
2(t) +

ζ7E
2
3(t) + ζ8E

2
4(t) is convex as well, w.r.t the set U. It guarantees the existence of OC for OC variables

(E∗1,E
∗
2,E

∗
3,E

∗
4). □

6.1. Methods

Here, we determine the best solution to control problems (6.1) and (6.2). For this, we employ the
Lagrangian, and Hamiltonian equations, as shown below:

L(I,C,A,H,E1,E2,E3,E4) = ζ1I + ζ2A + ζ3H + ζ4C +
1
2

(ζ5E
2
1(t) + ζ6E

2
2(t) + ζ7E

2
3(t) + ζ8E

2
4(t).

To define the Hamiltonian (H) associated with the model, we use the notion Θ =

(Θ1,Θ2,Θ3,Θ4,Θ5,Θ6,Θ7) and Υ = (Υ1,Υ2,Υ3,Υ4,Υ5,Υ6,Υ7) then,

H(x, u,Θ) = L(x, u) + ΘΥ(x, u),

where

Υ1(x, u) = ϕ − η1IS(1 − E1(t)) − η2ϕAS(1 − E1(t)) − η3qHS(1 − E1(t))
− η4CS(1 − E2(t)) −ϖ0S,
Υ2(x, u) = η1IS(1 − E1(t)) + η2ϕAS(1 − E1(t)) + η3qHS(1 − E1(t)) + η4CS(1 − E2(t))
− (ξ +ϖ0 + E1)E,
Υ3(x, u) = ξρE − (σ1 + σ2)I − (ϖ0 +ϖ1)I − E2(t)I(t),
Υ4(x, u) = ξ(1 − ρ)E − (ν +ϖ0)A − E2(t)A,
Υ5(x, u) = σ1I + νA − (σ3 +ϖ0)H − E3(t)H,
Υ6(x, u) = σ1IE2(t) + σ3HE3(t) −ϖ0R,
Υ7(x, u) = ψ1I + ψ2A −ϖ2C − E4(t)C(t),

(6.6)
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and Z(x, u) = Υ1(x, u),Υ2(x, u),Υ3(x, u),Υ4(x, u),Υ5(x, u),Υ6(x, u),Υ7(x, u).
Here we utilize, the principle [45, 46] to Hamiltonian, in order to obtain an optimality solution,

which is stated that if the solution expressed with (x∗, u∗) is optimal, then ∃ a function Θ, such that

ẋ =
∂H
∂Θ

, 0 =
∂H
∂u
,

ΘA(t)
′

= −
∂H
∂x
.

H(t, x∗, u∗,Θ)∂x = maxE1,E2,E3,E4∈[0,1]H(x∗(t),E1,E2,E3,E4,ΘA(t)); (6.7)

and the condition of transversality
Θ(t f ) = 0. (6.8)

Thus to obtain the adjoint variables and OC variables, we use the principles Eq (6.7). So we get

Theorem 11. Suppose that optimal and control-parameters are expressed by S∗, E∗, A∗, I∗, H∗, C∗, R∗

be the optimal-state (E∗1,E
∗
2,E

∗
3,E

∗
4) for system (6.1)-(6.2). ThenΘA(t) (adjoint variables set) satisfies:

Θ
′

1(t) = (Θ1 − Θ2)(η1I∗ + η2ϕA∗ + η3qH∗ + η4C∗)(1 − E1)(t) + Θ1ϖ0,

Θ
′

2(t) = (Θ2 − Θ4)ξ + (Θ4 − Θ3)ξρ + Θ2ϖ0 + Θ2E1(t),
Θ
′

3(t) = ζ1 + (Θ1 − Θ2)η1S∗(1 − E1(t)) + (Θ3 − Θ5)σ1 − Θ6ξ1E2(t) − Θ7 (6.9)
Θ
′

4(t) = −ζ2 + (Θ1 − Θ2)η2ϕS∗(1 − E1(t)) + (Θ4 − Θ5)ν + Θ4(ϖ0 + E2(t)) − Θ7ψ2,

Θ5
′(t) = −ζ3 − (Θ1 − Θ2)η3qS∗(1 − E1(t)) + (σ3 + u0 + E3(t))Θ5 − Θ6σ3E3(t),

Θ6
′(t) = −ϖ0Θ6,

Θ7
′(t) = −ζ4 + (Θ1 − Θ2)η4S∗(1 − E1(t)) + Θ7(ϖ2 + E4(t)),

having terminal condition
ΘA(t) = 0. (6.10)

