Despite the growing interest in studying the oscillatory behavior of delay differential equations of even-order, odd-order equations have received less attention. In this work, we are interested in studying the oscillatory behavior of two classes of odd-order equations with deviating arguments. We get more than one criterion to check the oscillation in different methods. Our results are an extension and complement to some results published in the literature.
Citation: A. Muhib, I. Dassios, D. Baleanu, S. S. Santra, O. Moaaz. Odd-order differential equations with deviating arguments: asymptomatic behavior and oscillation[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1411-1425. doi: 10.3934/mbe.2022065
Despite the growing interest in studying the oscillatory behavior of delay differential equations of even-order, odd-order equations have received less attention. In this work, we are interested in studying the oscillatory behavior of two classes of odd-order equations with deviating arguments. We get more than one criterion to check the oscillation in different methods. Our results are an extension and complement to some results published in the literature.
[1] | R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181. doi: 10.1016/j.amc.2015.10.089. doi: 10.1016/j.amc.2015.10.089 |
[2] | M. Bohner, S. R. Grace, I. Jadlovska, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theo. Differ. Equ., 60 (2017), 1–12. doi: 10.14232/ejqtde.2017.1.60. doi: 10.14232/ejqtde.2017.1.60 |
[3] | A. Muhib, On oscillation of second-order noncanonical neutral differential equations, J. Inequal. Appl., 2021 (2021), 1–11. doi: 10.1186/s13660-021-02595-x. doi: 10.1186/s13660-021-02595-x |
[4] | J. Dzurina, S. R. Grace, I. Jadlovska, T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. doi: 10.1002/mana.201800196. doi: 10.1002/mana.201800196 |
[5] | G. E. Chatzarakis, O. Moaaz, T. Li, B. Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adva. Differ. Eq., 2020 (2020), 1–17. doi: 10.1186/s13662-020-02626-9. doi: 10.1186/s13662-020-02626-9 |
[6] | O. Moaaz, E. M. Elabbasy, B. Qaraad, An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation, J. Ineq. Appl., 2020 (2020), 1–18. doi: 10.1186/s13660-020-02332-w. doi: 10.1186/s13660-020-02332-w |
[7] | O. Moaaz, M. Anis, D. Baleanu, A. Muhib, More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics, 8 (2020), 986. doi: 10.3390/math806098. doi: 10.3390/math806098 |
[8] | S. S. Santra, R. A. El-Nabulsi, Kh. M. Khedher, Oscillation of Second-Order Differential Equations With Multiple and Mixed Delays under a Canonical Operator, Mathematics, 9 (2021), 1323. doi: 10.3390/math9121323. doi: 10.3390/math9121323 |
[9] | S. S. Santra, Kh. M. Khedher, O. Moaaz, A. Muhib, S-W Yao, Second-order impulsive delay differential systems: necessary and sufficient conditions for oscillatory or asymptotic behavior, Symmetry, 13 (2021), 722. doi: 10.3390/sym13040722. doi: 10.3390/sym13040722 |
[10] | S. S. Santra, A. K. Sethi, O. Moaaz, Kh. M. Khedher, S-W. Yao, New oscillation theorems for second-order differential equations with canonical and non canonical operator via Riccati transformation, Mathematics, 9 (2021), 1111. doi: 10.3390/math9101111. doi: 10.3390/math9101111 |
[11] | A. Alghamdi, C. Cesarano, B. Almarri, O. Bazighifan, Symmetry and its importance in the oscillation of solutions of differential equations, Symmetry, 13 (2021), 650. doi: 10.3390/sym13040650. doi: 10.3390/sym13040650 |
[12] | O. Moaaz, Ch. Park, A. Muhib, O. Bazighifan, Oscillation criteria for a class of even-order neutral delay differential equations, J. Appl. Math. Comput., 63 (2020), 607–617. doi: 10.1007/s12190-020-01331-w. doi: 10.1007/s12190-020-01331-w |
[13] | O. Moaaz, C. Cesarano, A. Muhib, Some new oscillation results for fourth-order neutral differential equations, Eur. J. Pure Appl. Math., 13 (2020), 185–199. doi: 10.29020/nybg.ejpam.v13i2.36. doi: 10.29020/nybg.ejpam.v13i2.36 |
[14] | O. Bazighifan, T. Abdeljawad, Q. M. Al-Mdallal, Differential equations of even-order with p-Laplacian like operators: qualitative properties of the solutions, Adv. Differ. Equ., 2021 (2021), 96. doi: 10.1186/s13662-021-03254-7. doi: 10.1186/s13662-021-03254-7 |
[15] | O. Bazighifan, F. Minhos, O. Moaaz, Sufficient conditions for oscillation of fourth-order neutral differential equations with distributed deviating arguments, Axioms, 9 (2020), 39. doi: 10.3390/axioms9020039. doi: 10.3390/axioms9020039 |
[16] | O. Moaaz, S. Furuichi, A. Muhib, New comparison theorems for the nth order neutral differential equations with delay inequalities, Mathematics, 8 (2020), 454. doi: 10.3390/math8030454. doi: 10.3390/math8030454 |
[17] | O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry, 12 (2020), 371. doi: 10.3390/sym12030371. doi: 10.3390/sym12030371 |
[18] | C. Park, O. Moaaz, O. Bazighifan, Oscillation results for higher order differential equations, Axioms, 9 (2020), 14. doi: 10.3390/axioms9010014. doi: 10.3390/axioms9010014 |
[19] | M. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third-order nonlinear functional differential equations, Appl. Math. Lett., 23 (2010), 756–762. doi: 10.1016/j.aml.2010.03.003. doi: 10.1016/j.aml.2010.03.003 |
[20] | B. Baculikova, E. M. Elabbasy, S. H. Saker, J. Dzurina, Oscillation criteria for third-order nonlinear differential equations, Math. Slovaca, 58 (2008), 201–220. doi: 10.2478/s12175-008-0068-1. doi: 10.2478/s12175-008-0068-1 |
[21] | O. Moaaz, J. Awrejcewicz, A. Muhib, Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics, 8 (2020), 607–617. doi: 10.3390/math8060937. doi: 10.3390/math8060937 |
[22] | O. Moaaz, I. Dassios, W. Muhsin, A. Muhib, Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order, Appl. Sci., 10 (2020), 4855. doi: 10.3390/app10144855. doi: 10.3390/app10144855 |
[23] | O. Moaaz, E. M. Elabbasy, E. Shaaban, Oscillation criteria for a class of third order damped differential equations, Arab J. Math. Sci., 24 (2018), 16–30. doi: 10.1016/j.ajmsc.2017.07.001. doi: 10.1016/j.ajmsc.2017.07.001 |
[24] | O. Moaaz, D. Baleanu, A. Muhib, New aspects for non-existence of kneser solutions of neutral differential equations with odd-order, Mathematics, 8 (2020), 494. doi: 10.3390/math8040494. doi: 10.3390/math8040494 |
[25] | S. H. Saker, J. Dzurina, On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem., 135 (2010), 225–237. |
[26] | R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwanese J. Math., 17 (2013), 545–558. doi: 10.11650/tjm.17.2013.2095. doi: 10.11650/tjm.17.2013.2095 |
[27] | T. Li, Yu. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. doi: 10.1016/j.aml.2016.11.007. doi: 10.1016/j.aml.2016.11.007 |
[28] | C. Zhang, R. P. Agarwal, T. Li, Oscillation and asymptotic behavior of higher-order delay differential equations with fanxiexian_myfhpfanxiexian_myfh-Laplacian like operators, J. Math. Anal. Appl., 409 (2014), 1093–1106. doi: 10.1016/j.jmaa.2013.07.066. doi: 10.1016/j.jmaa.2013.07.066 |
[29] | C. Zhang, T. Li, B. Sun, E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618–1621. doi: 10.1016/j.aml.2011.04.015. doi: 10.1016/j.aml.2011.04.015 |
[30] | B. Baculikova, J. Dzurina, Oscillation of third-order neutral differential equations, Math. Comput. Mode., 52 (2010), 215–226. doi: 10.1016/j.mcm.2010.02.011. doi: 10.1016/j.mcm.2010.02.011 |
[31] | T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., (2020), 106293. doi: 10.1016/j.aml.2020.106293. doi: 10.1016/j.aml.2020.106293 |
[32] | D. Lackova, The asymptotic properties of the solutions of the n-th order functional neutral differential equations, Comput. Appl. Math., 146 (2003), 385–392. doi: 10.1016/S0096-3003(02)00590-8. doi: 10.1016/S0096-3003(02)00590-8 |
[33] | M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indag. Math. (N.S.), 29 (2018), 548–560. doi: 10.1016/j.indag.2017.10.006. doi: 10.1016/j.indag.2017.10.006 |
[34] | T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1–18. doi: 10.1007/s00033-019-1130-2. doi: 10.1007/s00033-019-1130-2 |
[35] | T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336. |
[36] | B. Baculikova, J. Dzurina, On the oscillation of odd order advanced differential equations, Bound. Value Probl., 214 (2014), 214. doi: 10.1186/s13661-014-0214-3. doi: 10.1186/s13661-014-0214-3 |
[37] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for difference and functional differential equations, Marcel Dekker, Kluwer Academic, Dordrecht, 2000. doi: 10.1007/978-94-015-9401-1. |