Research article

Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation

  • Received: 06 August 2024 Revised: 22 September 2024 Accepted: 17 October 2024 Published: 02 January 2025
  • It has been clearly demonstrated over the past years that control theory can provide an efficient framework for the solution of several complex tasks in epidemiology. In this paper, we present a computational approach for the state estimation based reference tracking control and historical data reconstruction using nonlinear compartmental epidemic models. The control model is given in nonlinear input-affine form, where the manipulable input is the disease transmission rate influenced by possible measures and restrictions, while the observed or computed output is the number of infected people. The control design is built around a simple SEIR model and relies on a feedback linearization technique. We examine and compare different control setups distinguished by the availability of state information, complementing the directly measurable data with an extended Kalman filter used for state estimation. To illustrate the capabilities and robustness of the proposed method, we carry out multiple case studies for output tracking and data reconstruction on Swedish and Hungarian data, all in the presence of serious model and parameter mismatch. Computation results show that a well-designed feedback, even in the presence of significant observation uncertainties, can sufficiently reduce the effect of modeling errors.

    Citation: Balázs Csutak, Gábor Szederkényi. Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation[J]. Mathematical Biosciences and Engineering, 2025, 22(1): 109-137. doi: 10.3934/mbe.2025006

    Related Papers:

  • It has been clearly demonstrated over the past years that control theory can provide an efficient framework for the solution of several complex tasks in epidemiology. In this paper, we present a computational approach for the state estimation based reference tracking control and historical data reconstruction using nonlinear compartmental epidemic models. The control model is given in nonlinear input-affine form, where the manipulable input is the disease transmission rate influenced by possible measures and restrictions, while the observed or computed output is the number of infected people. The control design is built around a simple SEIR model and relies on a feedback linearization technique. We examine and compare different control setups distinguished by the availability of state information, complementing the directly measurable data with an extended Kalman filter used for state estimation. To illustrate the capabilities and robustness of the proposed method, we carry out multiple case studies for output tracking and data reconstruction on Swedish and Hungarian data, all in the presence of serious model and parameter mismatch. Computation results show that a well-designed feedback, even in the presence of significant observation uncertainties, can sufficiently reduce the effect of modeling errors.



    加载中


    [1] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991. https://doi.org/10.7326/0003-4819-117-2-174_4
    [2] C. Nowzari, V. M. Preciado, G. J. Pappas, Analysis and control of epidemics: A survey of spreading processes on complex networks, IEEE Control Syst. Mag., 36 (2016), 26–46. https://doi.org/10.1109/mcs.2015.2495000 doi: 10.1109/mcs.2015.2495000
    [3] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 26 (2020), 855–860. https://doi.org/10.1038/s41591-020-0883-7 doi: 10.1038/s41591-020-0883-7
    [4] A. d'Onofrio, M. Iannelli, P. Manfredi, G. Marinoschi, Epidemic control by social distancing and vaccination: Optimal strategies and remarks on the COVID-19 Italian response policy, Math. Biosci. Eng., 21 (2024), 6493–6520. https://doi.org/10.3934/mbe.2024283 doi: 10.3934/mbe.2024283
    [5] F. Brauer, Compartmental models in epidemiology, in Math. Epid., Springer Berlin Heidelberg, 2008, 19–79. https://doi.org/10.1007/978-3-540-78911-6_2
    [6] S. He, Y. Peng, K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101 (2020), 1667–1680. https://doi.org/10.1007/s11071-020-05743-y doi: 10.1007/s11071-020-05743-y
    [7] G. Röst, F. A. Bartha, N. Bogya, P. Boldog, A. Dénes, T. Ferenci, et al., Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios, Viruses, 12 (2020), 708. https://doi.org/10.3390/v12070708 doi: 10.3390/v12070708
    [8] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London A., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [9] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925 doi: 10.1103/RevModPhys.87.925
    [10] L. Stella, A. P. Martínez, D. Bauso, P. Colaneri, The role of asymptomatic infections in the COVID-19 epidemic via complex networks and stability analysis, SIAM J. Control Optim., 60 (2022), S119–S144. https://doi.org/10.1137/20m1373335 doi: 10.1137/20m1373335
    [11] I. Z. Reguly, D. Csercsik, J. Juhász, K. Tornai, Z. Bujtár, G. Horváth, et al., Microsimulation based quantitative analysis of COVID-19 management strategies, PLOS Comp. Biol., 18 (2022), e1009693. https://doi.org/10.1371/journal.pcbi.1009693 doi: 10.1371/journal.pcbi.1009693
    [12] J. de Mooij, P. Bhattacharya, D. Dell'Anna, M. Dastani, B. Logan, S. Swarup, et al., A framework for modeling human behavior in large-scale agent-based epidemic simulations, Simulation, 99 (2023), 1183–1211. https://doi.org/10.1177/00375497231184898 doi: 10.1177/00375497231184898
    [13] J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, F. Allgöwer, et al., Robust and optimal predictive control of the COVID-19 outbreak, Annu. Rev. Control, 51 (2021), 525–539. https://doi.org/10.1016/j.arcontrol.2020.11.002 doi: 10.1016/j.arcontrol.2020.11.002
    [14] J. Sereno, A. D'Jorge, A. Ferramosca, E. Hernandez-Vargas, A. González, Model predictive control for optimal social distancing in a type SIR-switched model, IFAC-PapersOnLine, 54 (2021), 251–256. https://doi.org/10.1016/j.ifacol.2021.10.264 doi: 10.1016/j.ifacol.2021.10.264
    [15] T. Péni, B. Csutak, G. Szederkényi, G. Röst, Nonlinear model predictive control with logic constraints for COVID-19 management, Nonlinear Dyn., 102 (2020), 1965–1986. https://doi.org/10.1007/s11071-020-05980-1 doi: 10.1007/s11071-020-05980-1
    [16] A. Ibeas, M. De la Sen, S. Alonso-Quesada et al., Robust sliding control of SEIR epidemic models, Math. Probl. Eng., 2014. https://doi.org/10.1155/2014/104764 doi: 10.1155/2014/104764
    [17] A. Ibeas, M. de la Sen, S. Alonso-Quesada, Sliding mode robust control of SEIR epidemic models, in ICEE, IEEE, 2013, 1–6. https://doi.org/10.1109/IranianCEE.2013.6599820
    [18] M. W. Spong, On feedback linearization of robot manipulators and Riemannian curvature, in Essays Math. Rob., Springer, 1998,185–202. https://doi.org/10.1002/rob.4620120804
    [19] T. A. Le, G.-H. Kim, M. Y. Kim, S.-G. Lee, Partial feedback linearization control of overhead cranes with varying cable lengths, Int. J. Precis. Eng. Man., 13 (2012), 501–507. https://doi.org/10.1007/s12541-012-0065-8 doi: 10.1007/s12541-012-0065-8
    [20] C. Lascu, S. Jafarzadeh, M. S. Fadali, F. Blaabjerg, Direct torque control with feedback linearization for induction motor drives, IEEE Trans. Power Electron., 32 (2016), 2072–2080. https://doi.org/10.1109/tpel.2016.2564943 doi: 10.1109/tpel.2016.2564943
    [21] W. H. Kim, Feedback Linearization of Nonlinear Systems: Robustness and Adaptive Control, PhD thesis, Louisiana State University and Agricultural & Mechanical College, 1991. doi.org/10.31390/gradschool_disstheses.5130
    [22] M. Kaheni, M. H. Zarif, A. A. Kalat, L. Chisci, Robust feedback linearization for input-constrained nonlinear systems with matched uncertainties, in ECC, IEEE, 2018, 2947–2952. https://doi.org/10.23919/ECC.2018.8550521
    [23] A. Isidori, Nonlinear Control Systems, Springer, 1995. https://doi.org/10.1007/978-3-662-02581-9
    [24] M. De la Sen, A. Ibeas, S. Alonso-Quesada, Feedback linearization-based vaccination control strategies for true-mass action type SEIR epidemic models, Nonlinear Anal. Model. Control., 16 (2011), 283–314. https://doi.org/10.15388/na.16.3.14094 doi: 10.15388/na.16.3.14094
    [25] S. Zhai, G. Luo, T. Huang, X. Wang, J. Tao, P. Zhou, et al., Vaccination control of an epidemic model with time delay and its application to COVID-19, Nonlinear Dyn., 106 (2021), 1279–1292. https://doi.org/10.1007/s11071-021-06533-w doi: 10.1007/s11071-021-06533-w
    [26] D. Simon, Optimal state estimation: Kalman, H$\infty$, and nonlinear approaches, 2006. https://doi.org/10.1002/0470045345
    [27] D. M. Sheinson, J. Niemi, W. Meiring, Comparison of the performance of particle filter algorithms applied to tracking of a disease epidemic, Math. Biosci., 255 (2014), 21–32. https://doi.org/10.1016/j.mbs.2014.06.018 doi: 10.1016/j.mbs.2014.06.018
    [28] W. Yang, A. Karspeck, J. Shaman, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics, PLoS Comp. Biology, 10 (2014), e1003583. https://doi.org/10.1371/journal.pcbi.1003583 doi: 10.1371/journal.pcbi.1003583
    [29] X. Zhu, B. Gao, Y. Zhong, C. Gu, K.-S. Choi, Extended Kalman filter based on stochastic epidemiological model for COVID-19 modelling, Comput. Biol. Med., 137 (2021), 104810. https://doi.org/10.1016/j.compbiomed.2021.104810 doi: 10.1016/j.compbiomed.2021.104810
    [30] V. Azimi, M. Sharifi, S. Fakoorian, T. Nguyen, V. Van Huynh, State estimation-based robust optimal control of influenza epidemics in an interactive human society, Inform. Sci., 592 (2022), 340–360. https://doi.org/10.1016/j.ins.2022.01.049 doi: 10.1016/j.ins.2022.01.049
    [31] A. Rajaei, M. Raeiszadeh, V. Azimi, M. Sharifi, State estimation-based control of COVID-19 epidemic before and after vaccine development, J. Process Contr., 102 (2021), 1–14. https://doi.org/10.1016/j.jprocont.2021.03.008 doi: 10.1016/j.jprocont.2021.03.008
    [32] A. Iggidr, M. O. Souza, State estimators for some epidemiological systems, J. Math. Biol., 78 (2018), 225–-256. https://doi.org/10.1007/s00285-018-1273-3 doi: 10.1007/s00285-018-1273-3
    [33] A. Ibeas, M. de la Sen, S. Alonso-Quesada, I. Zamani, Stability analysis and observer design for discrete-time SEIR epidemic models, Adv. Differ. Equ-ny., 2015. https://doi.org/10.1186/s13662-015-0459-x doi: 10.1186/s13662-015-0459-x
    [34] S. Alonso-Quesada, M. De la Sen, R. Agarwal, A. Ibeas, An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems, Adv. Differ. Equ-ny., 2012 (2012), 161. https://doi.org/10.1186/1687-1847-2012-161 doi: 10.1186/1687-1847-2012-161
    [35] B. Csutak, P. Polcz, G. Szederkényi, Model-based epidemic data reconstruction using feedback linearization, in ICECET, 2022, 1–6. https://doi.org/10.1109/ICECET55527.2022.9873061
    [36] B. Csutak, K. M. Jenei, G. Szederkényi, Linearization based robust reference tracking control of a compartmental epidemiological model, in Proc. Cont., 2023, 66–71. https://doi.org/10.1109/PC58330.2023.10217568
    [37] B. Csutak, P. Polcz, G. Szederkényi, Computation of COVID-19 epidemiological data in Hungary using dynamic model inversion, in IEEE SACI, 2021, 91–96. https://doi.org/10.1109/SACI51354.2021.9465563
    [38] P. Polcz, B. Csutak, G. Szederkényi, Reconstruction of epidemiological data in Hungary using stochastic model predictive control, Appl. Sci., 12 (2022), 1113. https://doi.org/10.3390/app12031113 doi: 10.3390/app12031113
    [39] T. Péni, B. Csutak, F. A. Bartha, G. Röst, G. Szederkényi, Optimizing symptom based testing strategies for pandemic mitigation, IEEE Access, 10 (2022), 84934–84945. https://doi.org/10.1109/ACCESS.2022.3197587 doi: 10.1109/ACCESS.2022.3197587
    [40] L. Zhang, Z. Zhang, S. Pei, Q. Gao, W. Chen, Quantifying the presymptomatic transmission of COVID-19 in the USA, Math. Biosci. Eng., 21 (2023), 861–-883. https://doi.org/10.3934/mbe.2024036 doi: 10.3934/mbe.2024036
    [41] E. Mathieu, H. Ritchie, L. Rodés-Guirao, C. Appel, C. Giattino, J. Hasell, et al., Coronavirus pandemic (covid-19), OWID. https://ourworldindata.org/coronavirus
    [42] B. Csutak, G. Szederkényi, Reference tracking control of a nonlinear epidemiological model with state estimation, in CoDIT, 2023, 2311–2316, https://doi.org/10.1109/CoDIT58514.2023.10284317
    [43] C. Tsay, F. Lejarza, M. A. Stadtherr, M. Baldea, Modeling, state estimation, and optimal control for the US COVID-19 outbreak, Sci. Rep., 10 (2020), 10711. https://doi.org/10.1038/s41598-020-67459-8 doi: 10.1038/s41598-020-67459-8
    [44] R. Seifried, Feedback linearization and model inversion of nonlinear systems, in Dynamics of Underactuated Multibody Systems, Springer International Publishing, 2013, 55—111. https://doi.org/10.1007/978-3-319-01228-5_3
    [45] AtloTeam, Koronamonitor, 2022. https://atlo.team/koronamonitor/
    [46] W. Rauch, H. Schenk, N. Rauch, M. Harders, H. Oberacher, H. Insam, et al., Estimating actual SARS-CoV-2 infections from secondary data, Sci. Rep., 14 (2024), 6732. https://doi.org/10.1038/s41598-024-57238-0 doi: 10.1038/s41598-024-57238-0
    [47] M. Pájaro, N. M. Fajar, A. A. Alonso, I. Otero-Muras, Stochastic SIR model predicts the evolution of COVID-19 epidemics from public health and wastewater data in small and medium-sized municipalities: A one year study, Chaos Soliton Fract., 164 (2022), 112671. https://doi.org/10.2139/ssrn.4144332 doi: 10.2139/ssrn.4144332
    [48] P. Polcz, K. Tornai, J. Juhász, G. Cserey, G. Surján, T. Pándics, et al., Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants, Water Res., 241 (2023), 120098. https://doi.org/10.1016/j.watres.2023.120098 doi: 10.1016/j.watres.2023.120098
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(445) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(21)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog