Research article Special Issues

FCM-DNN: diagnosing coronary artery disease by deep accuracy fuzzy C-means clustering model


  • Received: 07 November 2021 Revised: 13 December 2021 Accepted: 14 December 2021 Published: 07 February 2022
  • Cardiovascular disease is one of the most challenging diseases in middle-aged and older people, which causes high mortality. Coronary artery disease (CAD) is known as a common cardiovascular disease. A standard clinical tool for diagnosing CAD is angiography. The main challenges are dangerous side effects and high angiography costs. Today, the development of artificial intelligence-based methods is a valuable achievement for diagnosing disease. Hence, in this paper, artificial intelligence methods such as neural network (NN), deep neural network (DNN), and fuzzy C-means clustering combined with deep neural network (FCM-DNN) are developed for diagnosing CAD on a cardiac magnetic resonance imaging (CMRI) dataset. The original dataset is used in two different approaches. First, the labeled dataset is applied to the NN and DNN to create the NN and DNN models. Second, the labels are removed, and the unlabeled dataset is clustered via the FCM method, and then, the clustered dataset is fed to the DNN to create the FCM-DNN model. By utilizing the second clustering and modeling, the training process is improved, and consequently, the accuracy is increased. As a result, the proposed FCM-DNN model achieves the best performance with a 99.91% accuracy specifying 10 clusters, i.e., 5 clusters for healthy subjects and 5 clusters for sick subjects, through the 10-fold cross-validation technique compared to the NN and DNN models reaching the accuracies of 92.18% and 99.63%, respectively. To the best of our knowledge, no study has been conducted for CAD diagnosis on the CMRI dataset using artificial intelligence methods. The results confirm that the proposed FCM-DNN model can be helpful for scientific and research centers.

    Citation: Javad Hassannataj Joloudari, Hamid Saadatfar, Mohammad GhasemiGol, Roohallah Alizadehsani, Zahra Alizadeh Sani, Fereshteh Hasanzadeh, Edris Hassannataj, Danial Sharifrazi, Zulkefli Mansor. FCM-DNN: diagnosing coronary artery disease by deep accuracy fuzzy C-means clustering model[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3609-3635. doi: 10.3934/mbe.2022167

    Related Papers:

  • Cardiovascular disease is one of the most challenging diseases in middle-aged and older people, which causes high mortality. Coronary artery disease (CAD) is known as a common cardiovascular disease. A standard clinical tool for diagnosing CAD is angiography. The main challenges are dangerous side effects and high angiography costs. Today, the development of artificial intelligence-based methods is a valuable achievement for diagnosing disease. Hence, in this paper, artificial intelligence methods such as neural network (NN), deep neural network (DNN), and fuzzy C-means clustering combined with deep neural network (FCM-DNN) are developed for diagnosing CAD on a cardiac magnetic resonance imaging (CMRI) dataset. The original dataset is used in two different approaches. First, the labeled dataset is applied to the NN and DNN to create the NN and DNN models. Second, the labels are removed, and the unlabeled dataset is clustered via the FCM method, and then, the clustered dataset is fed to the DNN to create the FCM-DNN model. By utilizing the second clustering and modeling, the training process is improved, and consequently, the accuracy is increased. As a result, the proposed FCM-DNN model achieves the best performance with a 99.91% accuracy specifying 10 clusters, i.e., 5 clusters for healthy subjects and 5 clusters for sick subjects, through the 10-fold cross-validation technique compared to the NN and DNN models reaching the accuracies of 92.18% and 99.63%, respectively. To the best of our knowledge, no study has been conducted for CAD diagnosis on the CMRI dataset using artificial intelligence methods. The results confirm that the proposed FCM-DNN model can be helpful for scientific and research centers.



    加载中


    [1] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, et al., Artificial intelligence in healthcare: past, present and future, Stroke Vasc. Neurol., 2 (2017). https://doi.org/10.1136/svn-2017-000101 doi: 10.1136/svn-2017-000101
    [2] M. D. McCradden, E. A. Stephenson, J. A. Anderson, Clinical research underlies ethical integration of healthcare artificial intelligence, Nat. Med., 26 (2020), 1325-1326. https://doi.org/10.1038/s41591-020-1035-9 doi: 10.1038/s41591-020-1035-9
    [3] K. H. Yu, A. L. Beam, I. S. Kohane, Artificial intelligence in healthcare, Nat. Biomed. Eng., 2 (2018), 719-731. https://doi.org/10.1038/s41551-018-0305-z doi: 10.1038/s41551-018-0305-z
    [4] O. Asan, A. E. Bayrak, A. Choudhury, Artificial intelligence and human trust in healthcare: focus on clinicians, J. Med. Internet Res., 22 (2020), e15154. https://doi.org/10.2196/15154 doi: 10.2196/15154
    [5] D. Shen, G. Wu, H. I. Suk, Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19 (2017), 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442 doi: 10.1146/annurev-bioeng-071516-044442
    [6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, et al., A survey on deep learning in medical image analysis, Med. Image Anal., 42 (2017), 60-88. https://doi.org/10.1016/j.media.2017.07.005 doi: 10.1016/j.media.2017.07.005
    [7] M. I. Razzak, S. Naz, A. Zaib, Deep learning for medical image processing: Overview, challenges and the future, Classif. BioApps, (2018), 323-350.
    [8] J. H. Thrall, D. Fessell, P. V. Pandharipande, Rethinking the approach to artificial intelligence for medical image analysis: the case for precision diagnosis, J. Am. Coll. Radiol., 18 (2021), 174-179. https://doi.org/10.1016/j.jacr.2020.07.010 doi: 10.1016/j.jacr.2020.07.010
    [9] Y. Zhang, Z. Wang, J. Zhang, C. Wang, Y. Wang, H. Chen, et al., Deep learning model for classifying endometrial lesions, J. Transl. Med., 19 (2021), 1-13. https://doi.org/10.1186/s12967-020-02660-x doi: 10.1186/s12967-020-02660-x
    [10] C. Zheng, L. Chen, J. Jian, J. Li, Z. Gao, Efficacy evaluation of interventional therapy for primary liver cancer using magnetic resonance imaging and CT scanning under deep learning and treatment of vasovagal reflex, J. Supercomput., 77 (2021), 7535-7548. https://doi.org/10.1007/s11227-020-03539-w doi: 10.1007/s11227-020-03539-w
    [11] G. A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S. F. Abera, G. Abyu, et al., Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015, J. Am. Coll. Cardiol., 70 (2017), 1-25.
    [12] K. H. Miao, J. H. Miao, Coronary heart disease diagnosis using deep neural networks, Int. J. Adv. Comput. Sci. Appl., 9 (2018), 1-8. https://doi.org/10.14569/IJACSA.2018.091001 doi: 10.14569/IJACSA.2018.091001
    [13] A. Gupta, H. S. Arora, R. Kumar, B. Raman, DMHZ: a decision support system based on machine computational design for heart disease diagnosis using z-alizadeh sani dataset, in 2021 International Conference on Information Networking (ICOIN), (2021), 818-823. https://doi.org/10.1109/ICOIN50884.2021.9333884
    [14] A. D. Villa, E. Sammut, A. Nair, R. Rajani, R. Bonamini, A. Chiribiri, Coronary artery anomalies overview: the normal and the abnormal, World J. Radiol., 8 (2016), 537. https://doi.org/10.4329/wjr.v8.i6.537 doi: 10.4329/wjr.v8.i6.537
    [15] R. Alizadehsani, M. Abdar, M. Roshanzamir, A. Khosravi, P. M. Kebria, F. Khozeimeh, et al., Machine learning-based coronary artery disease diagnosis: A comprehensive review, Comput. Biol. Med., 111 (2019), 103346. https://doi.org/10.1016/j.compbiomed.2019.103346 doi: 10.1016/j.compbiomed.2019.103346
    [16] T. M. Williamson, C. Moran, A. McLennan, S. Seidel, P. P. Ma, M. L. Koerner, T. S. Campbell, Promoting adherence to physical activity among individuals with cardiovascular disease using behavioral counseling: A theory and research-based primer for health care professionals, Prog. Cardiovasc. Dis., (2020). https://doi.org/10.1016/j.pcad.2020.12.007
    [17] J. H. Joloudari, E. H. Joloudari, H. Saadatfar, M. Ghasemigol, S. M. Razavi, A. Mosavi, et al., Coronary artery disease diagnosis; ranking the significant features using a random trees model, Int. J. Environ. Res. Public Health, 17 (2020), 731. https://doi.org/10.3390/ijerph17030731 doi: 10.3390/ijerph17030731
    [18] M. V. Dyke, S. Greer, E. Odom, L. Schieb, A. Vaughan, M. Kramer, et al., Heart disease death rates among blacks and whites aged ≥ 35 years-United States, 1968–2015, MMWR Surveillance Summaries, 67 (2018), 1. https://doi.org/10.15585/mmwr.ss6705a1
    [19] D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, et al., Heart disease and stroke statistics—2015 update: a report from the American heart association, Circulation, 131 (2015), e29-e322.
    [20] E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang, S. Cheng, et al., Heart disease and stroke statistics—2018 update: a report from the American heart association, Circulation, 137 (2018), e67-e492. https://doi.org/10.1161/CIR.0000000000000573 doi: 10.1161/CIR.0000000000000573
    [21] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural networks, J. Mach. Learn. Res., 10 (2009).
    [22] R. O. Bonow, D. L. Mann, D. P. Zipes, P. Libby, Braunwald's Heart Disease E-Book: A Textbook of Cardiovascular Medicine, Elsevier Health Sciences, 2011.
    [23] E.G. Nabel, E. Braunwald, A tale of coronary artery disease and myocardial infarction, New Engl. J. Med., 366 (2012), 54-63. https://doi.org/10.1056/NEJMra1112570 doi: 10.1056/NEJMra1112570
    [24] İ. Babaoglu, O. Findik, E. Ülker, A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine, Expert Syst. Appl., 37 (2010), 3177-3183. https://doi.org/10.1016/j.eswa.2009.09.064 doi: 10.1016/j.eswa.2009.09.064
    [25] M. Kumar, R. B. Pachori, U. R. Acharya, Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals, Biomed. Signal Proces. Control, 31 (2017), 301-308. https://doi.org/10.1016/j.bspc.2016.08.018 doi: 10.1016/j.bspc.2016.08.018
    [26] R. Alizadehsani, J. Habibi, M. J. Hosseini, R. Boghrati, A. Ghandeharioun, B. Bahadorian, et al., Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features, Eur. J. Scientific Res., 82 (2012), 542-553.
    [27] R. Alizadehsani, J. Habibi, M. J. Hosseini, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., A data mining approach for diagnosis of coronary artery disease, Comput. Meth. Prog. Bio., 111(2013), 52-61. https://doi.org/10.1016/j.cmpb.2013.03.004 doi: 10.1016/j.cmpb.2013.03.004
    [28] R. Alizadehsani, J. Habibi, Z. A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features, Res. Cardiov. Med., 2 (2013), 133. https://doi.org/10.5812/cardiovascmed.10888 doi: 10.5812/cardiovascmed.10888
    [29] R. Alizadehsani, M. H. Zangooei, M. J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, et al., Coronary artery disease detection using computational intelligence methods, Knowledge-Based Syst., 109 (2016), 187-197. https://doi.org/10.1016/j.knosys.2016.07.004 doi: 10.1016/j.knosys.2016.07.004
    [30] A. D. Dolatabadi, S. E. Z. Khadem, B. M. Asl, Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM, Comput. Meth. Prog. Bio., 138 (2017), 117-126. https://doi.org/10.1016/j.cmpb.2016.10.011 doi: 10.1016/j.cmpb.2016.10.011
    [31] Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, A. A. Yarifard, et al., Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm, Comput. Meth. Prog. Bio., 141 (2017), 19-26. https://doi.org/10.1016/j.cmpb.2017.01.004 doi: 10.1016/j.cmpb.2017.01.004
    [32] R. Alizadehsani, M. J. Hosseini, A. Khosravi, F. Khozeimeh, M. Roshanzamir, N. Sarrafzadegan, et al., Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries, Comput. Meth. Prog. Bio., 162 (2018), 119-127. https://doi.org/10.1016/j.cmpb.2018.05.009 doi: 10.1016/j.cmpb.2018.05.009
    [33] M. Abdar, W. Książek, U. R. Acharya, R. S. Tan, V. Makarenkov, P. Pławiak, A new machine learning technique for an accurate diagnosis of coronary artery disease, Comput. Meth. Prog. Bio., 179 (2019), 104992. https://doi.org/10.1016/j.cmpb.2019.104992 doi: 10.1016/j.cmpb.2019.104992
    [34] C. Blake, UCI Repository of Machine Learning Databases, 1998. Available from: http://www.ics.uci.edu/~mlearn/MLRepository.html.
    [35] R. W. Hamersvelt, M. Zreik, M. Voskuil, M. A. Viergever, I. Išgum, T. Leiner, et al., Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis, Eur. Rad., 29 (2019), 2350-2359. https://doi.org/10.1007/s00330-018-5822-3 doi: 10.1007/s00330-018-5822-3
    [36] U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, C. K. Chua, Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network, Knowledge-Based Syst., 132 (2017), 62-71. https://doi.org/10.1016/j.knosys.2017.06.003 doi: 10.1016/j.knosys.2017.06.003
    [37] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals, Circulation, 101 (2000), e215-e220. https://doi.org/10.1161/01.CIR.101.23.e215 doi: 10.1161/01.CIR.101.23.e215
    [38] J. H. Tan, Y. Hagiwara, W. Pang, I. Lim, S. L. Oh, M. Adam, et al., Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals, Comput. Biol. Med., 94 (2018), 19-26. https://doi.org/10.1016/j.compbiomed.2017.12.023 doi: 10.1016/j.compbiomed.2017.12.023
    [39] U. R. Acharya, H. Fujita, M. Adam, O. S. Lih, V. K. Sudarshan, T. J. Hong, et al., Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: A comparative study, Inform. Sci., 377 (2017), 17-29. https://doi.org/10.1016/j.ins.2016.10.013 doi: 10.1016/j.ins.2016.10.013
    [40] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, et al., Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals, Appl. Intell., 49 (2019), 16-27. https://doi.org/10.1007/s10489-018-1179-1 doi: 10.1007/s10489-018-1179-1
    [41] M. M. Ghiasi, S. Zendehboudi, A. A. Mohsenipour, Decision tree-based diagnosis of coronary artery disease: CART model, Comput. Meth. Prog. Bio., 192 (2020), 105400. https://doi.org/10.1016/j.cmpb.2020.105400 doi: 10.1016/j.cmpb.2020.105400
    [42] L. Verma, S. Srivastava, P. Negi, A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data, J. Med. Syst., 40 (2016), 178. https://doi.org/10.1007/s10916-016-0536-z doi: 10.1007/s10916-016-0536-z
    [43] N. M. Idris, Y. K. Chiam, K. D. Varathan, W. A. W. Ahmad, K. H. Chee, Y. M. Liew, Feature selection and risk prediction for patients with coronary artery disease using data mining, Med. Biol. Eng. Comput., 58 (2020), 3123-3140. https://doi.org/10.1007/s11517-020-02268-9 doi: 10.1007/s11517-020-02268-9
    [44] D, . Velusamy, K. Ramasamy, Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset, Comput. Meth. Prog. Bio., 198 (2020), 105770. https://doi.org/10.1016/j.cmpb.2020.105770 doi: 10.1016/j.cmpb.2020.105770
    [45] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio, Maxout networks, in International Conference On Machine Learning, PMLR, (2013), 1319-1327.
    [46] J. H. Joloudari, M. Haderbadi, A. Mashmool, M. GhasemiGol, S. S. Band, A. Mosavi, Early detection of the advanced persistent threat attack using performance analysis of deep learning, IEEE Access, 8 (2020), 186125-186137. https://doi.org/10.1109/ACCESS.2020.3029202 doi: 10.1109/ACCESS.2020.3029202
    [47] Y. Ito, Approximation of functions on a compact set by finite sums of a sigmoid function without scaling, Neural Networks, 4 (1991), 817-826. https://doi.org/10.1016/0893-6080(91)90060-I doi: 10.1016/0893-6080(91)90060-I
    [48] N. Hassan, N. Akamatsu, A new approach for contrast enhancement using sigmoid function, Inter Arab J. Inf. Techn., 1 (2004).
    [49] X. Li, X. Zhang, W. Huang, Q. Wang, Truncation cross entropy loss for remote sensing image captioning, IEEE Transactions Geosci. Remote Sens., 59 (2020), 5246-5257. https://doi.org/10.1109/TGRS.2020.3010106 doi: 10.1109/TGRS.2020.3010106
    [50] C. Otto, D. Wang, A. K. Jain, Clustering millions of faces by identity, IEEE Transactions Pattern Anal. Mach. Intell., 40 (2017), 289-303. https://doi.org/10.1109/TPAMI.2017.2679100 doi: 10.1109/TPAMI.2017.2679100
    [51] E. H. Ruspini, A new approach to clustering, Inform. Control, 15 (1969), 22-32. https://doi.org/10.1016/S0019-9958(69)90591-9 doi: 10.1016/S0019-9958(69)90591-9
    [52] R. O. Duda, P. E. Hart, Hart PE Pattern Classification And Scene Analysis, New York: Wiley, 1973.
    [53] R. Veloso, F. Portela, M. F. Santos, A. Silva, F. Rua, A. Abelha, et al., A clustering approach for predicting readmissions in intensive medicine, Procedia Technol., 16 (2014), 1307-1316. https://doi.org/10.1016/j.protcy.2014.10.147 doi: 10.1016/j.protcy.2014.10.147
    [54] H. S. Park, C. H. Jun, A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl., 36 (2009), 3336-3341. https://doi.org/10.1016/j.eswa.2008.01.039 doi: 10.1016/j.eswa.2008.01.039
    [55] R. O. Duda, P. E. Hart, Pattern Classification And Scene Analysis, Wiley New York, 1973.
    [56] J. C. Dunn, Well-separated clusters and optimal fuzzy partitions, J. Cybern., 4 (1974), 95-104. https://doi.org/10.1080/01969727408546059 doi: 10.1080/01969727408546059
    [57] J. C. Bezdek, Objective function clustering, in Pattern Recognition With Fuzzy Objective Function Algorithms, Springer, (1981), 43-93. https://doi.org/10.1007/978-1-4757-0450-1_3
    [58] M. S. Yang, A survey of fuzzy clustering, Math. Comput. Model., 18 (1993), 1-16. https://doi.org/10.1016/0895-7177(93)90202-A doi: 10.1016/0895-7177(93)90202-A
    [59] G. Govaert, M. Nadif, Clustering with block mixture models, Pattern Recogn., 36 (2003), 463-473. https://doi.org/10.1016/S0031-3203(02)00074-2 doi: 10.1016/S0031-3203(02)00074-2
    [60] S. Bandyopadhyay, U. Maulik, A. Mukhopadhyay, Multiobjective genetic clustering for pixel classification in remote sensing imagery, IEEE Trans. Geosci. Remote Sens., 45 (2007), 1506-1511. https://doi.org/10.1109/TGRS.2007.892604 doi: 10.1109/TGRS.2007.892604
    [61] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks, 16 (2005), 645-678. https://doi.org/10.1109/TNN.2005.845141 doi: 10.1109/TNN.2005.845141
    [62] J. H. Joloudari, H. Saadatfar, A. Dehzangi, S. Shamshirband, Computer-aided decision-making for predicting liver disease using PSO-based optimized SVM with feature selection, Inform. Medicine Unlocked, 17 (2019), 100255. https://doi.org/10.1016/j.imu.2019.100255 doi: 10.1016/j.imu.2019.100255
    [63] M. Abdar, M. Zomorodi-Moghadam, R. Das, I. H. Ting, Performance analysis of classification algorithms on early detection of liver disease, Expert Syst. Appl., 67 (2017), 239-251. https://doi.org/10.1016/j.eswa.2016.08.065 doi: 10.1016/j.eswa.2016.08.065
    [64] C. H. Weng, C. K. Huang, R. P. Han, Disease prediction with different types of neural network classifiers, Telemat. Inform., 33 (2016), 277-292. https://doi.org/10.1016/j.tele.2015.08.006 doi: 10.1016/j.tele.2015.08.006
    [65] M. Diwakar, A. Tripathi, K. Joshi, M. Memoria, P. Singh, Latest trends on heart disease prediction using machine learning and image fusion, Materials Today: Proceed., 37 (2021), 3213-3218. https://doi.org/10.1016/j.matpr.2020.09.078 doi: 10.1016/j.matpr.2020.09.078
    [66] J. H. Moon, W. C. Cha, M. J. Chung, K. S. Lee, B. H. Cho, J. H. Choi, Automatic stenosis recognition from coronary angiography using convolutional neural networks, Comput. Meth. Prog. Bio., 198 (2021), 105819. https://doi.org/10.1016/j.cmpb.2020.105819 doi: 10.1016/j.cmpb.2020.105819
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3257) PDF downloads(128) Cited by(8)

Article outline

Figures and Tables

Figures(13)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog