
https://www.aimspress.com/journal/mbe

MBE, 22(1): 109–137.
DOI: 10.3934/mbe.2025006
Received: 06 August 2024
Revised: 22 September 2024
Accepted: 17 October 2024
Published: 02 January 2025

Research article

Robust control and data reconstruction for nonlinear epidemiological
models using feedback linearization and state estimation

Balázs Csutak1 and Gábor Szederkényi1,2,*
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Abstract: It has been clearly demonstrated over the past years that control theory can provide an ef-
ficient framework for the solution of several complex tasks in epidemiology. In this paper, we present
a computational approach for the state estimation based reference tracking control and historical data
reconstruction using nonlinear compartmental epidemic models. The control model is given in non-
linear input-affine form, where the manipulable input is the disease transmission rate influenced by
possible measures and restrictions, while the observed or computed output is the number of infected
people. The control design is built around a simple SEIR model and relies on a feedback linearization
technique. We examine and compare different control setups distinguished by the availability of state
information, complementing the directly measurable data with an extended Kalman filter used for state
estimation. To illustrate the capabilities and robustness of the proposed method, we carry out multi-
ple case studies for output tracking and data reconstruction on Swedish and Hungarian data, all in the
presence of serious model and parameter mismatch. Computation results show that a well-designed
feedback, even in the presence of significant observation uncertainties, can sufficiently reduce the effect
of modeling errors.

Keywords: epidemic models; compartmental models; nonlinear control; feedback linearization; state
estimation; data reconstruction

1. Introduction

Epidemic control has been the target of intensive research in recent decades, and its significance
became even more clear during the COVID-19 pandemic [1–4]. In most cases, the dynamical mod-
eling of disease spread on the population level is done by using compartmental models on different
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levels of detail in terms of disease stages or population distribution in nonlinear ordinary differential
equation (ODE) form [5–7]. It has to be noted, however, that the assumption of the homogeneity of the
population and constant model parameters are often oversimplifying and may not allow the sufficiently
accurate description of the epidemic process in complex environments. Therefore, it was already pro-
posed in [8] that the probabilities of infection and death should depend on the different stages of the
disease. To address the homogeneity problem, [9] gives a comprehensive overview on the modeling of
infection mechanisms in heterogeneous networks using the notions of network science. In [10], the au-
thors separate the infection dynamics for symptomatic and asymptomatic COVID-19-carriers, and also
assume heterogeneous connectivity between people. With this modeling setup, it is shown that a more
realistic picture of the pandemic in Italy can be reconstructed than by using classical models. Stochastic
agent-based models can be very useful as well in handling time and/or space dependent probabilities,
and also in tracking individuals and events and testing various conditions and restrictions [11, 12].

Typical control goals are to keep the peaks and/or the sum of infected (or hospitalized) under pre-
defined limits during a time interval to reduce the burden on the healthcare system. To handle the
often conflicting goals and constraints related to economic and societal considerations, model predic-
tive control can be an obvious and sufficiently realistic choice for control design [13–15]. However,
general nonlinear model predictive control (recognizing the practical significance and applicability of
the method) is a primarily numerical approach which sometimes does not give enough insight into cer-
tain fundamental properties and limitations of the solution. The sliding mode approach has also been
successfully applied in the field of epidemic control [16, 17].

Feedback linearization is typically applied for nonlinear systems where the models are known with
sufficient precision, such as (electro) mechanical systems [18–20]. The robustness analysis of feed-
back linearized loops is known to be a difficult problem, and it has been the target of intensive research
for several decades [21, 22]. A critical point in such an analysis is checking the stability of the zero
dynamics [23]. Therefore, feedback linearization is usually not the first choice for epidemiological
or biological systems, where researchers are often faced with non-negligible model uncertainties and
measurement data of questionable quantity or quality. However, there exist some successful applica-
tions in this area such as [24] and [25], where vaccination inputs were computed through the feedback
linearization of nonlinear models. Moreover, the stability of the zero dynamics for any meaning-
ful parameter values of a susceptible-exposed-infected-recovered (SEIR)-type model was also proved
in [24].

For model-based feedback control, the estimation of non-measured states is a fundamentally im-
portant task [26]. Epidemic models (depending on the level of detail) typically contain several non-
measured states such as the number of susceptible, exposed or asymptomatic people. The literature on
the state estimation of epidemics is wide, where popular techniques include Kalman filtering, particle
filtering, and maximum likelihood estimation [27–29]. We also highlight [30] and [31], where Kalman
filter-based state estimation is successfully combined with feedback control. In [32], continuous time
observers with guaranteed convergence were proposed for low dimensional epidemic models. A dis-
crete time observer for SEIR models with efficiently computable stability conditions was presented
in [33]. Feedback linearization combined with a state observer was proposed in [34] to compute a vac-
cination input which guarantees the asymptotic eradication of an epidemic described by a SEIR model.
The convergence of the observation error to zero, the feasibility of the input, as well as the asymptotic
stability of the desired state were proved.
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The preliminaries of this study are [35, 36], where promising initial results were obtained using
feedback linearization assuming that full state information is available. However, this assumption is
not realistic enough, since the majority of the state variables in epidemic models is not actually ob-
served. Therefore, the main new contributions of this paper are the following. First, state estimation is
involved in the control/reconstruction task in several different scenarios assuming significant modeling
uncertainties as well. Second, the improved methodology is illustrated and tested on the data of another
country (Sweden) besides Hungary.

The structure of the paper is as follows. Section 2 summarizes the compartmental models used for
simulation and control design, respectively. The applied different control setup cases and the approach
for state estimation are described in Sections 3 and 4, respectively. Section 5 contains the detailed
computation results and the corresponding discussion, while the most important conclusions are given
in Section 6.

2. Process modeling

2.1. Simulation model (SLPIAHRD)

To show the applicability of our control and estimation setup in realistic scenarios, we use differ-
ent nonlinear dynamic models and parameters for the simulation of the epidemic process and for the
estimation and control steps.

The epidemic simulation relies on a comprehensive eight-compartment model, abbreviated as SLPI-
AHRD (for susceptible, latent, presymptomatic, infected, asymptomatic, hospitalized, recovered, and
deceased), which was designed with key characteristics of COVID-19 in mind. This model has been
effectively used for data reconstruction and epidemic control in Hungary across multiple waves of the
pandemic. Initially introduced in [15] and subsequently expanded in [37–39], the model accommodates
various factors such as different latent periods (infectious and noninfectious), the impact of presymp-
tomatic and asymptomatic infections on the spread, the waning of immunity, and countermeasures
like symptom-based testing and quarantines. Additionally, it can be adjusted to account for new virus
variants by gradually modifying the model parameters based on their prevalence in the population.

In this paper, we utilize the original model outlined in [15], which categorizes the population of N
individuals into 8 disjoint groups based on their roles in the epidemic spread. These groups include
susceptibles (S), who lack protection against the virus; latently infected individuals (L), who carry the
disease but are not yet spreading it; presymptomatic individuals (P), who can transmit the virus without
showing symptoms and thus remain unaware of their infection [40]; and asymptomatic individuals (A),
who eventually recover, possibly without ever realizing they were infected. Symptomatic individuals
(I) may either recover (R) or require hospitalization. Hospitalized patients (H) can either recover or
succumb to the disease (D). The compartmental structure and potential transmission pathways are
illustrated in Figure 1, with a more extensive explanation available in [15].

Formally, the model is given by the following system of ODEs:

Ṡ = −βS (P+I+δA) /N (2.1a)
L̇ = βS (P+I+δA) /N − αL, (2.1b)
Ṗ = αL − ζ P, (2.1c)
İ = γ ζ P − ρiI, (2.1d)
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Figure 1. Transition graph of the simulation model. Nodes represent compartments as
explained above, and the directed edges show the possible transitions.

Ȧ = (1−γ) ζ P − ρaA, (2.1e)
Ḣ = ρi η I − λH, (2.1f)
Ṙ = ρi(1−η) I+ρaA+λ (1−µ) H (2.1g)
Ḋ = µ λH. (2.1h)

The state variables in the above model are the continuous numbers of individuals belonging to the
compartments. For readability, we omit time arguments of the variables unless they are essential for
understanding.

Our simulations rely on public epidemiological data from Hungary and Sweden during the second
and third waves of the epidemic (15/08/2020 – 15/08/2021) to generate reference outputs for tracking.
The data source is the Our World in Data (OWID) database [41], which keeps records of reported
infections and hospitalizations provided by the responsible governmental institutions. The model pa-
rameters, shown in Table 1 and detailed in [38], are aligned with the dominant virus variants (original
and Alpha) of this period, to ensure that the simulations are as realistic as possible. Parameter values
for the specific variants and time periods in Hungary were obtained from relevant scientific litera-
ture, computed using standard parameter estimation or statistics-based techniques. Although they are
slightly different, we decided to use the same parameters for Hungary and Sweden in this model to
simplify the approach and to illustrate the robustness of the computations.

2.2. Control design model (SEIR)

For feedback computation and part of the state observer design, we will use a largely simplified
model compared to the previously described simulation model. This will be the well-known SEIR
nonlinear compartmental model, which is widely used for describing epidemic processes, including
COVID-19, despite its known limitations.

The model identifies four stages of infection for each individual, categorizing the population into
four compartments: Susceptibles (S), who are unprotected, and may become Exposed (E) to the dis-
ease upon contact with Infected (I) individuals, who are already spreading the virus. Exposed indi-
viduals carry the disease, but take some time to begin spreading it, at which point they move to the I
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compartment. Infected individuals eventually recover and move to the Recovered (R) compartment,
gaining full immunity against future infections. The model operates with three parameters: the trans-
mission rate β of the virus (which is influenced by administrative countermeasures and thus considered
a bounded manipulable input for the system), the latent period k−1

2 (time spent in the Exposed compart-
ment), and the infectious period k−1

3 (time spent in I).
To consistently denote all variables, we use overline notation for the compartments in the control

design model. With this notation, the differential equations of the continuous model can be expressed
as:

Ṡ = −βS I /N, (2.2a)

Ė = βS I /N − k2 E, (2.2b)

İ = k2 E−k3 I, (2.2c)

Ṙ = k3 I. (2.2d)

Nominal values for the model parameters k2 and k3 were selected by approximately lumping the cor-
responding compartments of the simulation model based on their role in the epidemic spread (E ≈ L,
I ≈ P + I + A), summing the time an individual spends in them. Additionally, we took the averages of
the parameters for the original and Alpha virus variants, obtaining a time-invariant model. While this
matching process could easily be refined, the applied model mapping is straightforward to use in real-
world scenarios and underscores the robustness of our feedback approach to parameter uncertainty.
Choosing a simpler model for control computation introduces model mismatch, a common issue in
realistic setups where no single model can exactly describe the epidemic spread.
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Table 1. Parameters of the epidemic model used for the simulations. The listed values were
obtained from related literature and from parameter identification applied to Hungarian data.

Parameter Notation
Value (by virus variant)
Original Alpha

Reproduction rate β Treated as input
Latent period (days) α−1 3 2.5
Presymptomatic period (days) ζ−1 3 3
Asymptomatic period (days) ρ−1

A 4 3
Infectious period (days) ρ−1

I 4 4
Hospitalization period (days) λ−1 10 10
Probability of infection γ 0.6 0.6
Probability of hospitalization η 0.076 0.07
Probability of death µ 0.145 0.145
Relative infectiousness of A δ 0.75 0.75
Total population (Hungary) N 9.8M
Reproduction rate β Treated as input
Latent period (days in E) k−1

2 α−1 = 2.75
Infectious period (days in I) k−1

3 1/(ζ−1 + ρ−1
I ) = 6.5

3. Control design

We implemented the control of the simulation model in the following steps: estimation or compu-
tation (depending on control setup) of the control model’s states based on output(s) of the simulation
model, feedback linearization of the control model, computation of a control signal for the linearized
control model, and, finally, application of this control input to the simulation model. Based on how
we compute/estimate the states of the control model, we present three different control setups which
are different in their degree of reality. This approach is also useful to compare how the results may be
affected by the availability of data.

3.1. Control setup 0: no estimation

We originally introduced control setup 0 in [36], although we had previously experimented with
simple feedback-linearization of epidemic models in [35]. The structure of the feedback loop is shown
in Figure 2, depicting a setup where no estimation step is carried out, and we assume full knowledge
of the simulation model’s state.

Our goal is to control the simulation model to track the reference signal r(t) with the number of
individuals capable of spreading the disease (i.e., minimizing |r − (P + I + A)| = |r − I| by selecting the
appropriate β). To compute the input, first we apply a modified feedback linearization based on [23,
Chap 4.3], calculated for the control design model, as detailed below in Subsections 3.4 and 3.5. This
technique requires the full state information of the SEIR model, which we compute directly from the
states of the known SLPIAHRD states, and results in a transformed system (with state variables z,
acting as a simple integrator cascade between the transformed input v and output y. Next, we compute
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Figure 2. Control setup 0: simulation model’s states are known, and control model states are
directly computed.

Figure 3. Control setup I: control model states are estimated from I and assumed to be
obtained directly from the simulation model.

a simple full-state feedback gain for this linearized control model, which has a proportional-integral-
derivative (PID) structure due to the obtained set of state variables.

3.2. Control setup I: partial state estimation

As knowledge of the full state information of the simulation model is problematic in a real-world
application, we introduced control setup I. in [42]. The feedback loop, as illustrated in Figure 3, con-
tains one important modification compared to the previous approach, namely, we estimate the control
model’s state information (S,E, I) using an extended Kalman filter (EKF).

It must be noted that this setup assumes that the control model state I = P + I + A is a directly
measurable output of the simulation model. Even though this might seem unrealistic at first as, e.g., the
number of infected and virus-spreading asymptomatic individuals (A) is hardly measurable, during the
COVID-19 pandemic, several methods were proposed and tested for the estimation of these variables
[43]. Thus, we assume in this scenario that a reliable estimation for I is already available.

Apart from this modification, we use the same extended feedback-linearization technique as in
control setup 0, which again results in a PID-like control structure for the transformed, linearized
model.

3.3. Control setup II: full state estimation

In order to overcome the limitations discussed above (i.e., the need for an extra estimation step) and
to take into account the effect of that estimation’s error on the whole system, we created control setup
II. While similar to setup I., in this case we assume the only measurable output of the simulation model
to be the daily number of hospitalizations (H(t)). We apply an EKF constructed using the same model
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Figure 4. Control setup II: control model states computed from estimated simulation model
states. The estimation is based solely on H.

structure as the simulation model, but (not to move away from reality) having some of its parameters
mismatched; we estimate the states of the simulation model, and finally we ‘compute’ the states of the
control model by merging and matching the compartments of the simulation model as described above
in the modeling section. Setup II can be seen in Figure 4.

3.4. Feedback linearization and asymptotic output tracking

Based on [36], we introduce the technique for feedback linearization following [23, Chap 4.3].
We derive the equations for nonlinear single input single output systems, written as:

ẋ = f (x) + g(x) u (3.1a)
y = h(x), (3.1b)

where u ∈ R is the system’s input, x ∈ Rn
+ is the state, and y ∈ R is the observed output. We assume

that f , g, and h are well-defined and sufficiently smooth functions. Furthermore, we define a reference
signal r(t), as our ultimate control objective is calculating an input u such that y (asymptotically)
converges to r.

Using the well-known definition of the Lie derivative of a scalar-valued function h(x) along the
vector field f (x) as

L f h(x) =
∂h(x)
∂x f (x),

and the relative degree of a system being ρ if

1) LgLρ−1
f h(x) , 0 and (3.2a)

2) LgLk
f h(x) = 0, ∀x, k = 0, 1, . . . , ρ − 2 (3.2b)

a state transformation z can be defined as:

z = Φ(x) =



y
ẏ
ÿ
...

y(ρ−1)


=



h(x)
L f h(x)
L2

f h(x)
...

Lρ−1
f h(x)


(3.3)
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Applying the nonlinear state feedback:

u = −
Lρf h(x)

LgLρ−1
f h(x)︸          ︷︷          ︸

a(x)

+
1

LgLρ−1
f h(x)︸       ︷︷       ︸
b(x)

v, (3.4)

for the transformed system results in the closed-loop (from input v to output y) acting in a way equiva-
lent to a cascade of ρ integrators:

ż = Az + Bv, y = Cz (3.5a)

A =

 0 1 0 ··· 0
0 0 1 ··· 0

···
0 0 0 ··· 1
0 0 0 ··· 0

 ∈ Rρ×ρ, B =

 0
0
···
0
1

, C = ( 1 0 ··· 0 ) (3.5b)

Using the fact that such an integrator cascade can be stabilized by a simple state feedback, we can
construct a stabilizing input driving the output to 0 in the form of:

v = −Kz = −

ρ∑
i=1

Ki−1

(
Li−1

f h(x)
)
, (3.6)

where the constants K = (K0,K1, ...,Kρ−1) can be arbitrary values that make (A − BK) a stability
matrix. In fact, the value of K can be obtained by applying any linear stabilization method to the
system (3.5) such as pole placement, linear–quadratic regulator (LQR), or any other more advanced
feedback approach.

Now, given a reference signal r(t) to track with the output of the system, we can define the error
output e(t) = y(t) − r(t) and the corresponding state transformation as:

z̄ = Φ(x) =



y − r
ẏ − ṙ
ÿ − r̈
...

y(ρ−1) − rρ−1


=



h(x) − r
L f h(x) − ṙ
L2

f h(x) − r̈
...

Lρ−1
f h(x) − rρ−1


(3.7)

Analogously to (3.6), we can stabilize the system using the simple state feedback. Thus, the appli-
cation of:

v = −Kz̄ = −

ρ∑
i=1

Ki−1

(
Li−1

f h(x) − r(i−1)
)

(3.8)

will result in lim
t→∞

y(t) − r(t) = lim
t→∞

e(t) = 0, if K is chosen such that (A − BK) is a stability matrix [23,
Chap 4.5]. For the sake of completeness, substituting v into the input mapping Equation (3.4), we
compute the asymptotic reference tracking input, which should be applied to the original system as:

u = −
Lρf h(x) − r(ρ)

LgLρ−1
f h(x)

+

−

ρ∑
i=1

Ki−1

(
Li−1

f h(x) − r(i−1)
)

LgLρ−1
f h(x)

(3.9)
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3.5. Robust feedback linearization and output tracking

As it was previously shown in [36], the robustness of the control loop may be significantly improved
by the introduction of an extra integrator step into this cascade, given the same model structure as in
Equation (3.1), and effectively increasing the relative degree ρ by 1.

We define the new, transformed output y as ẏ = h(x) − r, and modify the transformed system as:

z0 = y (3.10a)

z1 = ż0 = ẏ = h(x) − r = y − r (3.10b)
z2 = ż1 = L f h(x) − ṙ = ẏ − ṙ (3.10c)
. . . (3.10d)

zρ = Lρ−1
f h(x) − rρ−1 (3.10e)

Analogously to the original case, we achieve asymptotic output tracking with a full state feedback
gain K = (K0,K1, ...,Kρ), where K is an arbitrary constant making the augmented tracking error dy-
namics asymptotically stable.

By introducing the extra integrator into Equation (3.4) and using the feedback v = −Kz (Equation
(3.8)), we can conclude that the asymptotic output tracking input can be calculated as:

u = −
Lρf h(x) − r(ρ)

LgLρ−1
f h(x)

+

−

 ρ∑
i=1

Kiy
(i)

+ K0y


LgLρ−1

f h(x)
(3.11)

It is clearly visible, that the application of the technique to our SEIR control design model requires
the state information x = (S,E, I,R) at any given time.

4. State estimation

In this section, we will describe the state estimation approach with the corresponding control input
computation.

4.1. Extended Kalman filter for state estimation

For the state estimation, we apply a discrete-time nonlinear system model formally described as:

xk+1 = f (xk, uk) + wk (4.1a)
yk+1 = h(xk) + vk, (4.1b)

where w and v are additive process and output noise terms, i.e., independent random variables with
Gaussian distribution, having zero mean and covariance matrices Q and R, respectively.

Around this model, we construct a state estimator using the discrete-time EKF algorithm. The EKF
has two key attributes:

• x̂k| j represents the state estimated for time k at time j ( j ≤ k), initialized as x̂0|−1 = Ex0 , which is
the expected value based on prior knowledge of the system, without any measurements taken.
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• Pk| j denotes the state estimation error covariance matrix (i.e., the uncertainty of the estimation)
for time k calculated at time j, initialized as P0|−1 = E(x0 − x̂0|−1)(x0 − x̂0|−1)T and also based on
prior knowledge.

At each time step k = 0, 1, 2, ... the EKF algorithm executes two main steps:

1. Update (correction) of the current state estimate x̂k|k and current uncertainty Pk|k, based on the
previously predicted state x̂k|k−1, previously assumed uncertainty Pk|k−1, and the current measure-
ment yk.

2. Prediction of the state at the next time instance x̂k+1|k using the currently available state estimate
x̂k|k and the state transition function of the estimated model, i.e., f (xk, uk) from Equation (4.1).

Due to the fact, that functions ( f , h) can be nonlinear, the EKF extends the operating principle of
the linear Kalman filter algorithm by approximating the state transition and output matrices (A and C)
of a linear time-invariant (LTI) system using the Jacobians Ak =

∂ f
∂x

∣∣∣
x̂k|k

and Ck = ∂h
∂x

∣∣∣
x̂k|k−1

. Using this
notation, the above steps can be computed as:

1. Correction:

Kk = Pk|k−1CT
k (CkPk|k−1CT

k + Rk)−1 (4.2a)
x̂k|k = x̂k|k−1 + Kk(yk − h(x̂k|k−1, uk)) (4.2b)
Pk|k = Pk|k−1 − KkCkPk|k−1. (4.2c)

2. Prediction:

Pk+1|k = AkPk|kAT
k + Qk (4.3a)

x̂k+1|k = f (x̂k|k, uk). (4.3b)

4.2. Control input computation with estimated SEIR states

First of all, to obtain a suitable model (corresponding to the structure (4.1)), we introduce the
notations xk = (Sk Ek Ik Rk), yk = Ik, u = β, and discretize our control design model (SEIR) using a
simple forward Euler method and time step dt:

f (xk, uk) =


Sk−dtβkSkIk/N

Ek+dt(βkSkIk/N−k2Ek)
Ik+dt(k2Ek−k3Ik)

Rk+dtk3I

, h(xk) = Ik (4.4)

As we need the Jacobians for substitution into 4.2 and 4.3, we compute them as:

∂ f
∂x

=

 1−dtβI/N 0 −dtβS/N 0
dtβI/N 1−dtk2 dtβS/N 0

0 dtk2 1−dtk3 0
0 0 dtk3 1

, ∂h
∂x

=

(
0
0
1
0

)T

(4.5)
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Second, we derive the state transformation and the required output mapping as detailed in (3.10) -
(3.11). We compute the required Lie-derivatives for the continuous system (3.1) as follows

f (x) =

( 0
−k2 x2

k2 x2−k3 x3
k3 x3

)
, g(x) =

(
−k1 x3
k1 x3

0
0

)
, h(x) = x3 (4.6a)

Lgh(x) = 0 (4.6b)
L f h(x) = k2x3 + k3x3 (4.6c)

LgL f h(x) = k2x1x3 (4.6d)
L2

f h(x) = k3k2x2 − k2
3 x3 + k2

2 x2, (4.6e)

and conclude from the definition (3.2) that ρ = 2. However, as our technique for robustifying the
controller defines a transformed output (3.10) and effectively increases the relative degree by 1, we
have to consider the relative degree to be ρ = 3, and thus construct the input mapping required for
asymptotic output tracking as:

u =
r̈ + k3k2x2 + k2

2 x2 − k2
3 x3 + v

k2x1x3
(4.7)

creating a system equivalent to:

