Research article Special Issues

Chaos criteria and chaotification schemes on a class of first-order partial difference equations

  • Received: 19 September 2022 Revised: 07 November 2022 Accepted: 28 November 2022 Published: 06 December 2022
  • This article is involved in chaos criteria and chaotification schemes on one kind of first-order partial difference equations having non-periodic boundary conditions. Firstly, four chaos criteria are achieved by constructing heteroclinic cycles connecting repellers or snap-back repellers. Secondly, three chaotification schemes are obtained by using these two kinds of repellers. For illustrating the usefulness of these theoretical results, four simulation examples are presented.

    Citation: Zongcheng Li, Jin Li. Chaos criteria and chaotification schemes on a class of first-order partial difference equations[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3425-3454. doi: 10.3934/mbe.2023161

    Related Papers:

  • This article is involved in chaos criteria and chaotification schemes on one kind of first-order partial difference equations having non-periodic boundary conditions. Firstly, four chaos criteria are achieved by constructing heteroclinic cycles connecting repellers or snap-back repellers. Secondly, three chaotification schemes are obtained by using these two kinds of repellers. For illustrating the usefulness of these theoretical results, four simulation examples are presented.



    加载中


    [1] G. Hu, Z. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett., 72 (1994), 68–97. https://doi.org/10.1103/PhysRevLett.72.68 doi: 10.1103/PhysRevLett.72.68
    [2] F. Willeboordse, The spatial logistic map as a simple prototype for spatiotemporal chaos, Chaos, 13 (2003), 533–540. https://doi.org/10.1063/1.1568692 doi: 10.1063/1.1568692
    [3] G. Chen, S. Liu, On spatial periodic orbits and spatial chaos, Int. J. Bifurcation Chaos, 13 (2003), 935–941. https://doi.org/10.1142/S0218127403006935 doi: 10.1142/S0218127403006935
    [4] G. Chen, C. Tian, Y. Shi, Stability and chaos in 2D discrete systems, Chaos Solitons Fractals, 25 (2005), 637–647. https://doi.org/10.1016/j.chaos.2004.11.058 doi: 10.1016/j.chaos.2004.11.058
    [5] Y. Shi, Chaos in first-order partial difference equations, J. Differ. Equation Appl., 14 (2008), 109–126. https://doi.org/10.1080/10236190701503074 doi: 10.1080/10236190701503074
    [6] Z. Li, Z. Liu, Chaos induced by heteroclinic cycles connecting repellers for first-order partial difference equations, Int. J. Bifurcation Chaos, 32 (2022), 2250059. https://doi.org/10.1142/S0218127422500596 doi: 10.1142/S0218127422500596
    [7] Y. Shi, P. Yu, G. Chen, Chaotification of discrete dynamical system in Banach spaces, Int. J. Bifurcation Chaos, 16 (2006), 2615–2636. https://doi.org/10.1142/S021812740601629X doi: 10.1142/S021812740601629X
    [8] W. Liang, Y. Shi, C. Zhang, Chaotification for a class of first-order partial difference equations, Int. J. Bifurcation Chaos, 18 (2008), 717–733. https://doi.org/10.1142/S0218127408020604 doi: 10.1142/S0218127408020604
    [9] Z. Li, Y. Shi, Chaotification of a class of discrete systems based on heteroclinic cycles connecting repellers in Banach spaces, Chaos Solitons Fractals, 42 (2009), 1933–1941. https://doi.org/10.1016/j.chaos.2009.03.099 doi: 10.1016/j.chaos.2009.03.099
    [10] W. Liang, Y. Shi, Z. Li, Chaotification for partial difference equations via controllers, J. Discrete Math., 2014 (2014), 538423. https://doi.org/10.1155/2014/538423 doi: 10.1155/2014/538423
    [11] H. Guo, W. Liang, Existence of chaos for partial difference equations via tangent and cotangent functions, Adv. Differ. Equation, 2021 (2021), 1–15. https://doi.org/10.1186/s13662-020-03162-2 doi: 10.1186/s13662-020-03162-2
    [12] H. Guo, W. Liang, Chaotic dynamics of partial difference equations with polynomial maps, Int. J. Bifurcation Chaos, 31 (2021), 2150133. https://doi.org/10.1142/S0218127421501339 doi: 10.1142/S0218127421501339
    [13] W. Liang, Z. Zhang, Chaotification schemes of first-order partial difference equations via sine functions, J. Differ. Equation Appl., 25 (2019), 665–675. https://doi.org/10.1080/10236198.2019.1619710 doi: 10.1080/10236198.2019.1619710
    [14] W. Liang, Z. Zhang, Anti-control of chaos for first-order partial difference equations via sine and cosine functions, Int. J. Bifurcation Chaos, 29 (2019), 1950140. https://doi.org/10.1142/S0218127419501402 doi: 10.1142/S0218127419501402
    [15] W. Liang, H. Guo, Chaotification of first-order partial difference equations, Int. J. Bifurcation Chaos, 30 (2020), 2050229. https://doi.org/10.1142/S0218127420502296 doi: 10.1142/S0218127420502296
    [16] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. https://www.researchgate.net/publication/275973743
    [17] T. Li, J. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985–992. https://doi.org/10.1080/00029890.1975.11994008 doi: 10.1080/00029890.1975.11994008
    [18] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, New York, 1987. https://doi.org/10.2307/3619398
    [19] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990. https://doi.org/10.1007/b97481
    [20] Z. Zhou, Symbolic Dynamics, Shanghai Scientific and Technological Education Publishing House, Shanghai, 1997.
    [21] B. Aulbach, B. Kieninger, On three definitions of chaos, Nonlinear Dyn. Syst. Theory, 1 (2001), 23–37. http://www.e-ndst.kiev.ua/v1n1/2.pdf
    [22] M. Martelli, M. Dang, T. Seph, Defining chaos, Math. Mag., 71 (1998), 112–122. https://doi.org/10.1080/0025570X.1998.11996610 doi: 10.1080/0025570X.1998.11996610
    [23] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, Florida, 1998. https://www.researchgate.net/publication/27292238
    [24] Y. Shi, P. Yu, Chaos induced by regular snap-back repellers, J. Math. Anal. Appl., 337 (2008), 1480–1494. https://doi.org/10.1016/j.jmaa.2007.05.005 doi: 10.1016/j.jmaa.2007.05.005
    [25] Y. Shi, G. Chen, Chaos of discrete dynamical systems in complete metric spaces, Chaos Solitons Fractals, 22 (2004), 555–571. https://doi.org/10.1016/j.chaos.2004.02.015 doi: 10.1016/j.chaos.2004.02.015
    [26] Z. Li, Y. Shi, W. Liang, Discrete chaos induced by heteroclinic cycles connecting repellers in Banach spaces, Nonlin. Anal. Theory Methods Appl., 72 (2010), 757–770. https://doi.org/10.1016/j.na.2009.07.018 doi: 10.1016/j.na.2009.07.018
    [27] C. Li, G. Chen, An improved version of the Marroto theorem, Chaos Solitons Fractals, 18 (2003), 69–77. https://doi.org/10.1016/S0960-0779(02)00605-7 doi: 10.1016/S0960-0779(02)00605-7
    [28] F. Marotto, Snap-back repellers imply chaos in ${\bf R}^n$, J. Math. Anal. Appl., 63 (1978), 199–223. https://doi.org/10.1016/0022-247X(78)90115-4 doi: 10.1016/0022-247X(78)90115-4
    [29] Y. Shi, G. Chen, Discrete chaos in Banach spaces, Sci. China Ser. A Math., 48 (2005), 222–238. https://link.springer.com/article/10.1360/03ys0183
    [30] Y. Chen, L. Li, X. Wu, F. Wang, The structural stability of maps with heteroclinic repellers, Int. J. Bifurcation Chaos, 30 (2020), 2050207. https://doi.org/10.1142/S0218127420502077 doi: 10.1142/S0218127420502077
    [31] Z. Li, Y. Shi, C. Zhang, Chaos induced by heteroclinic cycles connecting repellers in complete metric spaces, Chaos Solitons Fractals, 36 (2008), 746–761. https://doi.org/10.1016/j.chaos.2006.07.014 doi: 10.1016/j.chaos.2006.07.014
    [32] W. Lin, G. R. Chen, Heteroclinical repellers imply chaos, Int. J. Bifurcation Chaos, 16 (2006), 1471–1489. https://doi.org/10.1142/S021812740601543X doi: 10.1142/S021812740601543X
    [33] X. Wu, Heteroclinic cycles imply chaos and are structurally stable, Discrete Dyn. Nat. Soc., 2021 (2021), 6647132. https://https://doi.org/10.1155/2021/6647132 doi: 10.1155/2021/6647132
    [34] G. Franklin, J. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, Prentice Hall, New York, 1994. https://www.researchgate.net/publication/225075468
    [35] Y. Liu, Y. Zheng, H. Li, F. Alsaadi, B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188–195. https://doi.org/10.1016/j.cam.2017.06.016 doi: 10.1016/j.cam.2017.06.016
    [36] G. Chen, D. Lai, Feedback control of Lyapunov exponents for discrete-time dynamical systems, Int. J. Bifurcation Chaos, 6 (1996), 1341–1349. https://doi.org/10.1142/S021812749600076X doi: 10.1142/S021812749600076X
    [37] G. Chen, D. Lai, Feedback Anticontrol of chaos via feedback, inProceedings of the 36th IEEE Conference on Decision and Control, (1997), 367–372. https://doi.org/10.1109/CDC.1997.650650
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1195) PDF downloads(51) Cited by(1)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog