[1]
|
F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, et al., Artificial intelligence in healthcare: past, present and future, Stroke Vasc. Neurol., 2 (2017). https://doi.org/10.1136/svn-2017-000101 doi: 10.1136/svn-2017-000101
|
[2]
|
M. D. McCradden, E. A. Stephenson, J. A. Anderson, Clinical research underlies ethical integration of healthcare artificial intelligence, Nat. Med., 26 (2020), 1325-1326. https://doi.org/10.1038/s41591-020-1035-9 doi: 10.1038/s41591-020-1035-9
|
[3]
|
K. H. Yu, A. L. Beam, I. S. Kohane, Artificial intelligence in healthcare, Nat. Biomed. Eng., 2 (2018), 719-731. https://doi.org/10.1038/s41551-018-0305-z doi: 10.1038/s41551-018-0305-z
|
[4]
|
O. Asan, A. E. Bayrak, A. Choudhury, Artificial intelligence and human trust in healthcare: focus on clinicians, J. Med. Internet Res., 22 (2020), e15154. https://doi.org/10.2196/15154 doi: 10.2196/15154
|
[5]
|
D. Shen, G. Wu, H. I. Suk, Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19 (2017), 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442 doi: 10.1146/annurev-bioeng-071516-044442
|
[6]
|
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, et al., A survey on deep learning in medical image analysis, Med. Image Anal., 42 (2017), 60-88. https://doi.org/10.1016/j.media.2017.07.005 doi: 10.1016/j.media.2017.07.005
|
[7]
|
M. I. Razzak, S. Naz, A. Zaib, Deep learning for medical image processing: Overview, challenges and the future, Classif. BioApps, (2018), 323-350.
|
[8]
|
J. H. Thrall, D. Fessell, P. V. Pandharipande, Rethinking the approach to artificial intelligence for medical image analysis: the case for precision diagnosis, J. Am. Coll. Radiol., 18 (2021), 174-179. https://doi.org/10.1016/j.jacr.2020.07.010 doi: 10.1016/j.jacr.2020.07.010
|
[9]
|
Y. Zhang, Z. Wang, J. Zhang, C. Wang, Y. Wang, H. Chen, et al., Deep learning model for classifying endometrial lesions, J. Transl. Med., 19 (2021), 1-13. https://doi.org/10.1186/s12967-020-02660-x doi: 10.1186/s12967-020-02660-x
|
[10]
|
C. Zheng, L. Chen, J. Jian, J. Li, Z. Gao, Efficacy evaluation of interventional therapy for primary liver cancer using magnetic resonance imaging and CT scanning under deep learning and treatment of vasovagal reflex, J. Supercomput., 77 (2021), 7535-7548. https://doi.org/10.1007/s11227-020-03539-w doi: 10.1007/s11227-020-03539-w
|
[11]
|
G. A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S. F. Abera, G. Abyu, et al., Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015, J. Am. Coll. Cardiol., 70 (2017), 1-25.
|
[12]
|
K. H. Miao, J. H. Miao, Coronary heart disease diagnosis using deep neural networks, Int. J. Adv. Comput. Sci. Appl., 9 (2018), 1-8. https://doi.org/10.14569/IJACSA.2018.091001 doi: 10.14569/IJACSA.2018.091001
|
[13]
|
A. Gupta, H. S. Arora, R. Kumar, B. Raman, DMHZ: a decision support system based on machine computational design for heart disease diagnosis using z-alizadeh sani dataset, in 2021 International Conference on Information Networking (ICOIN), (2021), 818-823. https://doi.org/10.1109/ICOIN50884.2021.9333884
|
[14]
|
A. D. Villa, E. Sammut, A. Nair, R. Rajani, R. Bonamini, A. Chiribiri, Coronary artery anomalies overview: the normal and the abnormal, World J. Radiol., 8 (2016), 537. https://doi.org/10.4329/wjr.v8.i6.537 doi: 10.4329/wjr.v8.i6.537
|
[15]
|
R. Alizadehsani, M. Abdar, M. Roshanzamir, A. Khosravi, P. M. Kebria, F. Khozeimeh, et al., Machine learning-based coronary artery disease diagnosis: A comprehensive review, Comput. Biol. Med., 111 (2019), 103346. https://doi.org/10.1016/j.compbiomed.2019.103346 doi: 10.1016/j.compbiomed.2019.103346
|
[16]
|
T. M. Williamson, C. Moran, A. McLennan, S. Seidel, P. P. Ma, M. L. Koerner, T. S. Campbell, Promoting adherence to physical activity among individuals with cardiovascular disease using behavioral counseling: A theory and research-based primer for health care professionals, Prog. Cardiovasc. Dis., (2020). https://doi.org/10.1016/j.pcad.2020.12.007
|
[17]
|
J. H. Joloudari, E. H. Joloudari, H. Saadatfar, M. Ghasemigol, S. M. Razavi, A. Mosavi, et al., Coronary artery disease diagnosis; ranking the significant features using a random trees model, Int. J. Environ. Res. Public Health, 17 (2020), 731. https://doi.org/10.3390/ijerph17030731 doi: 10.3390/ijerph17030731
|
[18]
|
M. V. Dyke, S. Greer, E. Odom, L. Schieb, A. Vaughan, M. Kramer, et al., Heart disease death rates among blacks and whites aged ≥ 35 years-United States, 1968–2015, MMWR Surveillance Summaries, 67 (2018), 1. https://doi.org/10.15585/mmwr.ss6705a1
|
[19]
|
D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, et al., Heart disease and stroke statistics—2015 update: a report from the American heart association, Circulation, 131 (2015), e29-e322.