ż =

(
0 1 0
0 0 1
0 0 0

)
z +

(
0
0
1

)
v, (4.8a)

y = ( 1 0 0 ) z, (4.8b)
A ∈ Rρ×ρ, B ∈ Rρ×1,C ∈ R1×ρ (4.8c)

Now, by introducing the notation x̂k = (x̂1,k x̂2,k x̂3,k) = (Ŝk Êk Îk) for the state information computed
by the EKF, we can substitute the estimated state values into the above formulae, resulting in:

uk =
r̈k + k3k2 x̂2,k + k2

2 x̂2,k − k2
3 x̂3,k + vk

k2 x̂1,k x̂3,k
, (4.9)

Moreover, applying the input required for the asymptotic output tracking, we obtain:

uk =
r̈k + (k3k2 + k2

2)x̂2,k − k2
3 x̂3,k

k2 x̂1,k x̂3,k
−

K0yk + K1ẏk + K2ÿk

k2 x̂1 x̂3
(4.10)

Thus, the obtained feedback has the following PID structure:

vk = K0

∫
(rk − yk) + K1(rk − yk) + K2

d
dt

(rk − yk). (4.11)

Here, we must take two important notes. First, the formulae for feedback linearization requires the
derivatives of signals r and y, which, due to the EKF estimation, are available only at discrete time in-
stants. Therefore, we use the numerical derivatives, computed as ẏk = (yk+1−yk)/dt, ṙk = (rk+1−rk)/dt,
and provide a two-times continuously differentiable reference signal for the system. If the reference
signal is not differentiable, we can ensure the required smoothness by basic preprocessing techniques
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(see, e.g., [37]). Second, we emphasize, that despite the PID-like structure of (4.11), the constants
of the state feedback can be computed using a simple pole placement (computed for the system pre-
sented in Equation (4.8)). In our experiments, we chose the desired poles of the controlled system
to be −(0.339, 0.407, 0.475), values obtained empirically during the creation of our first modified
feedback-linearization based controller in [35]. For the EKF, we used dt = 0.5 (days) and assumed
Q = diag(1, 1, 1, 1), R = 0.01, and initial estimation error covariance P0|−1 = 0.01. We chose initial
state different from the true state value as follows: x̂0|−1 = N · ((1− 10−5), 5 · 10−6, 5 · 10−6, 0)T , induc-
ing a short transient period at the beginning of the simulation. The estimator used the same (possibly
mismatched) k2 and k3 parameters as the SEIR-based controller.

4.3. Control input computation with estimated SLPIAHRD states

For control setup II, we apply the discrete state estimation to the detailed simulation model given
in Equation (2.1), and compute the estimated control model states by merging the respective compart-
ments. Compared to the previous case, instead of substituting Equation (4.5) into Equation (4.1), we
derive the discrete transition and measurement functions (using the Euler method), as well as their
Jacobi matrices for the SLPIAHRD model as follows:

f (xk, uk) =


Sk− dt [βk Sk(Pk+Ik+δAk)/N]

Lk+dt [βk Sk(Pk+Ik+δAk)/N−αL],
Pk+dt [αLk−ζ Pk],
Ik+dt [γ ζ Pk−ρiIk],

Ak+dt [(1−γ) ζ Pk−ρa Ak],
Hk+dt [ρi η Ik−λHk],

Rk+dt [ρi(1−η) Ik+ρa Ak+λ (1−µ) Hk]
Dk+dt[ µ λHk]

, h(xk) = Hk,
∂h
∂x

=


0
0
0
0
0
1
0
0


T

(4.12a)

∂ f
∂x

=


1−dtβk(Pk+Ik+δAk)/N 0 −dtβkSk/N −dtβkSk/N −dtβkSkδ/N 0 0 0

dtβk(Pk+Ik+δAk)/N 1−dtα dtβkSk/N dtβkSk/N dtβkSkδ/N 0 0 0
0 dtα 1−dtζ 0 0 0 0 0
0 0 dtγζ 1−dtρI 0 0 0 0
0 0 dt(1−γ)ζ 0 1−dtρA 0 0 0
0 0 0 dtρIη 0 1−dtλ 0 0
0 0 0 dtρI (1−η) dtρA dtλ(1−µ) 1 0
0 0 0 0 0 dtµλ 0 1

 (4.12b)

For the controller, we used the same parameter combinations as above. For the EKF, we used
dt = 0.5 (day) and assumed Q = diag(10−6, 0, 0, 10−6, 10−6, 10−6, 0, 0), R = 1, and
initial estimation error covariance P0|−1 = 10−3. For the initial state, we used x̂0|−1 = N ·
(0.9999869, 10−5, 10−6, 10−6, 10−6, 10−7, 0, 0)T . The estimator used the same parameters as the
simulation model, apart from the mismatched parameters γ and δ, detailed in the next section.
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4.4. Synthesis of continuous and discrete-time subsystems

As we are presenting both discrete-time and continuous models for the control and estimation steps
in this paper, we would like to clarify the connection of all the components in this subsection. We carry
out all computations regarding the feedback-linearization and control on the continuous SEIR model.
The output of the simulation model, which is continuous as well, is sampled for the discrete-time EKF,
which in turn produces discrete state estimations. These estimations are used for computing the input
of the system by substituting the obtained values into the state-feedback and input-mapping formulae.
The obtained discrete-time input signal is fed back into the simulation model using zero-order hold.
The derivatives of the discrete time signals (where needed) are approximated by the differences of the
consecutive data samples.

5. Results and discussion

To illustrate and test the operation of the previously presented control setups, we carried out five
experiments for the control and reconstruction of historical epidemic data, altering some parameters of
the control model and the EKF (compared in Table 2).

We chose Sweden’s and Hungary’s estimated infection data from the interval 15/08/2020 –
15/08/2021 as a base for our reference signals, an interval containing two epidemic peaks for both
countries. For the sake of simplicity, in both cases, we assumed the same model parameters as in
the case of Hungary (as shown in Table 1, and obtained through parameter estimation and statistical
methods detailed in [15]). We set the parameters of the simulation model as slowly-varying with the
weighted average of the parameter values being used according to the dominance of the respective
virus variant at the given time (detailed in [35]).

The simulations were run in Matlab/Simulink using the ode45 solver with relative tolerance 10−10,
on a computer with processor Intel Core i7-8565u (1.8–4.6 GHz) and 16GB RAM, requiring between
45–90s per simulation (appr. 1.5 hours per control setup).

To illustrate the robustness of the different scenarious, we altered the parameters of the model(s)
used for control and estimation in the different controller setups. The comparison of the applied pa-
rameter errors in the different scenarios is shown in Table 2.

5.1. Contol setup 0: robustness without state estimation on Sweden’s data

In this experiment, we used control setup 0 (Section 3.1) for reference tracking control of the SLPI-
AHRD model using Sweden’s data. This setup assumes that all state variables of the simulation model
are known at all times, and we computed the states of the control model through the lumping of the
respective compartments.

Table 2. Listing of parameter errors applied in different control setups.

k2 k3 γ δ

Control setup 0. 20–200% 20–200% - -
Control setup I. 15–300% 15–300% - -
Control setup II. 10–300% 10–300% 40–165% 40–132%
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Figure 5. Control Setup 0: illustration of the Susceptible and Recovered compartments of
the control design model.
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Figure 6. Control setup 0: illustration of the simulated Exposed and Infected (Exposed SIM,
Infected SIM) compartments of the control design model along the reference signal (Infected
REF). The dashed lines show the trajectory obtained using the nominal k2 and k3 parameters,
and the shaded area shows the deviation σ and 2σ resulting from the parameter alterations.
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Figure 7. Control setup 0: the computed control input (i.e., the reproduction rate), applied
to the simulation model. Following a transient period at the beginning (resulting from initial
state mismatch), the curve shows almost no deviation in spite of the parameter uncertainties.
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We altered the parameters k2 and k3 on a 10×10 grid (i.e., (k2, k3) ∈ {(0.2 ·m2k2, 0.2 ·m3k3)|m2,m3 =

1 . . . 10} applying 20−200% relative error compared to the nominal value. In total, we ran 100 simula-
tions, the results (nominal trajectories and the computed standard deviation) being illustrated in Figures
5–7. We can observe, that the reference signal is closely followed by the controlled system’s output
even for significant changes of the parameter values, showing the robustness of the proposed controller
setup. Additionally, Figure 7 confirms that even for the simulations with high inaccuracies, there is
no significant change in the computed input, which apart from the transient period at the beginning
remains in a feasible range for the observed epidemic.

5.2. Control setup I: robustness with SEIR state estimation on Sweden’s data

In this scenario, we examined the performance of the system in control setup I. (Section 3.2), using
an EKF constructed around the SEIR model and Sweden’s infection data as a reference signal.

Similarly to the previous scenario, we altered the relative error of parameters k2, k3 for the con-
trol model (affecting both the state estimation and the feedback linearization) on a 9 × 9 size grid
{0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5, 3}2 (the middle of the grid (1, 1) being the nominal parameter values).

The simulation results are illustrated in Figures 8–10. Figure 8 compares the estimated and simu-
lated values of susceptible and recovered individuals: compartments S and R of the simulation model
plotted alongside the estimated compartments Ŝ and R̂ of the control design model, as computed by
the EKF algorithm.

Similarly, Figure 9 displays the same comparison for estimated and simulated E = L and I =

P + I + A compartments. It should be noted, however, that deviations of the simulated compartments
are scarcely visible in any of the figures (being several magnitudes lower than other plotted quantities).
Finally, Figure 10 contains the computed input fed into the simulation model.

Qualitatively matching the results described in [42], where an experiment with similar setup but
different aim and data (i.e., stricter reference curve, to evaluate performance in case of more intense
epidemic control based on Hungary’s data), we can observe that the controller performed in an accept-
able range for all examined parameter combinations.

First, as we can see looking at the continuous and dashed lines in Figures 8 and 9, the EKF pro-
duces precise estimation of states in the case of nominal parameters, regardless of the fact that these
nominal values were obtained by the simple intuitive matching of compartments based on their func-
tionality, rather than any kind of formal parameter computation (e.g., by fitting through optimization).
As for the mismatched parameters, expectedly they produce significant estimation errors, especially in
compartments which do not affect the system’s output (like R). On the other hand, simulation model
trajectories show minimal deviance (approx. 2 magnitudes lower, considering the mean tracking error).
The input visible in Figure 10 also shows small variation, emphasizing the error-prone operation of the
proposed control law and EKF-based estimation setup.
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Figure 8. Control Setup I: Comparison of simulated and estimated trajectories for Suscepti-
ble and Recovered compartments. Dashed lines show the trajectories of the simulation model
compartments: Susceptible (SIM) S and Recovered (SIM) R; continuous lines represent the
values computed by the EKF Ŝ and R̂ using the nominal k2 and k3 parameters. The shaded
area around each curve shows the deviation σ and 2σ of the respective variable caused by
the mismatched k2 and k3 values.
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Figure 9. Control setup I: Comparison of simulated and estimated trajectories for Exposed
and Infected compartments. Dashed lines show the trajectories of the simulation model com-
partments: Exposed (SIM) E = L and Infected (SIM) I = I+A+P; continuous lines represent
the estimations of the EKF: Exposed (EKF) Ê and Infected (EKF) Î using the nominal k2 and
k3 parameters. The shaded area around each curve (hardly visible for dashed lines) illustrates
the deviation σ and 2·σ of the respective variable caused by the mismatched k2 and k3 values.
The green continuous line shows the reference signal r, closely tracked by the controller in
spite of the significant state estimation errors.
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Figure 10. Control setup I: Input β of the simulation model (i.e. the desired reproduction
rate). The continuous lines show the input computed by the controller with nominal k2 and
k3, and the shaded area shows the deviation (σ and 2 ·σ) resulting from mismatched parame-
ters. The small deviation values show the robustness of the solution (the input calculated for
tracking the same reference curve is barely affected by the parameters used for computing
the state observation and feedback linearization.)

5.3. Control setup II: robustness with SLPIAHRD state estimation on Sweden’s data

In this experiment, we examined the performance of the system in control setup II (Section 3.3).
Differently from the previous case, this time we used an EKF constructed around the SLPIAHRD
model with mismatched parameters. Inspired by our experience during the Hungarian COVID-19
waves, we chose the uncertain parameters to be γ (probability of symptomatic infection) and δ (relative
infectiousness of asymptomatic individuals), as these are the hardest to accurately determine using
statistical methods. Similarly to the previous scenario, we also altered the parameters k2, k3 of the
control model.

We ran 81 simulations, altering k2, k3, γ, δ on a 3 × 3 × 3 × 3 sized grid: k2, k3 ∈ {0.5, 1, 1.5} of their
nominal values. We used γ ∈ {0.25, 0.6, 0.99} and δ ∈ {0.3, 0.750.99} (these being parameters showing
probability, thus having a feasible range [0, 1]; the middle value for both parameters corresponds to
their nominal value, as shown in the parameter table).

The results of the computations can be seen in Figures 11–17. From Figures 11 and 12 we can
see that the applied parametric uncertainties cause significant deviations in the state variable values of
the simulation model. Specifically, the presymptomatic and asymptomatic numbers are affected, while
the number of hospitalized people shows a relatively smaller variation. Naturally, these uncertainties
have a huge impact on the state estimations of the EKF which uses the nominal model, as it is shown
in Figures 13 and 14. The deviation of the infected compartment is shown separately in Figure 15.
We can observe that the uncertainty is the largest at the most critical point, i.e., around the peak of
the first massive wave. However, as Figure 16 shows, this deviation can be greatly reduced using the
proposed feedback scheme, even with a highly uncertain state estimation. Finally, Figure 17 shows
the computed transmission rate. Although the deviation of β is naturally larger than in the previous
scenario, the estimation quality is still acceptable in this realistic situation.

From the results of control setup II, two significant conclusions can be drawn. First, as it is visible in
Figure 15, asymptotically tracking a reference for a non-measurable ‘output’ of the simulation model
(P+I+A) estimated using mismatched parameters will result in the estimation error directly appearing
in the reference tracking performance - hence the high deviation in the I compartment. However, as
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Figure 11. Control setup II: simulated states S and R of the simulation model and their
standard deviation (shaded area) resulting from the parameter uncertainties.
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Figure 12. Control setup II: simulated states L−H of the simulation model, and their standard
deviation (shaded area) resulting from the parameter uncertainties.

shown in Figure 16, the controller – in spite of the serious state estimation errors, combined with the
also mismatched control model parameters distorting the input mapping – can effectively minimize
the difference between the estimated model output and the reference signal. Not surprisingly, as we
can observe in Figures 11 and 12, this estimation bias (effectively causing the simulation model to
follow different references in the simulations) can be seen in the deviation of the model states as well.
However, as the much higher deviance values in Figures 13 and 14 show (especially in the case of
compartments I and A highly affected by the uncertain parameters), the controller even in this case
greatly reduces the spread caused by the incorrect state estimation, and maintains all important qualita-
tive properties of the trajectory to be tracked. As a second observation, the small deviance values of the
input β (visible in Figure 17) must be emphasized, showing that the incorrect controller and estimation
parameters do not influence the input significantly. Consequently, even though imperfectly estimated
output used for reference tracking can naturally decrease the tracking performance, we haven’t experi-
enced problematic inputs (abrupt changes, out-of-bound values, etc).

Mathematical Biosciences and Engineering Volume 22, Issue 1, 109–137.



128

08/20 09/20 10/20 11/20 12/20 01/21 02/21 03/21 04/21 05/21 06/21 07/21 08/21
Time [days]

0
1
2
3
4
5
6
7
8
9

10

N
r.

 o
f i

nf
ec

te
d

106

0
10
20
30
40
50
60
70
80
90
100

%
 o

f p
op

ul
at

io
n

EKF SLPIAHRD states

S
R

Figure 13. Control setup II: estimated states S and R of the simulation model and their
standard deviation (shaded area) resulting from the parameter uncertainties.
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Figure 14. Control setup II: estimated states L−H of the simulation model, and their standard
deviation (shaded area) resulting from the parameter uncertainties.
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Figure 15. Control setup II: comparison of reference signal with the real output of the
simulation model.
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Figure 16. Control setup II: comparison of reference signal with the estimated output of the
simulation model, as seen by the controller.
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Figure 17. Control setup II: Input (i.e. the desired reproduction rate) applied to the simula-
tion model in the simulations. The shaded areas represent the standard deviation (σ and 2 ·σ)
of the signal resulting from the parameter uncertainties.
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5.4. Testing: reconstruction of Hungarian data using SLPIAHRD state estimation

As it is summarized e.g., in [44], such a reference tracking scenario can also be viewed as an
inversion of a dynamical model. By trying to track / reproduce the actual output of the epidemic
process (as observed during the pandemic) with our model, the model’s input (desired reproduction
rate, computed by the controller) effectively becomes an estimation of the actual reproduction rate of
the epidemic. In this way, the reproduction of model trajectories from the output can be transformed
into a control problem, solved by the presented feedback-linearization technique.

In this scenario, we use control setup II. to track the transmission rate and the number of active in-
fections measured (or more precisely, estimated from multiple factors) in Hungary between 15/08/2020
– 15/08/2021. Similarly to the previous scenario, we alter the parameters k2, k3, γ, δ on the same grid,
totaling 81 simulations.

Unfortunately, we cannot use β directly to compare our results to those published in the relevant
literature, thus we compute the effective reproduction number of the epidemic from it. As explained
in [7], the time-varying effective reproduction number of an epidemic corresponds to the number of
susceptible individuals an infectious person will infect on average, given the circumstances at the given
time, and can be derived for the SLPIAHRD model as:

Rc(t) = β(t)
S (t)
N

(
1
ζ

+
γ

ρI
+
δ(1 − γ)
ρA

)
. (5.1)

The effective reproduction number obtained as a result of this simulation can be seen in Figure 18,
along with the effective reproduction number estimated for Hungary by the OWID [41] and by the
ÁtlóTeam [45], both using a classical statistical approach.

For comparison, we also include our own previous estimation published in [36], created using the
same robust controller setup, but without any state estimation (assuming all states of the simulation
model to be directly measurable). In that case, we used the SEIR model to compute the effective
reproduction number from β, derived as:

Rc(t) = β(t)
S(t)
N

1
k3

(5.2)

The results of those simulations are shown in Figure 19, compared again with the results of the OWID
and the ÁtlóTeam.

5.5. Testing: reconstruction using public data of Sweden

Similarly to the Hungarian reconstruction scenario above, for the sake of completeness and valida-
tion we also compute the effective reproduction number for Sweden, using control setup II (EKF based
on the SLPIAHRD model, with altered k2, k3, γ, δ parameters). In this case, we could only compare our
results to the reproduction number computed by OWID. As it is visible in Figure 20, following a brief
transient period (while the state estimator and the controller converge), we could track the reproduction
number with high accuracy (and low deviation, in spite of the serious parameter mismatch).

5.6. Comparison: Hungarian and Swedish data

During the COVID-19 outbreak, Hungary and Sweden opted for drastically different measures for
dealing with the high number of infections and the burden it put on the country’s healthcare system.
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Figure 18. Reconstruction: Comparison of reproduction numbers, as estimated in Hungary
by OWID [41], by the ÁtlóTeam [45], and as reconstructed using control setup II. The shaded
blue area shows the standard deviation of our estimation for the different simulations.
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Figure 19. Reconstruction: Comparison of reproduction numbers, as estimated in Hungary
by OWID [41], by the ÁtlóTeam [45], and as reconstructed by our algorithm (control setup
presented in [36] using the true SLPIAHRD states without EKF estimation, but with serious
parameter mismatch between the simulation and the control design model). The shaded blue
area shows the standard deviation of our estimation for the different simulations.
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Figure 20. Reconstruction: Comparison of reproduction numbers, as estimated in SWEDEN
by OWID [41] and as reconstructed using control setup II. The shaded blue area shows the
standard deviation of our estimation for the different simulations.
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Figure 21. Reconstruction: comparison of reproduction numbers, as estimated in Sweden
and Hungary, using control setup II. The shaded area shows the standard deviation for the
different simulations.

Hungary initially opted for a strict suppression strategy, practically eliminating the first epidemic wave,
and gradually releasing restrictions later, resulting in serious peaks in the second (around 10/20-11/20)
and third (02/21) waves. Sweden on the other hand adopted a more permissive intervention strategy
in the beginning, trying not only to mitigate the effects of the pandemic, but also minimizing the
negative effects of the restrictions on the economy. As a result, more serious first and second waves
were followed by smaller outbreaks. This difference of strategy appears in the reconstructions of the
pathogen’s reproduction numbers in the two countries, as illustrated in Figure 21.

6. Conclusions

The goal of this paper was to study the possibilities of feedback linearization-based epidemic con-
trol combined with state estimation in the presence of parametric and modeling uncertainties. For this,
we first proposed a reference tracking control scheme for a nonlinear 8-compartment epidemic model.
The system input is the transmission rate, while the controlled output is the number of infected people
within the population. The model used for control design is a simplified 4-compartment SEIR system
where the state variables are mapped to that of the more detailed model. The control law is based on
feedback linearization and asymptotic output tracking in a servo configuration. The state information
for the feedback is computed by an extended Kalman filter. Two control setups containing state esti-
mation were tested: in the first one, the state estimator was based on the simplified model, while in the
second scenario, the EKF also used the detailed simulation model. The robustness of both scenarios
were studied for several different parameter combinations in a range of 10% –300% of their nominal
values. Although the state estimation errors were significant in the case of uncertain parameters and
model mismatch, the tracking performance was good in all studied cases. The proposed approach was
also illustrated as a possible tool for retrospective data (especially, transmission rate) reconstruction.
From this respect, we can say that the applied model is ‘well invertible’ in the sense that the variance
of the transmission rate was small in all computations. In summary, the most important message of
the study is that the combination of a state estimator and an appropriately designed nonlinear state
feedback can be successful even if the control model contains significant modeling and/or parametric
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uncertainties. This is promising from the point of view of possible applications.
The main limitations of the study are the following. First, the number of infected people was used

as observed ‘performance’ output, while it is known that it is challenging to determine it in real time.
However, there are several statistical and dynamical-model-based methods to refine this number from,
e.g., the number of hospitalized people and/or from wastewater samples [46–48]. Second, the manipu-
lated input is assumed to be a variable which can be changed in each sampling instant. This makes the
proposed methodology more suitable for data reconstruction as it was illustrated in the case studies.
However, the generated inputs and trajectories can be used as feasible starting points for more realis-
tic approaches such as model predictive control (MPC). Moreover, MPC generally also requires state
estimation in a similar setup, and an important message of this study is that an appropriate feedback
may still be operational with high estimation uncertainties caused by model mismatch. Additionally,
we have to note that the properties of the entire control loop were not mathematically analyzed. In
this respect, the most relevant results from the literature mentioned in the Introduction are [32–34].
However, model uncertainties are not considered in these articles.

Further work will be focused on the application of more advanced robust controllers on the lin-
earized system as well as on the translation of the computed input to specific epidemiological measures
using our agent-based simulator [11].
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the COVID-19 outbreak in Hungary and post-lockdown scenarios, Viruses, 12 (2020), 708.
https://doi.org/10.3390/v12070708

8. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc.
R. Soc. London A., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

9. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex
networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925

10. L. Stella, A. P. Martı́nez, D. Bauso, P. Colaneri, The role of asymptomatic infections in the
COVID-19 epidemic via complex networks and stability analysis, SIAM J. Control Optim., 60
(2022), S119–S144. https://doi.org/10.1137/20m1373335

11. I. Z. Reguly, D. Csercsik, J. Juhász, K. Tornai, Z. Bujtár, G. Horváth, et al., Microsimulation
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36. B. Csutak, K. M. Jenei, G. Szederkényi, Linearization based robust reference track-
ing control of a compartmental epidemiological model, in Proc. Cont., 2023, 66–71.
https://doi.org/10.1109/PC58330.2023.10217568
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