[1]
|
M. M. Hoeper, M. Humbert, R. Souza, M. Idrees, S. M. Kawut, K. Sliwa-Hahnle, et al., A global view of pulmonary hypertension, Lancet Respir. Med., 4 (2016), 306–322. https://doi.org/10.1016/s2213-2600(15)00543-3 doi: 10.1016/s2213-2600(15)00543-3
|
[2]
|
H. Zeng, X. Liu, Y. Zhang, Identification of potential biomarkers and immune infiltration characteristics in idiopathic pulmonary arterial hypertension using bioinformatics analysis, Front. Cardiovasc. Med., 8 (2021). https://doi.org/10.3389/fcvm.2021.624714 doi: 10.3389/fcvm.2021.624714
|
[3]
|
N. Galiè, M. Humbert, J. Vachiery, S. Gibbs, I. Lang, A. Torbicki, et al., 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension, Rev. Esp. Cardiol. (Engl. Ed.), 69 (2016), 177. https://doi.org/10.1016/j.rec.2016.01.002 doi: 10.1016/j.rec.2016.01.002
|
[4]
|
V. V. McLaughlin, M. D. McGoon, Pulmonary Arterial Hypertension, Circulation, 114 (2006), 1417–1431. https://doi.org/10.1161/CIRCULATIONAHA.104.503540 doi: 10.1161/CIRCULATIONAHA.104.503540
|
[5]
|
P. Pahal, S. Sharma, Idiopathic Pulmonary Artery Hypertension, StatPearls Publishing, Florida, 2022.
|
[6]
|
E. Spiekerkoetter, S. M. Kawut, V. A. de Jesus Perez, New and emerging therapies for pulmonary arterial hypertension, Annu. Rev. Med., 70 (2019), 45–59. https://doi.org/10.1146/annurev-med-041717-085955 doi: 10.1146/annurev-med-041717-085955
|
[7]
|
J. Y. Cao, K. M. Wales, R. Cordina, E. M. T. Lau, D. S. Celermajer, Pulmonary vasodilator therapies are of no benefit in pulmonary hypertension due to left heart disease: A meta-analysis, Int. J. Cardiol., 273 (2018), 213–220. https://doi.org/10.1016/j.ijcard.2018.09.043 doi: 10.1016/j.ijcard.2018.09.043
|
[8]
|
L. Yan, Q. Luo, Z. Zhao, Q. Zhao, Q. Jin, Y. Zhang, et al., Nocturnal hypoxia in patients with idiopathic pulmonary arterial hypertension, Pulm. Circ., 10 (2020), 1–7. https://doi.org/10.1177/2045894019885364 doi: 10.1177/2045894019885364
|
[9]
|
N. W. Morrell, M. A. Aldred, W. K. Chung, C. G. Elliott, W. C. Nichols, F. Soubrier, et al., Genetics and genomics of pulmonary arterial hypertension, Eur. Respir. J., 53 (2019), 1801899. https://doi.org/10.1183/13993003.01899-2018 doi: 10.1183/13993003.01899-2018
|
[10]
|
M. A. Aldred, J. Vijayakrishnan, V. James, F. Soubrier, M. A. Gomez-Sanchez, G. Martensson, et al., BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension, Hum. Mutat., 27 (2006), 212–213. https://doi.org/10.1002/humu.9398 doi: 10.1002/humu.9398
|
[11]
|
S. H. Choi, Y. Jung, J. Jang, S. Han, Idiopathic pulmonary arterial hypertension associated with a novel frameshift mutation in the bone morphogenetic protein receptor Ⅱ gene and enhanced bone morphogenetic protein signaling, Medicine, 98 (2019), e17594. https://doi.org/10.1097/MD.0000000000017594 doi: 10.1097/MD.0000000000017594
|
[12]
|
A. Chida, M. Shintani, T. Nakayama, Y. Furutani, E. Hayama, K. Inai, et al., Missense mutations of the BMPR1B (ALK6) gene in childhood idiopathic pulmonary arterial hypertension, Circ. J., 76 (2012), 1501–1508. https://doi.org/10.1253/circj.cj-11-1281 doi: 10.1253/circj.cj-11-1281
|
[13]
|
D. Saygin, T. Tabib, H. E. T. Bittar, E. Valenzi, J. Sembrat, S. Y. Chan, et al., Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension, Pulm. Circ., 10 (2020), 1–15. https://doi.org/10.1177/2045894020908782 doi: 10.1177/2045894020908782
|
[14]
|
Y. Wu, J. Wharton, R. Walters, E. Vasilaki, J. Aman, L. Zhao, et al., The pathophysiological role of novel pulmonary arterial hypertension gene SOX17, Eur. Respir. J., (2021). https://doi.org/10.1183/13993003.04172-2020 doi: 10.1183/13993003.04172-2020
|
[15]
|
C. S. Park, S. H. Kim, H. Y. Yang, J. Kim, R. T. Schermuly, Y. S. Cho, et al., Sox17 deficiency promotes pulmonary arterial hypertension via HGF/c-Met signaling, Circ. Res., 131 (2022), 792–806. https://doi.org/10.1161/CIRCRESAHA.122.320845 doi: 10.1161/CIRCRESAHA.122.320845
|
[16]
|
T. Wang, S. Wang, Y. Xu, C. Zhao, X. Qiao, C. Yang, et al., SOX17 loss-of-function mutation underlying familial pulmonary arterial hypertension, Int. Heart. J., 62 (2021), 566–574. https://doi.org/10.1536/ihj.20-711 doi: 10.1536/ihj.20-711
|
[17]
|
N. Zhu, C. L. Welch, J. Wang, P. M. Allen, C. Gonzaga-Jauregui, L. Ma, et al., Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease, Genome Med., 56 (2018). https://doi.org/10.1186/s13073-018-0566-x doi: 10.1186/s13073-018-0566-x
|
[18]
|
X. Yuan, Z. Wang, L. Wang, Q. Zhao, S. Gong, Y. Sun, et al., Increased levels of runt-related transcription factor 2 are associated with poor survival of patients with idiopathic pulmonary arterial hypertension, Am. J. Men's Health., 14 (2020). https://doi.org/10.1177/1557988320945458 doi: 10.1177/1557988320945458
|
[19]
|
L. C. Price, S. J. Wort, F. Perros, P. Dorfmüller, A. Huertas, D. Montani, et al., Inflammation in pulmonary arterial hypertension, Chest, 141 (2012), 210–221. https://doi.org/10.1378/chest.11-0793 doi: 10.1378/chest.11-0793
|
[20]
|
H. Zeng, X. Liu, Y. Zhang, Identification of potential biomarkers and immune infiltration characteristics in idiopathic pulmonary arterial hypertension using bioinformatics analysis, Front. Cardiovasc. Med., 8 (2021). https://doi.org/10.3389/fcvm.2021.624714 doi: 10.3389/fcvm.2021.624714
|
[21]
|
I. Sarrion, L. Milian, G. Juan, M. Ramon, I. Furest, C. Carda, et al., Role of circulating miRNAs as biomarkers in idiopathic pulmonary arterial hypertension: Possible relevance of miR-23a, Oxid. Med. Cell. Longevity, 2015 (2015), 792846. https://doi.org/10.1155/2015/792846 doi: 10.1155/2015/792846
|
[22]
|
W. He, X. Su, L. Chen, C. Liu, W. Lu, T. Wang, et al., Potential biomarkers and therapeutic targets of idiopathic pulmonary arterial hypertension, Physiol. Rep., 10 (2022), e15101. https://doi.org/10.14814/phy2.15101 doi: 10.14814/phy2.15101
|
[23]
|
C. Li, Z. Zhang, Q. Xu, R. Shi, Comprehensive analyses of miRNA-mRNA network and potential drugs in idiopathic pulmonary arterial hypertension, BioMed Res. Int., 2020 (2020), 5156304. https://doi.org/10.1155/2020/5156304 doi: 10.1155/2020/5156304
|
[24]
|
S. Hao, P. Jiang, L. Xie, G. Xiang, Z. Liu, W. Hu, et al., Essential genes and MiRNA-mRNA network contributing to the pathogenesis of idiopathic pulmonary arterial hypertension, Front. Cardiovasc. Med., 8 (2021), 627873. https://doi.org/10.3389/fcvm.2021.627873 doi: 10.3389/fcvm.2021.627873
|
[25]
|
D. Li, A. Tulahong, M. N. Uddin, H. Zhao, H. Zhang, Meta-analysis identifying epithelial-derived transcriptomes predicts poor clinical outcome and immune infiltrations in ovarian cancer, Math. Biosci. Eng., 18 (2021), 6527–6551. https://doi.org/10.3934/mbe.2021324 doi: 10.3934/mbe.2021324
|
[26]
|
E. Hsu, H. Shi, R. M. Jordan, J. Lyons-Weiler, J. M. Pilewski, C. A. Feghali-Bostwick, Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension, Arthritis Rheum., 63 (2011), 783–794. https://doi.org/10.1002/art.30159 doi: 10.1002/art.30159
|
[27]
|
L. Renaud, W. A. da Silveira, N. Takamura, G. Hardiman, C. Feghali-Bostwick, Prominence of IL6, IGF, TLR, and bioenergetics pathway perturbation in lung tissues of scleroderma patients with pulmonary fibrosis, front. immunol., 11 (2020), 383. https://doi.org/10.3389/fimmu.2020.00383 doi: 10.3389/fimmu.2020.00383
|
[28]
|
M. Mura, M. J. Cecchini, M. Joseph, J. T. Granton, Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension, Respirology, 24 (2019), 1104–1110. https://doi.org/10.1111/resp.13557 doi: 10.1111/resp.13557
|
[29]
|
R. S. Stearman, Q. M. Bui, G. Speyer, A. Handen, A. R. Cornelius, B. B. Graham, et al., Systems analysis of the human pulmonary arterial hypertension lung transcriptome, Am. J. Respir. Cell Mol. Biol., 60 (2019), 637–649. https://doi.org/10.1165/rcmb.2018-0368OC doi: 10.1165/rcmb.2018-0368OC
|
[30]
|
C. E. Romanoski, X. Qi, S. Sangam, R. R. Vanderpool, R.S. Stearman, A. Conklin, et al., Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes, Pulm. Circ., 10 (2020). https://doi.org/10.1177/2045894020968531 doi: 10.1177/2045894020968531
|
[31]
|
C. Cheadle, A. E. Berger, S. C. Mathai, D. N. Grigoryev, T. N. Watkins, Y. Sugawara, et al., Erythroid-specific transcriptional changes in PBMCs from pulmonary hypertension patients, PloS One., 7 (2012), e34951. https://doi.org/10.1371/journal.pone.0034951 doi: 10.1371/journal.pone.0034951
|
[32]
|
D. Wu, C. C. Talbot, Q. Liu, Z. Jing, R. L. Damico, R. Tuder et al., Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension, J. Mol. Med., 94 (2016), 875–885. https://doi.org/10.1007/s00109-016-1426-z doi: 10.1007/s00109-016-1426-z
|
[33]
|
J. Xia, E. E. Gill, R. E. W. Hancock, NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data, Nat. Protoc., 10 (2015), 823–844. https://doi.org/10.1038/nprot.2015.052 doi: 10.1038/nprot.2015.052
|
[34]
|
W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical bayes methods, Biostatistics, 8 (2007), 118–127. https://doi.org/10.1093/biostatistics/kxj037 doi: 10.1093/biostatistics/kxj037
|
[35]
|
M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
|
[36]
|
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, PNAS, 102 (2005), 15545–15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
|
[37]
|
D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 47 (2019), 607–613. https://doi.org/10.1093/nar/gky1131 doi: 10.1093/nar/gky1131
|
[38]
|
C. Chin, S. Chen, H. Wu, C. Ho, M. Ko, C. Lin, CytoHubba: identifying hub objects and sub-networks from complex interactome, BMC Syst. Biol., 8 (2014), S11. https://doi.org/10.1186/1752-0509-8-S4-S11 doi: 10.1186/1752-0509-8-S4-S11
|
[39]
|
J. Wang, R. Akter, M. F. Shahriar, M. N. Uddin, Cancer-Associated Stromal Fibroblast-Derived Transcriptomes Predict Poor Clinical Outcomes and Immunosuppression in Colon Cancer, Pathol. Oncol. Res., (2022). https://doi.org/10.3389/pore.2022.1610350 doi: 10.3389/pore.2022.1610350
|
[40]
|
P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498–2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
|
[41]
|
Y. Fan, K. Siklenka, S. K. Arora, P. Ribeiro, S. Kimmins, J. Xia, MiRNet-dissecting miRNA-target interactions and functional associations through network-based visual analysis, Nucleic Acids Res., 44 (2016), 135–141. https://doi.org/10.1093/nar/gkw288 doi: 10.1093/nar/gkw288
|
[42]
|
X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. Sanchez, M. Müller, PROC: an open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinformatics., 77 (2011). https://doi.org/10.1186/1471-2105-12-77 doi: 10.1186/1471-2105-12-77
|
[43]
|
J. Wang, M. N. Uddin, J. Hao, R. Chen, Y. Xiang, D. Xiong, et al., Identification of potential novel prognosis-related genes through transcriptome sequencing, bioinformatics analysis, and clinical validation in acute myeloid leukemia, Front. Genet., 12 (2021). https://doi.org/10.3389/fgene.2021.723001 doi: 10.3389/fgene.2021.723001
|
[44]
|
M. N. Uddin, R. Akter, M. Li, Z. Abdelrahman, Expression of SARS-COV-2 cell receptor gene ACE2 is associated with immunosuppression and metabolic reprogramming in lung adenocarcinoma based on bioinformatics analyses of gene expression profiles, Chem. Biol. Interact., 335 (2021), 109370. https://doi.org/10.1016/j.cbi.2021.109370 doi: 10.1016/j.cbi.2021.109370
|
[45]
|
K. C. Cotto, A. H. Wagner, Y. Feng, S. Kiwala, A. C. Coffman, G. Spies, et al., DGIdb 3.0: A redesign and expansion of the drug-gene interaction database, Nucleic Acids Res., 46 (2018), 1068–1073. https://doi.org/10.1093/nar/gkx1143 doi: 10.1093/nar/gkx1143
|
[46]
|
X. Mao, Z. Ren, G. N. Parker, H. Sondermann, M. A. Pastorello, W. Wang, et al., Structural bases of unphosphorylated STAT1 association and receptor binding, Mol. Cell, 17 (2005), 761–771. https://doi.org/10.1016/j.molcel.2005.02.021 doi: 10.1016/j.molcel.2005.02.021
|
[47]
|
A. Yamamura, M. J. Nayeem, A. A. Mamun, R. Takahashi, H. Hayashi, M. Sato, Platelet-derived growth factor up-regulates Ca2+-sensing receptors in idiopathic pulmonary arterial hypertension, FASEB J., 33 (2019), 7363–7374. https://doi.org/10.1096/fj.201802620R doi: 10.1096/fj.201802620R
|
[48]
|
S. Gairhe, K. S. Awad, E. J. Dougherty, G. A. Ferreyra, S. Wang, Z. Yu, et al., Type Ⅰ interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension, PNAS, 118 (2021). https://doi.org/10.1073/pnas.2010206118 doi: 10.1073/pnas.2010206118
|
[49]
|
A. D. Stefano, G. Caramori, A. Capelli, I. Gnemmi, F. L. Ricciardolo, T. Oates, et al., STAT4 activation in smokers and patients with chronic obstructive pulmonary disease, Eur. Respir. J., 24 (2004), 78–85. https://doi.org/10.1183/09031936.04.00080303 doi: 10.1183/09031936.04.00080303
|
[50]
|
H. Alam, N. Li, S. S. Dhar, S. J. Wu, J. Lv, K. Chen, et al., HP1γ promotes lung adenocarcinoma by downregulating the transcription-repressive regulators NCOR2 and ZBTB7A, Cancer Res., 78 (2018), 3834–3848. https://doi.org/10.1158/0008-5472.CAN-17-3571 doi: 10.1158/0008-5472.CAN-17-3571
|
[51]
|
Y. Yang, H. Yuan, J. G. Edwards, Y. Skayian, K. Ochani, E. J. Miller, et al., Deletion of STAT5a/b in vascular smooth muscle abrogates the male bias in hypoxic pulmonary hypertension in mice: Implications in the human disease, Mol. Med., 20 (2014), 625–638. https://doi.org/10.2119/molmed.2014.00180 doi: 10.2119/molmed.2014.00180
|
[52]
|
T. Hashimoto-Kataoka, N. Hosen, T. Sonobe, Y. Arita, T. Yasui, T. Masaki, et al., Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension, PNAS, 112 (2015), 2677–2686. https://doi.org/10.1073/pnas.1424774112 doi: 10.1073/pnas.1424774112
|
[53]
|
E. Zhao, H. Xie, Y. Zhang, Identification of differentially expressed genes associated with idiopathic pulmonary arterial hypertension by integrated bioinformatics approaches, J. Comput. Biol., 28 (2021), 79–88. https://doi.org/10.1089/cmb.2019.0433 doi: 10.1089/cmb.2019.0433
|
[54]
|
W. Wang, Z. Jiang, D. Zhang, L. Fu, R. Wan, K. Hong, Comparative transcriptional analysis of pulmonary arterial hypertension associated with three different diseases, Front. Cell Dev. Biol., 9 (2021). https://doi.org/10.3389/fcell.2021.672159 doi: 10.3389/fcell.2021.672159
|
[55]
|
H. Göös, M. Kinnunen, K. Salokas, Z. Tan, X. Liu, L. Yadav, et al., Human transcription factor protein interaction networks, Nat. Commun., 13 (2022), 766. https://doi.org/10.1038/s41467-022-28341-5 doi: 10.1038/s41467-022-28341-5
|
[56]
|
Q. Yang, C. Jia, P. Wang, M. Xiong, J. Cui, L. Li, et al., MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation, Int. J. Cardiol., 177 (2014), 925–934. https://doi.org/10.1016/j.ijcard.2014.09.204 doi: 10.1016/j.ijcard.2014.09.204
|
[57]
|
H. Wang, Z. Ma, X. Liu, C. Zhang, Y. Hu, L. Ding, et al., MiR-183-5p is required for non-small cell lung cancer progression by repressing PTEN, Biomed. Pharmacother., 111 (2019), 1103–1111. https://doi.org/10.1016/j.biopha.2018.12.115 doi: 10.1016/j.biopha.2018.12.115
|
[58]
|
J. Li, S. Sun, N. Li, P. Lv, S. Xie, P. Wang, MiR-205 as a promising biomarker in the diagnosis and prognosis of lung cancer, Oncotarget, 8 (2017), 91938–91949. https://doi.org/10.18632/oncotarget.20262 doi: 10.18632/oncotarget.20262
|
[59]
|
Y. Zhao, J. Zhang, J. Yang, Y. Wei, J. Peng, C. Fu, et al., MiR-205-5p promotes lung cancer progression and is valuable for the diagnosis of lung cancer, Thorac Cancer, 13 (2022), 832–843. https://doi.org/10.1111/1759-7714.14331 doi: 10.1111/1759-7714.14331
|
[60]
|
W. Liu, X. Wan, Z. Mu, F. Li, L. Wang, J. Zhao, et al., MiR-1256 suppresses proliferation and migration of non-small cell lung cancer via regulating TCTN1, Oncol. Lett., 16 (2018), 1708–1714. https://doi.org/10.3892/ol.2018.8794 doi: 10.3892/ol.2018.8794
|
[61]
|
H. El Chami, P. M. Hassoun, Immune and inflammatory mechanisms in pulmonary arterial hypertension, Prog. Cardiovasc. Dis., 55 (2012), 218–228. https://doi.org/10.1016/j.pcad.2012.07.006 doi: 10.1016/j.pcad.2012.07.006
|
[62]
|
N. M. Patel, S. M. Kawut, S. Jelic, S. M. Arcasoy, D. J. Lederer, A. C. Borczuk, Pulmonary arteriole gene expression signature in idiopathic pulmonary fibrosis, Eur. Respir. J., 41 (2013), 1324–1330. https://doi.org/10.1183/09031936.00084112 doi: 10.1183/09031936.00084112
|
[63]
|
H. Yang, Y. Lu, H. Yang, Y. Zhu, Y. Tang, L. Li, et al., Integrated weighted gene co-expression network analysis uncovers STAT1(signal transducer and activator of transcription 1) and IFI44L (interferon-induced protein 44-like) as key genes in pulmonary arterial hypertension, Bioengineered, 12 (2021), 6021–6034. https://doi.org/10.1080/21655979.2021.1972200 doi: 10.1080/21655979.2021.1972200
|
[64]
|
L. Gabryšová, M. Alvarez-Martinez, R. Luisier, L. S. Cox, J. Sodenkamp, C. Hosking, et al., C-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells, Nat. Immunol., 19 (2018), 497–507. https://doi.org/10.1038/s41590-018-0083-5 doi: 10.1038/s41590-018-0083-5
|
[65]
|
X. Yang, C. Wang, Y. Lin, P. Zhang, Identification of crucial hub genes and differential T cell infiltration in idiopathic pulmonary arterial hypertension using bioinformatics strategies, Front. Mol. Biosci., 9 (2022). https://doi.org/10.3389/fmolb.2022.800888 doi: 10.3389/fmolb.2022.800888
|
[66]
|
S. Ni, T. Ji, J. Dong, F. Chen, H. Feng, H. Zhao, et al., Immune cells in pulmonary arterial hypertension, Heart Lung Circ., 31 (2022), 934–943. https://doi.org/10.1016/j.hlc.2022.02.007 doi: 10.1016/j.hlc.2022.02.007
|
[67]
|
M. Rabinovitch, C. Guignabert, M. Humbert, M. R. Nicolls, Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension, Circ. Res., 115 (2014), 165–175. https://doi.org/10.1161/CIRCRESAHA.113.301141 doi: 10.1161/CIRCRESAHA.113.301141
|
[68]
|
M. Masullo, M. Menegazzi, S. Di Micco, P. Beffy, G. Bifulco, M. Dal Bosco, et al., Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways, J. Nat. Prod., 77 (2014), 543–549. https://doi.org/10.1021/np400804y doi: 10.1021/np400804y
|
[69]
|
M. Toshner, E. Spiekerkoetter, H. Bogaard, G. Hansmann, S. Nikkho, K. W. Prins, Repurposing of medications for pulmonary arterial hypertension, Pulm. Circ., 10 (2020). https://doi.org/10.1177/2045894020941494 doi: 10.1177/2045894020941494
|
[70]
|
R. Papp, C. Nagaraj, D. Zabini, B. M. Nagy, M. Lengyel, D. S. Maurer, et al., Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic pulmonary arterial hypertension, Eur. Respir. J., 53 (2019). https://doi.org/10.1183/13993003.00965-2018 doi: 10.1183/13993003.00965-2018
|