The coronavirus disease 2019 (COVID-19) outbreak has resulted in countless infections and deaths worldwide, posing increasing challenges for the health care system. The use of artificial intelligence to assist in diagnosis not only had a high accuracy rate but also saved time and effort in the sudden outbreak phase with the lack of doctors and medical equipment. This study aimed to propose a weakly supervised COVID-19 classification network (W-COVNet). This network was divided into three main modules: weakly supervised feature selection module (W-FS), deep learning bilinear feature fusion module (DBFF) and Grad-CAM++ based network visualization module (Grad-Ⅴ). The first module, W-FS, mainly removed redundant background features from computed tomography (CT) images, performed feature selection and retained core feature regions. The second module, DBFF, mainly used two symmetric networks to extract different features and thus obtain rich complementary features. The third module, Grad-Ⅴ, allowed the visualization of lesions in unlabeled images. A fivefold cross-validation experiment showed an average classification accuracy of 85.3%, and a comparison with seven advanced classification models showed that our proposed network had a better performance.
Citation: Jingyao Liu, Qinghe Feng, Yu Miao, Wei He, Weili Shi, Zhengang Jiang. COVID-19 disease identification network based on weakly supervised feature selection[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 9327-9348. doi: 10.3934/mbe.2023409
The coronavirus disease 2019 (COVID-19) outbreak has resulted in countless infections and deaths worldwide, posing increasing challenges for the health care system. The use of artificial intelligence to assist in diagnosis not only had a high accuracy rate but also saved time and effort in the sudden outbreak phase with the lack of doctors and medical equipment. This study aimed to propose a weakly supervised COVID-19 classification network (W-COVNet). This network was divided into three main modules: weakly supervised feature selection module (W-FS), deep learning bilinear feature fusion module (DBFF) and Grad-CAM++ based network visualization module (Grad-Ⅴ). The first module, W-FS, mainly removed redundant background features from computed tomography (CT) images, performed feature selection and retained core feature regions. The second module, DBFF, mainly used two symmetric networks to extract different features and thus obtain rich complementary features. The third module, Grad-Ⅴ, allowed the visualization of lesions in unlabeled images. A fivefold cross-validation experiment showed an average classification accuracy of 85.3%, and a comparison with seven advanced classification models showed that our proposed network had a better performance.
[1] | O. A. Ataguba, J. E. Ataguba, Social determinants of health: the role of effective communication in the COVID-19 pandemic in developing countries, Global Health Action, 1 (2020), 1788263. https://doi.org/10.1080/16549716.2020.1788263 doi: 10.1080/16549716.2020.1788263 |
[2] | World Health Organization, WHO coronavirus disease (COVID-19) Dashboard, 2022. Available from: https://covid19.who.int/?gclid = Cj0KCQjwtZH7BRDzARIsAGjbK2ZXWRpJROEl97HGmSOx0_ydkVbc02Ka1FlcysGjEI7hnaIeR6xWhr4aAu57EALw_wcB. |
[3] | Q. Huang, X. Huang, Z. Kong, X. Li, D. Tao, Bi-phase evolutionary searching for biclusters in gene expression data, IEEE Trans. Evol. Comput., 5 (2018), 803–814. https://doi.org/10.1109/TEVC.2018.2884521 doi: 10.1109/TEVC.2018.2884521 |
[4] | Q. Huang, J. Yao, J. Li, M. Li, M. R. Pickering, X. Li, Measurement of quasi-static 3-D knee joint movement based on the registration from CT to US, IEEE Trans. Ultrason. Free, 6 (2020), 1141–50. https://doi.org/10.1109/TUFFC.2020.2965149 doi: 10.1109/TUFFC.2020.2965149 |
[5] | J. Xi, Z. Miao, L. Liu, X. Yang, W. Zhang, Q. Huang, et al., Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples, Neurocomputing, 468 (2022), 60–70. https://doi.org/10.1016/j.neucom.2021.10.013 doi: 10.1016/j.neucom.2021.10.013 |
[6] | Q. Huang, F. Pan, W. Li, F. Yuan, H. Hu, J. Huang, et al., Differential diagnosis of atypical hepatocellular carcinoma in contrast-enhanced ultrasound using spatio-temporal diagnostic semantics, IEEE J. Biomed. Health, 10 (2020), 2860–2869. https://doi.org/10.1109/JBHI.2020.2977937 doi: 10.1109/JBHI.2020.2977937 |
[7] | J. Xi, D. Wang, X. Yang, W. Zhang, Q. Huang, Cancer omic data based explainable AI drug recommendation inference: A traceability perspective for explainability, Biomed. Signal Process., 79 (2023), 104144. https://doi.org/10.1016/j.bspc.2022.104144 doi: 10.1016/j.bspc.2022.104144 |
[8] | W. Shi, W. N. Chen, S. Kwong, J. Zhang, H. Wang, T. Gu, et al., A coevolutionary estimation of distribution algorithm for group insurance portfolio, IEEE Trans. Syst. Man CY-S, 11 (2021), 6714–28. https://doi.org/10.1109/TSMC.2021.3096013 doi: 10.1109/TSMC.2021.3096013 |
[9] | Y. Yuan, M. Chao, Y.C. Lo, Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance, IEEE Trans. Med. Imaging, 9 (2017), 1876–1886. https://doi.org/10.1109/TMI.2017.2695227 doi: 10.1109/TMI.2017.2695227 |
[10] | P. Liskowski, K. Krawiec, Segmenting retinal blood vessels with deep neural networks, IEEE Trans. Med. Imaging, 11 (2016), 2369–2380. https://doi.org/10.1109/TMI.2016.2546227 doi: 10.1109/TMI.2016.2546227 |
[11] | H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu, X. Cao, Joint optic disc and cup segmentation based on multi-label deep network and polar transformation, IEEE Trans. Med. Imaging, 7 (2018), 1597–1605. https://doi.org/10.1109/TMI.2018.2791488 doi: 10.1109/TMI.2018.2791488 |
[12] | H. Fu, Y. Xu, S. Lin, X. Zhang, D. W. K. Wong, J. Liu, et al., Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT, IEEE Trans. Med. Imaging, 9 (2017), 1930–1938. https://doi.org/10.1109/TMI.2017.2703147 doi: 10.1109/TMI.2017.2703147 |
[13] | M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, S. Mougiakakou, Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, IEEE Trans. Med. Imaging, 5 (2016), 1207–1216. https://doi.org/10.1109/TMI.2016.2535865 doi: 10.1109/TMI.2016.2535865 |
[14] | J. M. Wolterink, T. Leiner, M. A. Viergever, I. Išgum, Generative adversarial networks for noise reduction in low-dose CT, IEEE Trans. Med. Imaging, 12 (2017), 2536–2345. https://doi.org/10.1109/TMI.2017.2708987 doi: 10.1109/TMI.2017.2708987 |
[15] | S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, N. Navab, Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images, IEEE Trans. Med. Imaging, 5 (2016), 1313–1321. https://doi.org/10.1109/TMI.2016.2528120 doi: 10.1109/TMI.2016.2528120 |
[16] | X. Zhang, G. Wang, S. G. Zhao, CapsNet-COVID19: Lung CT image classification method based on CapsNet model, Math. Biosci. Eng., 19 (2022), 5055–5074. https://doi.org/10.3934/mbe.2022236 doi: 10.3934/mbe.2022236 |
[17] | M. J. Horry, S. Chakraborty, B. Pradhan, M. Fallahpoor, H. Chegeni, M. Paul, Factors determining generalization in deep learning models for scoring COVID-CT images, Math. Biosci. Eng., 18 (2021), 9264–9293. https://doi.org/10.3934/mbe.2021456 doi: 10.3934/mbe.2021456 |
[18] | A. Singh, K. K. Singh, M. Greguš, I. Izonin, CNGOD-An improved convolution neural network with grasshopper optimization for detection of COVID-19, Math. Biosci. Eng., 19 (2022), 12518–12531. https://doi.org/10.3934/mbe.2022584 doi: 10.3934/mbe.2022584 |
[19] | S. H. Wang, S. C. Satapathy, M. X. Xie, Y. D. Zhang, ELUCNN for explainable COVID-19 diagnosis, Soft Comput., 2023 (2023), 1–17. https://doi.org/10.1007/s00500-023-07813-w doi: 10.1007/s00500-023-07813-w |
[20] | Y. Zhang, M. A. Khan, Z. Zhu, S. Wang, SNELM: SqueezeNet-guided ELM for COVID-19 recognition, Comput. Syst. Sci. Eng., 1 (2023), 13–26. https://doi.org/10.32604/csse.2023.034172 doi: 10.32604/csse.2023.034172 |
[21] | Y. Zhang, X. Zhang, W. Zhu, ANC: Attention network for COVID-19 explainable diagnosis based on convolutional block attention module, CMES COMP Model. Eng., 3 (2021), 1037–1058. https://doi.org/10.32604/cmes.2021.015807 doi: 10.32604/cmes.2021.015807 |
[22] | C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang, P. R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Ag., 3 (2020), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924 doi: 10.1016/j.ijantimicag.2020.105924 |
[23] | E. Irmak, Implementation of convolutional neural network approach for COVID-19 disease detection, Physiol. Genomics, 12 (2020), 590–601. https://doi.org/10.1152/physiolgenomics.00084.2020 doi: 10.1152/physiolgenomics.00084.2020 |
[24] | F. Xie, J. Xi, Q. Duan, Driver attribute filling for genes in interaction network via modularity subspace-based concept learning from small samples, Complexity, 2020 (2020), 1–12. https://doi.org/10.1155/2020/6643551 doi: 10.1155/2020/6643551 |
[25] | Q. Huang, F. Zhang, X. Li, A new breast tumor ultrasonography CAD system based on decision tree and BI-RADS features, World Wide Web, 21 (2018), 1491–1504. https://doi.org/10.1007/s11280-017-0522-5 doi: 10.1007/s11280-017-0522-5 |
[26] | G. Dong, Z. C. Zhang, J. Feng, X. M. Zhao, MorbidGCN: Prediction of multimorbidity with a graph convolutional network based on integration of population phenotypes and disease network, Brief Bioinform., 4 (2022). https://doi.org/10.1093/bib/bbac255 doi: 10.1093/bib/bbac255 |
[27] | S. Wang, P. Li, P. Chen, P. Phillips, G. Liu, S. Du, et al., Pathological brain detection via wavelet packet tsallis entropy and real-coded biogeography-based optimization, Fund. Inform., 4 (2017), 275–291. https://doi.org/10.3233/FI-2017-1492 doi: 10.3233/FI-2017-1492 |
[28] | L. V. Fulton, D. Dolezel, J. Harrop, Y. Yan, C. P. Fulton, Classification of Alzheimer's disease with and without imagery using gradient boosted machines and ResNet-50, Brain Sci., 9 (2019), 212. https://doi.org/10.3390/brainsci9090212 doi: 10.3390/brainsci9090212 |
[29] | Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng, Y. Yang, Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification, preprint, arXiv: 1801.09927. |
[30] | P. P. Ypsilantis, G. Montana, Learning what to look in chest X-rays with a recurrent visual attention model, preprint, arXiv: 1701.06452. |
[31] | E. Pesce, S. J. Withey, P. P. Ypsilantis, R. Bakewell, V. Goh, G. Montana, Learning to detect chest radiographs containing pulmonary lesions using visual attention networks, Med. Image Anal., 53 (2019), 26–38. https://doi.org/10.1016/j.media.2018.12.007 doi: 10.1016/j.media.2018.12.007 |
[32] | M. Toğaçar, B. Ergen, Z. Cömert, COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches, Comput. Biol. Med., 121 (2020), 103805.https://doi.org/10.1016/j.compbiomed.2020.103805 doi: 10.1016/j.compbiomed.2020.103805 |
[33] | J. P. Cohen, L. Dao, K. Roth, P. Morrison, Y. Bengio, A. F. Abbasi, et al., Predicting covid-19 pneumonia severity on chest x-ray with deep learning, Cureus J. Med. Sci., 12 (2020), e9448. https://doi.org/10.7759/cureus.9448 doi: 10.7759/cureus.9448 |
[34] | Q. Ni, Z. Y. Sun, L. Qi, W. Chen, Y. Yang, L. Wang, et al., A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images, Eur. Radiol., 30 (2020), 6517–6527. https://doi.org/10.1007/s00330-020-07044-9 doi: 10.1007/s00330-020-07044-9 |
[35] | H. Ko, H. Chung, W. S. Kang, K. W. Kim, Y. Shin, S. J. Kang, et al., COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: model development and validation, J. Med. Int. Res., 6 (2020), e19569. https://doi.org/10.2196/19569 doi: 10.2196/19569 |
[36] | X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, et al., A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT, IEEE Trans. Med. Imaging, 8 (2020), 2615–2625. https://doi.org/10.1109/TMI.2020.2995965 doi: 10.1109/TMI.2020.2995965 |
[37] | A. I. Khan, J. L. Shah, M. M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, Comput. Method Prog. Bio., 196 (2020), 105581. https://doi.org/10.1016/j.cmpb.2020.105581 doi: 10.1016/j.cmpb.2020.105581 |
[38] | L. Hussain, T. Nguyen, H. Li, A. A. Abbasi, K. J. Lone, Z. Zhao, et al., Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection, Biomed. Eng. Online, 19 (2020), 1–18. https://doi.org/10.1186/s12938-020-00831-x doi: 10.1186/s12938-020-00831-x |
[39] | J. Zhao, Y. Zhang, X. He, P. Xie, Covid-ct-dataset: a ct scan dataset about covid-19, 2020. |
[40] | COVID-19 CT segmentation dataset. Available from: https://medicalsegmentation.com/covid19/. |
[41] | D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Fu, et al., Inf-net: Automatic covid-19 lung infection segmentation from ct images, IEEE Trans. Med. Imaging, 8 (2020), 2626–2637. https://doi.org/10.1109/TMI.2020.2996645 doi: 10.1109/TMI.2020.2996645 |
[42] | S. H. Wang, V. V. Govindaraj, J. M. Górriz, X. Zhang, Y. D. Zhang, Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network, Inform. Fusion, 67 (2021), 208–229. https://doi.org/10.1016/j.inffus.2020.10.004 doi: 10.1016/j.inffus.2020.10.004 |
[43] | R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, et al., Grad-cam: Visual explanations from deep networks via gradient-based localization, Int. J. Comput. Vision, 2 (2020), 336–359. https://doi.org/10.1007/s11263-019-01228-7 doi: 10.1007/s11263-019-01228-7 |
[44] | A. Chattopadhay, A. Sarkar, P. Howlader, V. N. Balasubramanian, Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks, in 2018 IEEE winter conference on applications of computer vision (WACV), (2018), 839–847. https://doi.org/10.1109/WACV.2018.00097 |
[45] | D. Chicco, N. Tötsch, G. Jurman, The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation, Biodata Min., 1 (2021), 1–22. https://doi.org/10.1186/s13040-021-00244-z doi: 10.1186/s13040-021-00244-z |
[46] | Q. Huang, Y. Lei, W. Xing, C. He, G. Wei, Z. Miao, et al., Evaluation of pulmonary edema using ultrasound imaging in patients with COVID-19 pneumonia based on a non-local Channel attention ResNet, Ultrasound Med. Biol., 5 (2022), 945–953. https://doi.org/10.1016/j.ultrasmedbio.2022.01.023 doi: 10.1016/j.ultrasmedbio.2022.01.023 |
[47] | F. J. P. Montalbo, Diagnosing Covid-19 chest x-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion, Biomed. Signal Process., 68 (2021), 102583. https://doi.org/10.1016/j.bspc.2021.102583 doi: 10.1016/j.bspc.2021.102583 |
[48] | R. Mastouri, N. Khlifa, H. Neji, S. Hantous-Zannad, A bilinear convolutional neural network for lung nodules classification on CT images, Int. J. Comput. Ass Rad, 16 (2021), 91–101. https://doi.org/10.1007/s11548-020-02283-z doi: 10.1007/s11548-020-02283-z |
[49] | A. Garg, S. Salehi, M. La Rocca, R. Garner, D. Duncan, Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT, Expert Syst. Appl., 195 (2022), 116540. https://doi.org/10.1016/j.eswa.2022.116540 doi: 10.1016/j.eswa.2022.116540 |
[50] | F. Chollet, Xception: Deep learning with depthwise separable convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), (2017), 1251–1258. https://doi.org/10.48550/arXiv.1610.02357 |
[51] | H. Panwar, P. Gupta, M. K. Siddiqui, R. Morales-Menendez, P. Bhardwaj, V. Singh, A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images, Chaos Soliton Fract., 140 (2020), 110190. https://doi.org/10.1016/j.chaos.2020.110190 doi: 10.1016/j.chaos.2020.110190 |