The OC variables E∗1(t) , E∗2(t), E∗3(t), E∗4(t) are

E∗1(t) = max
[
min

[
(Θ2 − Θ1)η1I∗S∗ + η2ϕA∗ + η3qH∗ + η4C∗S∗ + Θ2E∗

ζ5
, 1

]
, 0

]
,

E∗2(t) = max
[
min

[
(Θ3I∗ + Θ6σ1R∗ + Θ4A∗ + Θ5H∗)

ζ6
, 1

]
, 0

]
,

E∗3(t) = max
[
min

[
(Θ5H∗ − Θ6σR∗)

ζ7
, 1

]
, 0

]
,

E∗4(t) = max
[
min

[
(Θ7C∗)
ζ8

, 1
]
, 0

]
.

(6.11)

Proof: The adjoint-model (6.9) is obtained by applying the principle (6.7) and the transversality
conditions from the outcomes of ΘA(t) = 0. For optimal functions set E∗1,E

∗
2,E

∗
3 and E∗4, we utilized

∂H
∂u . In the next part, we evaluate the optimality problem numerically. Since it will be easier for such
readers to understand as compared to analytical data. The optimization problem system is defined by
its control-system (6.1), adjoint-system (6.9), boundary conditions, and OC functions.
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6.2. Numerical simulation of optimal control results

Using the RK technique of order four, we calculate the optimal control model (6.1) to observe
the influence of masks, treatment, isolations, and self-care from camels. We employ the forward RK
technique to get the solution of system (2.1) with starting conditions in the time interval [0, 50]. To
obtain a solution to the adjoint-system (6.9), we apply the backward RK technique in the same domain
with the assistance of the transversality constraint. For simulation purposes, we consider the parameters
as: ν = 0.0071; ϖ1 = 0.014567125; η1 = 0.00041; η3 = 0.0000123; η4 = 0.0000123; θ = 0.98;
σ1 = 0.0000404720925; σ3 = 0.00135; q = 0.017816; ψ1 = 0.05; ϖ0 = 0.00997; η2 = 0.0000123;
ϕ = 0.003907997; σ2 = 0.000431; ρ = 0.00007; ϖ2 = 0.014567125 ψ2 = 0.06;. These parameters
are considered in such a manner that more feasible biologically. Weight constants, here are taken as
ζ1 = 0.6610000; ζ2 = 0.54450; ζ3 = 0.0090030; ζ4 = 0.44440; ζ6 = 0.3550; ζ7 = 0.67676; ζ8 = 0.999.
So we get the upcoming behaviours shown in Figures 7a,7b,7c,7d,8a,8b,8c.

These figures reflect the dynamics of susceptibles, exposed, infected people, asymptomatic persons,
hospitalized, recovered, and MERS reservoirs, i.e., camels with and also without control. Our major
goal in using the OC tool is to reduce the number of persons who are infected while increasing the
number of those who are not infected, as demonstrated by numerical findings.
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Figure 7. The graphs depict the dynamic of the classes with control and without controls.
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Figure 8. The graphs depict the dynamic of the classes with control and without controls.
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7. Conclusions

In this study, we developed a mathematical model to analyze the transmission of MERS-CoV
between people and its reservoir (camels), with the goal of assessing the transmission risk of
MERS-CoV. We calculated the model’s fundamental reproductive number, R0, and employed stability
theory to examine the local and global behavior of the model and determine the conditions that lead to
stability. We also evaluated the sensitivity of R0 to understand the impact of each epidemiological
parameter on disease transmission. To minimize the number of infected individuals and intervention
costs, we incorporated optimal control into the model, which included time-dependent control
variables such as supportive care, surgical masks, treatment, and public awareness campaigns about
the use of masks. Furthermore, our biological interpretation of the results indicates that if the basic
reproduction number is less than one, the susceptible population decreases for up to 60 days, and then
becomes stable, indicating that the population will remain stable. Our numerical simulations validated
the effectiveness of our control strategies in reducing the number of infected individuals,
asymptomatic cases, hospitalizations, and MERS-CoV reservoir, while increasing the susceptible and
recovered populations. These simulations support our analytical work.
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