|
[20]
|
E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang, S. Cheng, et al., Heart disease and stroke statistics—2018 update: a report from the American heart association, Circulation, 137 (2018), e67-e492. https://doi.org/10.1161/CIR.0000000000000573 doi: 10.1161/CIR.0000000000000573
|
[21]
|
H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural networks, J. Mach. Learn. Res., 10 (2009).
|
[22]
|
R. O. Bonow, D. L. Mann, D. P. Zipes, P. Libby, Braunwald's Heart Disease E-Book: A Textbook of Cardiovascular Medicine, Elsevier Health Sciences, 2011.
|
[23]
|
E.G. Nabel, E. Braunwald, A tale of coronary artery disease and myocardial infarction, New Engl. J. Med., 366 (2012), 54-63. https://doi.org/10.1056/NEJMra1112570 doi: 10.1056/NEJMra1112570
|
[24]
|
İ. Babaoglu, O. Findik, E. Ülker, A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine, Expert Syst. Appl., 37 (2010), 3177-3183. https://doi.org/10.1016/j.eswa.2009.09.064 doi: 10.1016/j.eswa.2009.09.064
|
[25]
|
M. Kumar, R. B. Pachori, U. R. Acharya, Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals, Biomed. Signal Proces. Control, 31 (2017), 301-308. https://doi.org/10.1016/j.bspc.2016.08.018 doi: 10.1016/j.bspc.2016.08.018
|
[26]
|
R. Alizadehsani, J. Habibi, M. J. Hosseini, R. Boghrati, A. Ghandeharioun, B. Bahadorian, et al., Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features, Eur. J. Scientific Res., 82 (2012), 542-553.
|
[27]
|
R. Alizadehsani, J. Habibi, M. J. Hosseini, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., A data mining approach for diagnosis of coronary artery disease, Comput. Meth. Prog. Bio., 111(2013), 52-61. https://doi.org/10.1016/j.cmpb.2013.03.004 doi: 10.1016/j.cmpb.2013.03.004
|
[28]
|
R. Alizadehsani, J. Habibi, Z. A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features, Res. Cardiov. Med., 2 (2013), 133. https://doi.org/10.5812/cardiovascmed.10888 doi: 10.5812/cardiovascmed.10888
|
[29]
|
R. Alizadehsani, M. H. Zangooei, M. J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, et al., Coronary artery disease detection using computational intelligence methods, Knowledge-Based Syst., 109 (2016), 187-197. https://doi.org/10.1016/j.knosys.2016.07.004 doi: 10.1016/j.knosys.2016.07.004
|
[30]
|
A. D. Dolatabadi, S. E. Z. Khadem, B. M. Asl, Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM, Comput. Meth. Prog. Bio., 138 (2017), 117-126. https://doi.org/10.1016/j.cmpb.2016.10.011 doi: 10.1016/j.cmpb.2016.10.011
|
[31]
|
Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, A. A. Yarifard, et al., Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm, Comput. Meth. Prog. Bio., 141 (2017), 19-26. https://doi.org/10.1016/j.cmpb.2017.01.004 doi: 10.1016/j.cmpb.2017.01.004
|
[32]
|
R. Alizadehsani, M. J. Hosseini, A. Khosravi, F. Khozeimeh, M. Roshanzamir, N. Sarrafzadegan, et al., Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries, Comput. Meth. Prog. Bio., 162 (2018), 119-127. https://doi.org/10.1016/j.cmpb.2018.05.009 doi: 10.1016/j.cmpb.2018.05.009
|
[33]
|
M. Abdar, W. Książek, U. R. Acharya, R. S. Tan, V. Makarenkov, P. Pławiak, A new machine learning technique for an accurate diagnosis of coronary artery disease, Comput. Meth. Prog. Bio., 179 (2019), 104992. https://doi.org/10.1016/j.cmpb.2019.104992 doi: 10.1016/j.cmpb.2019.104992
|
[34]
|
C. Blake, UCI Repository of Machine Learning Databases, 1998. Available from: http://www.ics.uci.edu/~mlearn/MLRepository.html.
|
[35]
|
R. W. Hamersvelt, M. Zreik, M. Voskuil, M. A. Viergever, I. Išgum, T. Leiner, et al., Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis, Eur. Rad., 29 (2019), 2350-2359. https://doi.org/10.1007/s00330-018-5822-3 doi: 10.1007/s00330-018-5822-3
|
[36]
|
U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, C. K. Chua, Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network, Knowledge-Based Syst., 132 (2017), 62-71. https://doi.org/10.1016/j.knosys.2017.06.003 doi: 10.1016/j.knosys.2017.06.003
|
[37]
|
A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals, Circulation, 101 (2000), e215-e220. https://doi.org/10.1161/01.CIR.101.23.e215 doi: 10.1161/01.CIR.101.23.e215
|
[38]
|
J. H. Tan, Y. Hagiwara, W. Pang, I. Lim, S. L. Oh, M. Adam, et al., Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals, Comput. Biol. Med., 94 (2018), 19-26. https://doi.org/10.1016/j.compbiomed.2017.12.023 doi: 10.1016/j.compbiomed.2017.12.023
|
[39]
|
U. R. Acharya, H. Fujita, M. Adam, O. S. Lih, V. K. Sudarshan, T. J. Hong, et al., Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study, Inform. Sci., 377 (2017), 17-29. https://doi.org/10.1016/j.ins.2016.10.013 doi: 10.1016/j.ins.2016.10.013
|
[40]
|
U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, et al., Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals, Appl. Intell., 49 (2019), 16-27. https://doi.org/10.1007/s10489-018-1179-1 doi: 10.1007/s10489-018-1179-1
|
[41]
|
M. M. Ghiasi, S. Zendehboudi, A. A. Mohsenipour, Decision tree-based diagnosis of coronary artery disease: CART model, Comput. Meth. Prog. Bio., 192 (2020), 105400. https://doi.org/10.1016/j.cmpb.2020.105400 doi: 10.1016/j.cmpb.2020.105400
|
[42]
|
L. Verma, S. Srivastava, P. Negi, A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data, J. Med. Syst., 40 (2016), 178. https://doi.org/10.1007/s10916-016-0536-z doi: 10.1007/s10916-016-0536-z
|
[43]
|
N. M. Idris, Y. K. Chiam, K. D. Varathan, W. A. W. Ahmad, K. H. Chee, Y. M. Liew, Feature selection and risk prediction for patients with coronary artery disease using data mining, Med. Biol. Eng. Comput., 58 (2020), 3123-3140. https://doi.org/10.1007/s11517-020-02268-9 doi: 10.1007/s11517-020-02268-9
|
[44]
|
D, . Velusamy, K. Ramasamy, Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset, Comput. Meth. Prog. Bio., 198 (2020), 105770. https://doi.org/10.1016/j.cmpb.2020.105770 doi: 10.1016/j.cmpb.2020.105770
|
[45]
|
I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio, Maxout networks, in International Conference On Machine Learning, PMLR, (2013), 1319-1327.
|
[46]
|
J. H. Joloudari, M. Haderbadi, A. Mashmool, M. GhasemiGol, S. S. Band, A. Mosavi, Early detection of the advanced persistent threat attack using performance analysis of deep learning, IEEE Access, 8 (2020), 186125-186137. https://doi.org/10.1109/ACCESS.2020.3029202 doi: 10.1109/ACCESS.2020.3029202
|
[47]
|
Y. Ito, Approximation of functions on a compact set by finite sums of a sigmoid function without scaling, Neural Networks, 4 (1991), 817-826. https://doi.org/10.1016/0893-6080(91)90060-I doi: 10.1016/0893-6080(91)90060-I
|
[48]
|
N. Hassan, N. Akamatsu, A new approach for contrast enhancement using sigmoid function, Inter Arab J. Inf. Techn., 1 (2004).
|
[49]
|
X. Li, X. Zhang, W. Huang, Q. Wang, Truncation cross entropy loss for remote sensing image captioning, IEEE Transactions Geosci. Remote Sens., 59 (2020), 5246-5257. https://doi.org/10.1109/TGRS.2020.3010106 doi: 10.1109/TGRS.2020.3010106
|
[50]
|
C. Otto, D. Wang, A. K. Jain, Clustering millions of faces by identity, IEEE Transactions Pattern Anal. Mach. Intell., 40 (2017), 289-303. https://doi.org/10.1109/TPAMI.2017.2679100 doi: 10.1109/TPAMI.2017.2679100
|
[51]
|
E. H. Ruspini, A new approach to clustering, Inform. Control, 15 (1969), 22-32. https://doi.org/10.1016/S0019-9958(69)90591-9 doi: 10.1016/S0019-9958(69)90591-9
|
[52]
|
R. O. Duda, P. E. Hart, Hart PE Pattern Classification And Scene Analysis, New York: Wiley, 1973.
|
[53]
|
R. Veloso, F. Portela, M. F. Santos, A. Silva, F. Rua, A. Abelha, et al., A clustering approach for predicting readmissions in intensive medicine, Procedia Technol., 16 (2014), 1307-1316. https://doi.org/10.1016/j.protcy.2014.10.147 doi: 10.1016/j.protcy.2014.10.147
|
[54]
|
H. S. Park, C. H. Jun, A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl., 36 (2009), 3336-3341. https://doi.org/10.1016/j.eswa.2008.01.039 doi: 10.1016/j.eswa.2008.01.039
|
[55]
|
R. O. Duda, P. E. Hart, Pattern Classification And Scene Analysis, Wiley New York, 1973.
|
[56]
|
J. C. Dunn, Well-separated clusters and optimal fuzzy partitions, J. Cybern., 4 (1974), 95-104. https://doi.org/10.1080/01969727408546059 doi: 10.1080/01969727408546059
|
[57]
|
J. C. Bezdek, Objective function clustering, in Pattern Recognition With Fuzzy Objective Function Algorithms, Springer, (1981), 43-93. https://doi.org/10.1007/978-1-4757-0450-1_3
|
[58]
|
M. S. Yang, A survey of fuzzy clustering, Math. Comput. Model., 18 (1993), 1-16. https://doi.org/10.1016/0895-7177(93)90202-A doi: 10.1016/0895-7177(93)90202-A
|
[59]
|
G. Govaert, M. Nadif, Clustering with block mixture models, Pattern Recogn., 36 (2003), 463-473. https://doi.org/10.1016/S0031-3203(02)00074-2 doi: 10.1016/S0031-3203(02)00074-2
|
[60]
|
S. Bandyopadhyay, U. Maulik, A. Mukhopadhyay, Multiobjective genetic clustering for pixel classification in remote sensing imagery, IEEE Trans. Geosci. Remote Sens., 45 (2007), 1506-1511. https://doi.org/10.1109/TGRS.2007.892604 doi: 10.1109/TGRS.2007.892604
|
[61]
|
R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks, 16 (2005), 645-678. https://doi.org/10.1109/TNN.2005.845141 doi: 10.1109/TNN.2005.845141
|
[62]
|
J. H. Joloudari, H. Saadatfar, A. Dehzangi, S. Shamshirband, Computer-aided decision-making for predicting liver disease using PSO-based optimized SVM with feature selection, Inform. Medicine Unlocked, 17 (2019), 100255. https://doi.org/10.1016/j.imu.2019.100255 doi: 10.1016/j.imu.2019.100255
|
[63]
|
M. Abdar, M. Zomorodi-Moghadam, R. Das, I. H. Ting, Performance analysis of classification algorithms on early detection of liver disease, Expert Syst. Appl., 67 (2017), 239-251. https://doi.org/10.1016/j.eswa.2016.08.065 doi: 10.1016/j.eswa.2016.08.065
|
[64]
|
C. H. Weng, C. K. Huang, R. P. Han, Disease prediction with different types of neural network classifiers, Telemat. Inform., 33 (2016), 277-292. https://doi.org/10.1016/j.tele.2015.08.006 doi: 10.1016/j.tele.2015.08.006
|
[65]
|
M. Diwakar, A. Tripathi, K. Joshi, M. Memoria, P. Singh, Latest trends on heart disease prediction using machine learning and image fusion, Materials Today: Proceed., 37 (2021), 3213-3218. https://doi.org/10.1016/j.matpr.2020.09.078 doi: 10.1016/j.matpr.2020.09.078
|
[66]
|
J. H. Moon, W. C. Cha, M. J. Chung, K. S. Lee, B. H. Cho, J. H. Choi, Automatic stenosis recognition from coronary angiography using convolutional neural networks, Comput. Meth. Prog. Bio., 198 (2021), 105819. https://doi.org/10.1016/j.cmpb.2020.105819 doi: 10.1016/j.cmpb.2020.105819
|