Processing math: 100%
Research article

An adaptive differential evolution with decomposition for photovoltaic parameter extraction


  • Received: 27 July 2021 Accepted: 16 August 2021 Published: 30 August 2021
  • Photovoltaic (PV) parameter extraction plays a key role in establishing accurate and reliable PV models based on the manufacturer's current-voltage data. Owning to the characteristics such as implicit and nonlinear of the PV model, it remains a challenging and research-meaningful task in PV system optimization. Despite there are many methods that have been developed to solve this problem, they are often consuming a great deal of computing resources for more satisfactory results. To reduce computing resources, in this paper, an advanced differential evolution with search space decomposition is developed to effectively extract the unknown parameters of PV models. In proposed approach, a recently proposed advanced differential evolution algorithm is used as a solver. In addition, a search space decomposition technique is introduced to reduce the dimension of the problem, thereby reducing the complexity of the problem. Three different PV cell models are selected for verifying the performance of proposed approach. The experimental result is firstly compared with some representative differential evolution algorithms that do not use search space decomposition technique, which demonstrates the effectiveness of the search space decomposition. Moreover, the comparison results with some reported well-established parameter extraction methods suggest that the proposed approach not only obtains accurate and reliable parameters, but also uses the least computational resources.

    Citation: Zhen Yan, Shuijia Li, Wenyin Gong. An adaptive differential evolution with decomposition for photovoltaic parameter extraction[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 7363-7388. doi: 10.3934/mbe.2021364

    Related Papers:

    [1] Huangjing Yu, Heming Jia, Jianping Zhou, Abdelazim G. Hussien . Enhanced Aquila optimizer algorithm for global optimization and constrained engineering problems. Mathematical Biosciences and Engineering, 2022, 19(12): 14173-14211. doi: 10.3934/mbe.2022660
    [2] Shuang Wang, Heming Jia, Qingxin Liu, Rong Zheng . An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization. Mathematical Biosciences and Engineering, 2021, 18(6): 7076-7109. doi: 10.3934/mbe.2021352
    [3] Yaning Xiao, Yanling Guo, Hao Cui, Yangwei Wang, Jian Li, Yapeng Zhang . IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems. Mathematical Biosciences and Engineering, 2022, 19(11): 10963-11017. doi: 10.3934/mbe.2022512
    [4] Qing Wu, Chunjiang Zhang, Mengya Zhang, Fajun Yang, Liang Gao . A modified comprehensive learning particle swarm optimizer and its application in cylindricity error evaluation problem. Mathematical Biosciences and Engineering, 2019, 16(3): 1190-1209. doi: 10.3934/mbe.2019057
    [5] Shangbo Zhou, Yuxiao Han, Long Sha, Shufang Zhu . A multi-sample particle swarm optimization algorithm based on electric field force. Mathematical Biosciences and Engineering, 2021, 18(6): 7464-7489. doi: 10.3934/mbe.2021369
    [6] Dashe Li, Xueying Wang, Jiajun Sun, Huanhai Yang . AI-HydSu: An advanced hybrid approach using support vector regression and particle swarm optimization for dissolved oxygen forecasting. Mathematical Biosciences and Engineering, 2021, 18(4): 3646-3666. doi: 10.3934/mbe.2021182
    [7] Di-Wen Kang, Li-Ping Mo, Fang-Ling Wang, Yun Ou . Adaptive harmony search algorithm utilizing differential evolution and opposition-based learning. Mathematical Biosciences and Engineering, 2021, 18(4): 4226-4246. doi: 10.3934/mbe.2021212
    [8] Juan ZHAO, Zheng-Ming GAO . The heterogeneous Aquila optimization algorithm. Mathematical Biosciences and Engineering, 2022, 19(6): 5867-5904. doi: 10.3934/mbe.2022275
    [9] Jiahao Zhang, Zhengming Gao, Suruo Li, Juan Zhao, Wenguang Song . Improved intelligent clonal optimizer based on adaptive parameter strategy. Mathematical Biosciences and Engineering, 2022, 19(10): 10275-10315. doi: 10.3934/mbe.2022481
    [10] Xiaorui Yang, Yumei Zhang, Xiaojiao Lv, Honghong Yang, Zengguo Sun, Xiaojun Wu . Hybrid multi-strategy chaos somersault foraging chimp optimization algorithm research. Mathematical Biosciences and Engineering, 2023, 20(7): 12263-12297. doi: 10.3934/mbe.2023546
  • Photovoltaic (PV) parameter extraction plays a key role in establishing accurate and reliable PV models based on the manufacturer's current-voltage data. Owning to the characteristics such as implicit and nonlinear of the PV model, it remains a challenging and research-meaningful task in PV system optimization. Despite there are many methods that have been developed to solve this problem, they are often consuming a great deal of computing resources for more satisfactory results. To reduce computing resources, in this paper, an advanced differential evolution with search space decomposition is developed to effectively extract the unknown parameters of PV models. In proposed approach, a recently proposed advanced differential evolution algorithm is used as a solver. In addition, a search space decomposition technique is introduced to reduce the dimension of the problem, thereby reducing the complexity of the problem. Three different PV cell models are selected for verifying the performance of proposed approach. The experimental result is firstly compared with some representative differential evolution algorithms that do not use search space decomposition technique, which demonstrates the effectiveness of the search space decomposition. Moreover, the comparison results with some reported well-established parameter extraction methods suggest that the proposed approach not only obtains accurate and reliable parameters, but also uses the least computational resources.



    With the development of science and technology in human society, traditional technology can no longer not be used to solve complex practical problems. Therefore, the meta-heuristic algorithm came into being. Meta-heuristic algorithms are widely used in these complex practical problems because of their simple concept and flexible parameters. At present, the proposed algorithms are mainly divided into four categories [1], The first category is swarm-based algorithms, such as Artificial Bee Colony (ABC) [2]. The second category is human-based algorithms, such as Teaching based learning algorithm (TBLA) [3]. The third category is physics-based algorithms, such as Fireworks Algorithm (FWA) [4]. The last category is evolutionary algorithms, such as Tree Growth Algorithm (TGA) [5]. The classification of the meta-heuristic algorithm is shown in Table 1.

    Table 1.  Classification of meta-heuristic algorithm.
    Classes Algorithm
    Evolutionary Tree Growth Algorithm (TGA) [5]
    Arithmetic Optimization Algorithm (AOA) [6]
    Genetic Algorithm (GA) [7]
    Differential evolution (DE) [8]
    Genetic Programming (GP) [9]
    Evolutionary Strategies (ES) [10]
    Human-based Teaching based learning algorithm (TBLA) [3]
    Harmony Search (HS) [11]
    Imperialist Competitive Algorithm (ICA) [12]
    Fireworks Algorithm (FWA) [4]
    Collective Decision Optimization (CSO) [13]
    Socio Evolution & Learning Optimization Algorithm (SELOA) [14]
    Political Optimizer (PO) [15]
    Physics-based Henry Gas Solubility Optimization (HGSO) [16]
    Big Bang–Big Crunch (BBBC) [17]
    Multi-verse Optimizer (MVO) [18]
    Electromagnetic Field Optimization (EFO) [19]
    Gravitational Search Algorithm (GSA) [20]
    Thermal Exchange Optimization (TEO) [21]
    Central Force Optimization (CFO) [22]
    Swarm-based Artificial Bee Colony (ABC) [23]
    Particle Swarm Optimization (PSO) [24]
    Moth Flame Optimization (MFO) [25]
    Ant Colony Optimization (ACO) [26]
    Marine Predators Algorithm (MPA) [27]
    Seagull optimization algorithm (SOA) [28]
    Sooty Tern Optimization Algorithm (STOA) [29]
    Aquila Optimizer (AO) [30]
    Grey Wolf Optimizer (GWO) [31]
    Salp Swarm Algorithm (SSA) [32]
    Harris Hawks Optimization (HHO) [33]
    Monarch Butterfly Optimization (MBO) [34]
    Slime Mould Algorithm (SMA) [35]
    Moth Search Algorithm (MSA) [36]
    Hunger Games Search (HGS) [37]
    Runge Kutta Method (RUN) [38]
    Colony Predation Algorithm (CPA) [39]
    Welghted mean of vectors (INFO) [40]
    Fick's Law Algorithm(FLA) [41]
    Ant Lion Optimization [42]

     | Show Table
    DownLoad: CSV

    However, not all problems can be solved [43] by these algorithms, especially the multidisciplinary problems that have become increasingly complex in recent years. Therefore, we need to find better algorithms for solving multidisciplinary and complex problems.

    The improvement for AO is less because the time to propose the algorithm is not long, so far there is not enough research on AO algorithms. Wang et al. [44] proposed a hybrid improvement of the AO algorithm and the HHO algorithm and added hunting strategies and adversarial-based learning rules to them. It has been verified by experiments that the improved algorithm has a very good performance. Elaziz et al [45] proposed a Mobile Net V3 AO hybrid model. He uses the AO algorithm to reduce the dimensionality of the image, thereby improving the accuracy of the data. Zhang et al. [46] proposed the hybridization of the AO algorithm and the AOA algorithm. Zhao et al. [47] applied the JAYA algorithm to the parameter extraction of photovoltaic models and added a chaotic adaptive strategy. Zhang et al. [48] used the enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for photovoltaic model parameter extraction. Zhou et al. proposed [49] metaphor-free dynamic spherical evolution for parameter estimation of photovoltaic modules, it helps the research on the application of swarm intelligence algorithm in photovoltaic modules. We believe that the enhanced AO algorithm can be used in photovoltaic model parameter extraction. In the future, we will also conduct relevant research. Simrandeep Singh et al. [50] proposed Arithmetic optimization based image segmentation. Hussien et al. [51] proposed comparative research and application of Harris Eagle optimization research progress. Wang et al. [52] proposed an enhanced remora optimization algorithm. Hashim et al. [53] proposed a snake optimizer. Zheng et al. [54] proposed an improved wild horse optimizer. Hussien et al. [55] proposed an enhanced COOT optimization algorithm for dimensionality reduction. Yu et al. [56] proposed an enhanced aquila optimizer for global optimization and constrained engineering problems. Yang et al. [57] proposed an efficient DBSCAN optimized by the arithmetic optimization algorithm. Cui et al. [58] proposed a modified slime mold algorithm via levy flight. Yang et al. proposed [59] an opposition learning and spiral modelling based arithmetic optimization algorithm. Hussien et al. [60] proposed boosting whale optimization with an evolution strategy and Gaussian random walks, and used it to image segmentation. Hussien et al. [61] proposed a comprehensive review of moth-flame optimization: variants, hybrids, and applications. Also, swarm intelligence algorithms are used to solve real-world engineering problems. Yu et al. [62] proposed laplace crossover and random replacement strategy boosted Harris hawks optimization. Qi et al. [63] proposed directional mutation and crossover for the immature performance of whale algorithm with application to engineering optimization. Zhao et al. [64] proposed opposition-based ant colony optimization with an all-dimension neighborhood search for engineering design. Zhou et al. [65] proposed advanced orthogonal learning and Gaussian barebone hunger games for engineering design.

    Considering the powerful global exploration capability of the AO and early convergence [44] caused by insufficient exploration and exploitation in the later phases, an enhanced AO with velocity-aided global search mechanism and adaptive opposition-based learning, called VAIAO. The proposed VAIAO has better search ability than the original algorithm, and it is got better performance easily. This article was inspired by the velocity-aided global search mechanism [66], and this paper applies the velocity-aided global search Mechanism to the AO. On the other land, the adaptive opposition-based learning rule is introduced to avoid being trapped in the local optimum.

    The performance of the VAIAO is tested by using 27 classical benchmark functions, the Wilcoxon statistical test, and five engineering optimization problems. In order to compare the various experimental results, IAO [67], AO [30] and some well-known algorithms including Arithmetic AOA [6], HHO [33], STOA [29], ChOA [68], SOA [28], PSO [24], DE [8] are introduced. The results of the experiment show that the proposed VAIAO is better than another algorithm.

    The basic AO and improved strategies will be introduced later. And carry out simulation experiments and engineering optimization problems using VAIAO and comparison algorithms to solve. Finally, the conclusion is given at the end of the article.

    When the Aquila is preying, it can switch four strategies in different situations when facing the prey in different situations to escape the eagle's predation strategy, which can be represented by the following four strategies.

    In this strategy, Aquila flies through high-altitude hunting areas to find the best spot for prey, and once it finds the best spot, Aquila swoops vertically at prey. This behavior can be expressed by the formal.

    X(t+1)=Xbest(t)×(1tT)+(XM(t)Xbest(t)×rand) (1)

    where, Xbest(t) represent the global optimal position, XM(t) represents the current mean position, and t and T represent the current number of iterations and maximum number of iterations.

    In this strategy, Aquila will switch from flying at high altitude to hovering on the head of the prey, preparing for Aquila.

    X(t+1)=Xbest(t)×LF(D)+XR(t)+(yx)×rand (2)

    where, the Aquila's random position is XR(t), and D is the size of dimension. LF is Levy flight function. The y and x represents the shape of the search, which can be expressed by the formula:

    {x=(r1+0.00565×D1)×sin(ω×D1+3×Π2)y=(r1+0.00565×D1)×cos(ω×D1+3×Π2) (3)
    LF(x)=0.01×μ×σ|v|1β,σ=(r(1+β)×sin(Πβ2)r(1+β2)×β×2(β12))1β (4)

    where, r1 is Aquila's search cycles which number between [1,20], D1 is a random integer from one to D dimensions, and ω is a constant of 0.005.

    In this strategy, Aquila first finds and determines the approximate location of the prey through strategy 2. After finding the prey, Aquila descends vertically for initial hunting. This behavior can be expressed by the formula:

    X(t+1)=(Xbest(t)XM(t)×αrand+((UBLB)rand+LB)×δ (5)

    where α and δ are adjustment parameters during the development process, fixed at 0.1, UB and LB are the upper and lower bounds of the search space, respectively.

    In this strategy, Aquila will follow the prey's escape track to land and chase it, then attack it. This behavior be expressed by the formula:

    (t+1)=QF×Xbest(t)(G1×X(t)×rand)G2×LF(D)+rand×G1 (6)
    QF(t)=t2×rand1(1T)2 (7)
    {G1=2×rand1G2=2×(1tT) (8)

    where, G1 is the random number which between [1, −1], and G2 is the flight slope when Aquila tracking the prey between [2,0].

    The IAO [67] is a simplification of the AO [69]. Although the AO algorithm has better convergence speed and exploration ability, the AO algorithm has poor convergence performance in the later stage. For solving this problem, the IAO algorithm selects only strategies 1 and 2 based on the Aquila algorithm. In this way, IAO algorithm can avoid the situation that the convergence speed decreased in the later period. The simplified improved Aquila will be easier than ever.

    During exploration, individuals perform fast flights and hunts of Aquila in the search space. Even though the simplified algorithm speeds up the convergence and improves the search ability. Individuals can still easily fall into local optima. And the speed of convergence and exploration ability of AO can be strengthened That's why we should improve and overcome these shortcomings.

    When Aquila individuals move in the search space without considering the two features of velocity and acceleration, these movements do not always occur continuously or smoothly. The movement of search agents in the search space may break down, then leading to potential drift. Due to this reason, search agents may drift when executing search strategies. Considering the velocity term can avoid premature convergence by helping the search agent maintain its unique trajectory, enhancing the search agent's exploration capabilities, and balancing the exploration and development phases of the optimization process. In VAIAO, an initial random velocity is defined for each Aquila search agent as it performs a search policy move, and an initial random position is defined for each search agent in the search space. Therefore, each search agent has a velocity and position in each dimension of the optimization problem. This idea be expressed by this formula:

    Vt+1j=k×(sgn(Atj)×|Vtj|)+Atj×Dtj (9)

    where, Vtj represent the velocity of the Aquila search agent in the jth dimension. sgn is the sign function. Atj represents the acceleration terms of the search agents, and Atj be expressed by this formula:

    Atj=(2×r11)×a2 (10)

    where, r1 represents a random number between 1 and 0, Furthermore, a is a linearly decreasing parameter determined as follows:

    a=amax(amaxamin)×t1tmax  1 (11)

    Dtj a represents the modified distance between the focused search agent and the leading Aquila. These distances in each dimension can be calculated as follows:

    Dtj=|Ctj×Xt1,jXti,j| (12)
    Ctj=1+(2×r21)×c2 (13)
    c=cmax(cmaxcmin)×t1tmax  1 (14)

    where, Ctj can take these uncertainties into account and help the algorithm better perform the exploration phase. Especially in the early iterations of the optimization process. c is an adaptively determined parameter as follows. r2 represents a random number between 0 and 1.

    k acts as a tuning parameter, acting as an inertia weight, while facilitating a proper and reliable transition from exploration to exploitation, and is iterated through iterative computation as follows:

    k=kmax(kmaxkmin)×t1tmax  1 (15)

    Finally, the next position of the search agent can be expressed by this formula:

    Xt+11,j=Xt+1jVt+1j (16)

    The new position of search agent is calculated by this formula:

    Xt+1i,j=(Xt1,jXt+11,j)2 (17)

    where, is the position of the ith search agent (Aquila) in the jth dimension in the (t+1)th iteration.

    The starting point of introducing reverse learning into IAO is to get rid of the precocious dilemma when it falls into local convergence through reverse learning. Introducing the reverse learning probability of reverse learning requires a large amount of experimental data to determine its value in a hybrid algorithm designed by the original reverse learning and other algorithms. Hussien et al. [70] proposed opposition-based learning and chaotic local search strategy are used in Harris Hawks optimization algorithm for global optimization and feature selection. Hussien et al. [71] An enhanced opposition-based Salp Swarm Algorithm. Therefore, we find that the adaptive opposition-based learning rules can help the algorithm jump out of the local optimum. That's why we introduce adaptive opposition-based learning rules to improve the IAO algorithm. It can be expressed by this formula:

    XjOBL(t+1)=LBj+UBjXj (18)

    where, LBj is the lower bound of the current problem in the jth dimension, and UBj is the upper bound of the current problem in the jth dimension.

    The flowchart of the VAIAO algorithm is given in Figure 1. The pseudo-code for the VAIAO algorithm is shown in Table 2. The computational time complexity is O(T × D × N).

    Figure 1.  The flowchart of the VAIAO algorithm.
    Table 2.  The pseudo-code of the VAIAO algorithm.
    Initialization of population size N and the positions of Individuals Xi(i=1,2,······,n)
    While(tT)
     For i=1:N
      Updata X(t)
      Updata the parameters
      If rand < 0.5
      Updata X(t+1) with Eq.(1)
      Else
      Updata X(t+1) with Eq.(2)
      End
     For i=1:N
      Updata X(t+1) with Eq.(9)-Eq.(17)
     End For
     For i=1:N
      Updata X(t+1) with Eq.(18)
     End For
     For i=1:N
      Check boundaries
     Calculate fitness of X(t)
      Updata Xbest(t)
     End For
      t+t+1
     End While
    Return Xbest(t)

     | Show Table
    DownLoad: CSV

    In this section, the 27 classic functions, the Wilcoxon test and Friedman is used to test the performance of VAIAO algorithm. The results of this experimental show that the VAIAO algorithm has better performance than the original AO algorithm.

    In this section, some well-known algorithms are selected to verify the performance of the proposed VAIAO algorithm, such as IAO [67], AO [30], AOA [6], HHO [33], STOA [29], ChOA [68], SOA [28], PSO [24], DE [8]. To ensure the fairness of the experimental, set the population data to 30, and set the number of iterations is 500. The worst value, average value, optimal value, median value, and standard deviation of the output are compared to set the parameters of the algorithm according to the original version. The parameter settings for the comparative algorithms are shown in Table 3.

    Table 3.  Para settings for the comparative algorithm.
    Algorithm Parameters
    VAIAO a[2,0];c[1,0];k=0.9,0.4
    IAO r[1,0]
    AO U=0.00565;r1=10;ω=0.005;α=0.1;δ=0.1;G1[1,1];G2[2,0]
    AOA r1[1,0];r2[1,0];r3[1,0]
    HHO q[0,1];r[0,1];E0[1,1];E1[2,0];E[2,2]
    STOA Sa[2,0];r1[0.5,0];r2[0.5,0];b=1
    ChOA f[2,0];r1[0,1];r2[0,1]
    SOA Fc[2,0];r1[1,0];r2[1,0];b=1
    PSO C1=1.49445,C2=1.49445,v[0.5,0.5]
    DE F0=0.5,CR=0.7

     | Show Table
    DownLoad: CSV

    In this section, there are 27 typical benchmark selection functions, including 9 single-peak functions (shown in Table 4), 9 two-dimensional multi-channel functions (shown in Table 5), and 9 multidimensional multi-peak functions (shown in Table 6). These benchmark functions are used to test the basic performance of the proposed OLAO algorithm. All simulation experiments will be conducted on Intel(R) Core (TM) i5-10300H CPU @2.50GHz 3106×2 core and MATLAB 2017b software will be used.

    Table 4.  Unimodal benchmark functions.
    Functions Description Dimensions Range fmin
    F1 f(x)=Di=1x2i 30, 60,100,300,500 [−100,100] 0
    F2 f(x)=Di=1|xi| 30, 60,100,300,500 [−100,100] 0
    F3 f(x)=106i1D1×Di=1x2i 30, 60,100,300,500 [−100,100] 0
    F4 f(x)=Di=1(x2i+1x2i) 30, 60,100,300,500 [−100,100] 0
    F5 f(x)=max{|xi|,1iD} 30, 60,100,300,500 [−100,100] 0
    F6 f(x)=Di=1|xi|+Di=1|xi| 30, 60,100,300,500 [−100,100] 0
    F7 f(x)=Di=1ix2i 30, 60,100,300,500 [−100,100] 0
    F8 f(x)=f(x)=Di=1(ij=1ix2i)2 30, 60,100,300,500 [−100,100] 0
    F9 f(x)=Di=1ix4i 30, 60,100,300,500 [−100,100] 0

     | Show Table
    DownLoad: CSV
    Table 5.  Two-dimensional multimodal functions.
    Functions Descriptions Dimensions Ranges fmin
    F10 f(x)=7x2163x1x2+13x22 2 [−100,100] 0
    F11 f(x)=195.6316200e(0.02x21+x22)+5e(cos3x1+sin3x2) 2 [−100,100] 0
    F12 f(x)=(x21+x22)0.25×(1+sin(50(3x21+x22)0.1)2) 2 [−100,100] 0
    F13 f(x)=0.5+(sin(x21+x22)20.5)(1+0.001(x21+x22))2 2 [−5, 5] 0
    F14 f(x)=0.1+sin(x1)2+sin(x2)20.1e(x21x22) 2 [−10, 10] 0
    F15 f(x)=(sin4sin(2x21+x22)2+sin(3x21+x22)3sin(4x21+x22)4+4)×cos(argtanx2x1π)+2 2 [−100,100] 0
    F16 f(x)=2x211.05x41+x616+x1x2+x22 2 [−100,100] 0
    F17 f(x)=0.26(x21+x22)0.48x1x2 2 [−100,100] 0
    F18 f(x)=0.5+((sin(x21+x22)20.5))(1+0.001(x21+x22))2 2 [−20, 20] 0

     | Show Table
    DownLoad: CSV
    Table 6.  Multi-dimensional multimodal functions.
    Functions Descriptions Dimensions Ranges fmin
    F19 f(x)=1+(Di=1sin(xi)2e(Di=1x2i)×e(Di=1sin(|xi|)2) 30, 60,100,300,500 [−100,100] 0
    F20 f(x)=Di=1x6i(2+sin(1xi)) 30, 60,100,300,500 [−100,100] 0
    F21 f(x)=Di=1[100(xi+1x2i)2+(xi1)2] 30, 60,100,300,500 [−100,100] 0
    F22 f(x)=Di=1|xisin(xi)+0.1xi| 30, 60,100,300,500 [−100,100] 0
    F23 f(x)=D10+Di=1x2iDi=1cos(5πxi)10 30, 60,100,300,500 [−100,100] 0
    F24 f(x)=1+Di=1x2i4000Di=1cos(xii) 30, 60,100,300,500 [−100,100] 0
    F25 f(x)=1cos(2πDi=1x2i+0.1Di=1x2i) 30, 60,100,300,500 [−100,100] 0
    F26 f(x)=10D+Di=1[x2i10cos(2πxi)] 30, 60,100,300,500 [−100,100] 0
    F27 f(x)=20e(2Di=1x2iD)e(Di=1cos(2πxi)D)+20+e 30, 60,100,300,500 [−100,100] 0

     | Show Table
    DownLoad: CSV

    In this section, the test function contains an unimodal test function and a multimodal test function. The algorithm tests the single peak function to verify the algorithm's exploration ability is effective, because the unimodal test function only has one global optimal value. The results of the experiment are shown in Table 7. In most instances, the VAIAO algorithm has the best convergence performance in almost all case and has better performance on unimodal functions than other algorithm.

    Table 7.  Test results of Unimodal function (F1–F9), the dimension is fixed to 30.
    Fun Items SOIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F1 Average 0.0000 1.3374 × 10−291 5.2757 × 10−152 2.4485 × 10−93 3.6079 × 10−102 1.9011 × 10−6 1.3008 × 10−5 2.8797 × 10−12 4.1938 × 10−4 4.5181 × 10−4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    F2 Average 3.7644 × 10−147 9.7308 × 10−146 6.5298 × 10−59 6.3692 × 10−52 6.4248 × 10−51 1.7544 × 10−4 2.1821 × 10−4 2.7349 × 10−7 2.0394 × 10−2 9.6032 × 102
    Std 8.4104 × 10−147 1.2976 × 10−145 1.4601 × 10−58 1.4242 × 10−51 1.2502 × 10−50 1.1095 × 10−4 2.4623 × 10−4 1.9075 × 10−7 8.9718 × 10−3 38.142
    F3 Average 1.1656 × 10−300 4.2723 × 10−296 1.4097 × 10−141 3.6188 × 10−3 1.5452 × 10−94 74.685 1.4667 × 102 6.1053 × 10−6 2.1579 × 103 6.7414 × 1011
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    F4 Average 0.0000 0.0000 1.2913 × 10−296 0.0000 2.3320 × 10−189 6.1574 × 10−18 3.5583 × 10−16 5.9353 × 10−28 2.4914 × 10−8 5.1324 × 107
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 1.0005 × 10−17 5.0628 × 10−16 9.0818 × 10−28 5.3972 × 10−8 7.9633 × 106
    F5 Average 3.7482 × 10−145 3.1301 × 10−150 1.1888 × 10−52 2.7044 × 10−2 2.0140 × 10−49 4.8732 × 10−2 0.34245 1.2416 × 10−2 1.7174 74.286
    Std 8.3764 × 10−145 4.4009 × 10−150 2.6583 × 10−52 2.5004 × 10−2 2.8430 × 10−49 6.8444 × 10−2 0.35991 2.5710 × 10−2 0.40172 4.1678
    F6 Average 3.6797 × 10−143 3.8905 × 10−142 4.3251 × 10−71 0.0000 2.3336 × 10−49 5.5061 × 10−6 6.6415 × 10−5 2.6600 × 10−8 1.9753 × 10−2 5.4108 × 108
    Std 8.2280 × 10−143 8.6993 × 10−142 9.6703 × 10−71 0.0000 5.0420 × 10−49 4.7519 × 10−6 1.1828 × 10−4 8.7207 × 10−9 1.1563 × 10−2 7.3281 × 108
    F7 Average 8.8651 × 10−308 9.0167 × 10−263 6.9932 × 10−110 3.5958 × 10−30 1.0178 × 10−94 6.0971 × 10−6 8.9469 × 10−5 2.2386 × 10−10 8.4813 × 10−4 6.4148 × 105
    Std 0.0000 0.0000 1.5637 × 10−109 8.0405 × 10−30 2.2759 × 10−94 4.7054 × 10−6 1.3921 × 10−4 3.3203 × 10−10 8.9580 × 10−4 6.9981 × 104
    F8 Average 0.0000 0.0000 3.9573 × 10−276 4.4146 × 10−36 3.9112 × 10−193 1.5903 × 10−10 2.1632 × 10−6 2.0882 × 10−18 5.0434 × 10−6 1.7330 × 108
    Std 0.0000 0.0000 0.0000 9.8714 × 10−36 0.0000 2.5138 × 10−10 4.8222 × 10−6 4.0422 × 10−18 4.4984 × 10−6 2.7526 × 107
    F9 Average 0.0000 0.0000 2.2060 × 10−282 9.5734 × 10−119 6.6071 × 10−207 4.0249 × 10−9 2.2641 × 10−5 1.2280 × 10−19 1.4946 × 10−4 2.3440 × 109
    Std 0.0000 0.0000 0.0000 2.1407 × 10−118 0.0000 6.8554 × 10−9 4.7015 × 10−5 1.2419 × 10−19 2.5801 × 10−4 2.6115 × 108

     | Show Table
    DownLoad: CSV

    The multimodal test functions include many local optimal solutions and global optimal solutions. With the increase of the dimension, the algorithm with poor performance can easily fall into local optimum. Therefore, it is very effective to use these functions to test the diversity of algorithms. The results of the multimodal two-dimensional in this section are shown in Tables 8 and 9. In the low-dimensional diversification experiment, the VAIAO algorithm proposed in this paper can converge to 0 many times, and obtain the optimal value through the data in Tables 8 and 9.

    Table 8.  Test results of multimodal two-dimensional function (F10–F18), the dimension is fixed to 30.
    Fun Items SOIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F10 Average 0.0000 0.0000 6.1912 × 10-2 10.000 0.0000 10.000 10.000 10.000 10.000 10.000
    Std 0.0000 0.0000 5.7285 × 10-2 6.1740 × 10-10 0.0000 1.6385 × 10-11 1.9981 × 10-09 1.5984 × 10-10 6.4737 × 10-16 1.2519 × 10-08
    F11 Average 0.0000 0.0000 0.0000 2.0226 × 10-50 3.0654 × 10-286 1.9485 × 10-11 1.4912 × 10-08 2.6768 × 10-23 1.1258 × 10-4 1.4997 × 10+12
    Std 0.0000 0.0000 0.0000 4.5226 × 10-50 0.0000 3.6242 × 10-11 3.3336 × 10-8 3.0150 × 10-23 2.1042 × 10-4 4.1024 × 10+11
    F12 Average 2.5155 × 10-2 4.3679 × 10-1 6.5901 × 10-3 71.927 6.2121 × 10-3 73.546 89.006 73.509 75.565 11.242
    Std 5.4232 × 10-2 9.5290 × 10-1 1.0058 × 10-2 4.9991 ×10-1 1.0974 ×10-2 4.1366 ×10-1 1.2286 ×10-1 4.2066 ×10-1 15.983 6.4118 ×108
    F13 Average 3.3299 × 10-38 9.8432 × 10-124 9.7428 ×10-5 6.6943 × 10-24 2.8332 × 10-48 2.3757 × 10-1 1.0823 × 10-1 2.1251 ×10-3 6.3621 ×10-2 5.1495 ×102
    Std 7.4458 × 10-38 2.2010 × 10-123 2.1786 × 10-04 1.4969 × 10-23 6.3024 × 10-48 4.0764 × 10-1 2.0948 × 10-1 1.4765 × 10-3 9.5643 × 10-2 25.793
    F14 Average 0.0000 0.0000 0.0000 0.0000 0.0000 2.9961 × 10-2 4.4001 × 10-6 1.2201 × 10-11 4.7933 × 10-1 4.4415 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 6.6979 × 10-2 3.7691 × 10-6 1.7271 × 10-11 3.5923 × 10-1 3.7541 × 10+3
    F15 Average 0.0000 0.0000 0.0000 0.0000 0.0000 2.2648 × 10-2 3.6068 × 10-2 8.5477 × 10-3 3.9600 × 10-3 12.304
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 2.4951 × 10-2 2.3192 × 10-2 1.9113 × 10-2 5.3962 × 10-3 2.0706
    F16 Average 2.1276 × 10-139 1.3235 × 10-129 4.9230 × 10-37 9.9873 × 10-2 1.8757 × 10-50 2.5987 × 10-1 1.5301 × 10-1 1.3987 ×10-1 4.6473 × 10-1 22.130
    Std 4.7576 × 10-139 2.9594 × 10-129 1.1007 × 10-36 1.5245 × 10-8 3.0802 × 10-50 5.4772 × 10-2 5.0490 × 10-2 5.4772 × 10-2 8.5849 × 10-2 1.0707
    F17 Average 0.0000 0.0000 0.0000 3.4987 × 10-3 0.0000 22.912 17.773 84.342 6.5628 × 10+1 4.8665 × 10+4
    Std 0.0000 0.0000 0.0000 7.8233 × 10-3 0.0000 10.347 14.383 7.9822 43.406 2.4056 × 10+3
    F18 Average 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 20.000 20.000 20.000 12.575 21.266
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.815 3.2831 × 10-2

     | Show Table
    DownLoad: CSV
    Table 9.  Test results of Multi-peak multidimensional function (F19–F27), the dimension is fixed to 30.
    Fun Items SOIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F19 Average 3.7921 × 10-284 4.2388 × 10-152 0.0000 7.5115 × 10-123 5.3123 × 10-60 8.4732 × 10-109 1.2217 × 10-94 5.7790 × 10-43 1.1176 × 10+2 3.7921 × 10-284
    Std 0.0000 6.8746 × 10-152 0.0000 1.4946 × 10-122 1.1458 × 10-59 1.7112 × 10-108 2.7296 × 10-94 1.2922 × 10-42 1.5591 × 10+2 0.0000
    F20 Average 3.1780 × 10-5 6.1035 × 10-4 3.6168 × 10-3 2.6850 × 10-3 2.5718 × 10-3 2.5765 × 10-3 2.6067 × 10-3 2.5818 × 10-3 2.5717 × 10-3 12.733
    Std 9.3107 × 10-5 3.0590 × 10-4 4.8087 × 10-4 1.1191 × 10-4 1.1817 × 10-7 2.0037 × 10-6 2.8916 × 10-5 6.9897 × 10-6 1.4845 × 10-15 6.6951
    F21 Average 7.4397 × 10-67 1.0670 × 10-54 8.0752 × 10-37 0.0000 2.0674 × 10-28 1.5729 × 10-16 1.1379 × 10-32 6.3436 × 10-27 8.1781 × 10-15 2.5053
    Std 1.6082 × 10-66 2.3860 × 10-54 1.6215 × 10-36 0.0000 2.9078 × 10-28 1.9113 × 10-16 2.5444 × 10-32 7.8475 × 10-27 1.1609 × 10-14 8.1600 × 10-1
    F22 Average 0.0000 0.0000 0.0000 0.0000 0.0000 1.9432 × 10-3 6.3022 × 10-3 3.8864 × 10-3 1.9432 × 10-3 9.7478 × 10-3
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 4.3451 × 10-3 4.7119 × 10-3 5.3216 × 10-3 4.3452 × 10-3 5.5634 × 10-5
    F23 Average 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0236 × 10-2 2.0024 × 10-2 9.9192 × 10-2 8.7557 × 10-2
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4.4853 × 10-2 4.4775 × 10-2 1.7146 × 10-1 3.0053 × 10-2
    F24 Average 6.1118 × 10-145 1.7857 × 10-138 3.2553 × 10-53 0.0000 6.3114 × 10-54 2.7565 4.5736 1.8520 4.6233 4.6436
    Std 1.3661 × 10-144 3.9697 × 10-138 7.2790 × 10-53 0.0000 1.1169 × 10-53 2.5178 1.6283 × 10-1 2.5359 5.9274 × 10-2 6.9033 × 10-2
    F25 Average 0.0000 0.0000 1.7368 × 10-156 0.0000 2.6981 × 10-146 1.2028 × 10-54 9.2557 × 10-69 5.9487 × 10-84 4.0707 × 10-49 7.2193 × 10-1
    Std 0.0000 0.0000 1.2975 × 10-139 0.0000 1.4173 × 10-107 9.7993 × 10-64 2.4634 × 10-140 7.0872 × 10-100 1.2175 × 10-56 33.863
    F26 Average 0.0000 0.0000 1.7368 × 10-156 0.0000 2.6981 × 10-146 1.2028 × 10-54 9.2557 × 10-69 5.9487 × 10-84 4.0707 × 10-49 7.2193 × 10-1
    Std 0.0000 0.0000 1.2975 × 10-139 0.0000 1.4173 × 10-107 9.7993 × 10-64 2.4634 × 10-140 7.0872 × 10-100 1.2175 × 10-56 33.863
    F27 Average 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.0085
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.8149 × 10-1

     | Show Table
    DownLoad: CSV

    In order to understand the performance of the algorithm, this section will perform accelerated convergence analysis of these algorithms on 27 classic benchmark functions to compare the performance of the algorithm, the results are shown in Figures 25. The results in Figure 2 show the VAIAO algorithm has faster convergence s peed, higher convergence accuracy, and more stable convergence curve.

    Figure 2.  Convergence curves of 27 benchmark functions (F1–F6).
    Figure 3.  Convergence curves of 27 benchmark functions (F7–F14).
    Figure 4.  Convergence curves of 27 benchmark functions (F15–F22).
    Figure 5.  Convergence curves of 27 benchmark functions (F23–F27).

    One of the problems which the algorithm must solve is the high-dimensional problem. The dimensions are selected as 60,100,300,500 to solve this problem, and the results are shown in Tables 1013.

    Table 10.  Test results of benchmark function (F1–F9, F19–F27), the dimension is fixed to 60.
    Fun Item VAIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F1 Average 4.9791 × 10-285 7.9894 × 10-284 1.6265 × 10-101 7.9491 × 10-83 1.2280 × 10-97 1.2062 × 10-6 3.0010 × 10-6 2.2287 × 10-12 1.2383 × 10-4 4.5836 × 10+4
    Std 0.0000 0.0000 3.6369 × 10-101 1.4446 × 10-82 2.7459 × 10-97 1.8624 × 10-6 3.2504 × 10-6 2.0211 × 10-12 1.0144 × 10-4 3.3363 × 10+3
    F2 Average 1.0754 × 10-144 1.0762 × 10-142 4.4908 × 10-62 8.6497 × 10-43 4.7376 × 10-50 7.2859 × 10-5 5.4243 × 10-4 2.9238 × 10-7 2.8354 × 10-2 9.3463 × 10+2
    Std 2.4046 × 10-144 2.4064 × 10-142 1.0042 × 10-61 1.9341 × 10-42 9.9176 × 10-50 9.0603 × 10-5 6.9310 × 10-4 2.7641 × 10-7 1.7438 × 10-2 85.440
    F3 Average 0.0000 6.4756 × 10-295 4.0162 × 10-130 4.2837 × 10-127 7.4047 × 10-96 1.1059 × 10-1 7.9538 1.6480 × 10-4 2.0313 × 10+4 6.7097 × 10+11
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    F4 Average 0.0000 0.0000 1.6672 × 10-227 0.0000 2.9404 × 10-204 9.4603 × 10-18 7.5156 × 10-16 8.3905 × 10-28 1.8487 × 10-9 5.9847 × 10+7
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 1.2690 × 10-17 1.1246 × 10-15 1.4975 × 10-27 3.3947 × 10-9 4.5947 × 10+6
    F5 Average 5.3277 × 10-150 5.8938 × 10-150 2.8218 × 10-67 3.3871 × 10-2 3.2133 × 10-50 6.5490 × 10-2 4.1592 × 10-1 1.0360 × 10-3 1.2916 76.030
    Std 1.2621 × 10-149 1.3179 × 10-149 6.2674 × 10-67 1.8970 × 10-2 4.2164 × 10-50 8.9912 × 10-2 4.3917 × 10-1 7.9839 × 10-4 4.3288 × 10-1 2.0916 ×
    F6 Average 3.3763 × 10-149 1.1833 × 10-145 5.5194 × 10-51 0.0000 5.3515 × 10-52 1.4184 × 10-5 6.6697 × 10-5 1.0693 × 10-8 1.9238 × 10-2 1.9707 × 10+8
    Std 7.5442 × 10-149 2.6406 × 10-145 1.2342 × 10-50 0.0000 9.5332 × 10-52 1.4988 ×10-5 7.7537 ×10-5 4.9822 × 10-9 3.6831 × 10-3 2.2429 × 10+8
    F7 Average 5.7989 × 10-283 2.7115 × 10-281 9.1577 × 10-135 4.6576 × 10-87 8.4403 × 10-98 5.6128 ×10-6 1.2090 ×10-5 1.6166 × 10-10 9.5755 × 10-4 6.5491 × 10+5
    Std 0.0000 0.0000 2.0477 × 10-134 1.0268 × 10-86 1.5796 × 10-97 6.8124 ×10-6 2.0955 ×10-5 1.4812 × 10-10 9.0545 × 10-4 4.1739 × 10+4
    F8 Average 0.0000 0.0000 6.1451 × 10-295 1.1543 × 10-99 1.8381 × 10-186 3.4122 × 10-11 1.0365 × 10-7 2.7425 × 10-19 2.1931 × 10-5 1.7272 × 10-8
    Std 0.0000 0.0000 0.0000 2.5810 × 10-99 0.0000 3.4613 × 10-11 1.0793 × 10-7 4.6732 × 10-19 3.1971 × 10-5 4.2488 × 10+7
    F9 Average 0.0000 0.0000 1.2212 × 10-255 6.2093 × 10-110 1.2294 × 10-200 3.1520 × 10-8 8.8864 × 10-7 1.5077 × 10-18 6.5741 × 10-4 2.0827 × 10+9
    Std 0.0000 0.0000 0.0000 1.3884 × 10-109 0.0000 6.5054 × 10-8 1.4509 × 10-6 3.2314 × 10-18 1.1546 × 10-3 1.8815 × 10+8
    F10 Average 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
    Std 0.0000 0.0000 0.0000 1.1073 × 10-9 0.0000 2.4964 × 10-11 4.8343 × 10-9 4.7418 × 10-11 2.1617 × 10-8 1.5491 × 10-8
    F11 Average 0.0000 0.0000 0.0000 1.1151 × 10-9 3.6025 × 10-293 4.7543 × 10-12 5.2735 × 10-5 3.6730 × 10-25 1.0178 × 10-2 1.8080 × 10+12
    Std 0.0000 0.0000 0.0000 2.4935 × 10-9 0.0000 6.9713 × 10-12 1.1788 × 10-4 8.1060 × 10-25 1.3883 × 10-2 3.1086 × 10+11
    F12 Average 1.1053 1.5749 × 10-2 2.9848 × 10-3 7.1238 1.6186 × 10-3 7.7015 8.7626 7.7813 5.6736 1.0216 × 10+09
    Std 2.4646 1.4847 × 10-2 2.8920 × 10-3 4.5150 × 10-1 1.9301 × 10-3 5.3349 × 10-1 3.8776 × 10-1 7.2438 × 10-1 4.4997 6.1546 × 10+08
    F13 Average 5.1562 × 10-139 6.6950 × 10-145 2.5938 × 10-41 2.2555 × 10-36 9.1534 × 10-52 3.3102 × 10-1 7.5026 × 10-3 2.2971 × 10-2 1.6973 × 10-1 5.2031 × 10+02
    Std 1.1530 × 10-138 1.4667 × 10-144 5.8000 × 10-41 5.0434 × 10-36 1.4544 × 10-51 4.7732 × 10-1 4.6404 × 10-3 4.6946 × 10-2 1.4654 × 10-1 47.448
    F14 Average 0.0000 0.0000 0.0000 0.0000 0.0000 8.2893 × 10-6 8.4925 × 10-5 7.4010 × 10-11 4.7624 × 10-1 4.5788 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 1.4189 × 10-5 1.3325 × 10-4 9.5731 × 10-11 3.1832 × 10-1 5.6324 × 10+3
    F15 Average 0.0000 0.0000 0.0000 0.0000 0.0000 3.5722 × 10-2 1.4915 × 10-2 3.0534 × 10-3 3.9471 × 10-3 12.181
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 3.7178 × 10-2 2.0853 × 10-2 6.8275 × 10-3 8.8018 × 10-3 1.5118
    F16 Average 1.0131 × 10-96 3.9346 × 10-135 6.6523 × 10-53 9.9873 × 10-2 4.6541 × 10-51 2.3987 × 10-1 1.9987 × 10-1 1.5987 × 10-1 4.8059 × 10-1 22.228
    Std 2.2654 × 10-96 8.7981 × 10-135 1.4875 × 10-52 6.9961 × 10-08 1.0002 × 10-50 5.4772 × 10-2 4.4412 × 10-7 5.4772 × 10-2 8.3927 × 10-2 7.9026 × 10-1
    F17 Average 0.0000 0.0000 0.0000 0.0000 0.0000 22.710 24.708 5.4079 53.609 4.8653 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 14.530 35.191 5.0580 5.4390 4.5805 × 10+3
    F18 Average 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 1.5987 × 10-15 8.8818 × 10-16 20.000 20.000 20.000 21.217 21.211
    Std 0.0000 0.0000 0.0000 1.5888 × 10-15 0.0000 0.0000 1.6313 × 10-9 0.0000 7.6156 × 10-2 1.1811 × 10-1

     | Show Table
    DownLoad: CSV
    Table 11.  Test results of benchmark function (F1–F9, F19–F27), the dimension is fixed to 100.
    Fun Item VAIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F1 Average 2.0856 × 10-288 1.3525 × 10-271 1.9209 × 10-144 5.8406 × 10-22 6.0336 × 10-99 1.0055 × 10-6 1.4164 × 10-6 1.3739 × 10-11 2.2488 × 10-4 4.7702 × 10+4
    Std 0.0000 0.0000 4.0786 × 10-144 1.3060 × 10-21 1.3491 × 10-98 5.6687 × 10-7 1.5866 × 10-6 2.2845 × 10-11 1.5536 × 10-4 8.9312 × 10+3
    F2 Average 5.5074 × 10-148 4.1899 × 10-147 9.4978 × 10-65 7.8562 × 10-31 4.5422 × 10-51 1.1767 × 10-4 1.1669 × 10-4 1.7749 × 10-7 2.2129 × 10-2 9.3520 × 10-2
    Std 1.2075 × 10-148 9.3243 × 10-147 2.1238 × 10-64 1.7567 × 10-30 9.7386 × 10-51 8.6044 × 10-5 1.4799 × 10-4 6.9353 × 10-8 1.8698 × 10-2 30.797
    F3 Average 0.0000 0.0000 2.4261 × 10-144 4.9514 × 10-82 1.3037 × 10-101 1.9101 × 10-1 4.7998 × 10-1 1.0582 × 10-5 8.5986 × 10+3 7.5167 × 10+11
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    F4 Average 0.0000 0.0000 1.8263 × 10-290 0.0000 3.5375 × 10-204 5.7413 × 10-18 1.1299 × 10-15 6.5828 × 10-27 2.6545 × 10-10 4.6675 × 10+7
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 6.6767 × 10-18 2.5264 × 10-15 1.1839 × 10-26 3.3196 × 10-10 1.0026 × 10+7
    F5 Average 1.0731 × 10-147 1.1287 × 10-147 7.7323 × 10-75 2.6114 × 10-2 1.3253 × 10-50 2.5638 × 10-2 2.7609 × 10-1 1.0539 × 10-2 1.5166 75.742
    Std 2.4467 × 10-147 2.5238 × 10-147 7.1508 × 10-75 2.3856 × 10-2 2.9470 × 10-50 4.3785 × 10-3 1.7849 × 10-1 1.4339 × 10-2 3.3536 × 10-1 2.7620
    F6 Average 2.7824 × 10-154 9.8495 × 10-149 1.9648 × 10-64 0.0000 1.6351 × 10-50 1.3057 × 10-5 4.3568 × 10-5 1.2533 × 10-8 2.4265 × 10-2 2.9054 × 10+8
    Std 3.9894 × 10-154 2.2024 × 10-148 4.3933 × 10-64 0.0000 3.2917 × 10-50 1.6997 × 10-5 5.0613 × 10-5 6.3306 × 10-9 1.4935 × 10-2 3.3341 × 10+8
    F7 Average 3.4587 × 10-286 7.4886 × 10-262 1.3214 × 10-115 2.7430 × 10-30 2.4926 × 10-102 4.5084 × 10-6 1.3141 × 10-4 4.0396 × 10-11 7.3701 × 104 6.9182 × 10+5
    Std 0.0000 0.0000 2.9548 × 10-115 6.1334 × 10-30 2.7141 × 10-102 4.7226 × 10-6 2.4179 × 10-4 4.5370 × 10-11 4.7857 × 104 3.9992 × 10+4
    F8 Average 0.0000 0.0000 2.3053 × 10-297 1.4862 × 10-173 9.8413 × 10-193 5.5288 × 10-11 6.0337 × 10-10 6.6808 × 10-19 2.9822 × 10-4 1.8184 × 10+8
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 5.9165 × 10-11 4.7341 × 10-10 1.4725 × 10-18 5.2236 × 10-4 9.5505 × 10+6
    F9 Average 0.0000 0.0000 3.4185 × 10-197 2.4835 × 10-125 4.3701 × 10-191 6.5793 × 10-10 5.2847 × 10-06 1.0413 × 10-18 3.3135 × 10-4 2.5114 × 10+9
    Std 0.0000 0.0000 0.0000 5.5533 × 10-125 0.0000 4.2526 × 10-10 1.1817 × 10-05 1.3940 × 10-18 4.2915 × 10-4 3.2430 × 10+8
    F10 Average 0.0000 0.0000 6.1061 × 10-2 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
    Std 0.0000 0.0000 1.3458 × 10-1 1.4541 × 10-9 0.0000 1.7788 × 10-11 1.8392 × 10-9 5.4131 × 10-11 9.9584 × 10-9 1.7382 × 10-8
    F11 Average 0.0000 0.0000 0.0000 2.3162 × 10-40 6.9359 × 10-291 2.5794 × 10-12 8.2743 × 10-10 3.4449 × 10-25 1.5298 × 10-4 1.3530 × 10+12
    Std 0.0000 0.0000 0.0000 5.1792 × 10-40 0.0000 4.9553 × 10-12 1.2241 × 10-9 7.6965 × 10-25 3.1283 × 10-4 1.4707 × 10+11
    F12 Average 2.3293 × 10-2 2.6402 × 10--2 8.3243 × 10-3 7.5737 5.7798 × 10-3 7.3658 8.9861 7.7392 7.5901 7.9727 × 10+8
    Std 2.6047 × 10-2 4.2889 × 10-2 1.3581 × 10-2 3.4765 × 10-1 6.7518 × 10-3 3.9510 × 10-1 1.1386 × 10-2 4.8710 × 10-1 4.9830 3.0547 × 10+8
    F13 Average 2.7741 × 10-134 9.5046 × 10-131 2.0574 × 10-45 2.9736 × 10-16 3.6069 × 10-51 1.1388 1.0799 × 10-2 9.7007 × 10-1 1.4721 × 10-1 5.5924 × 10+2
    Std 6.2031 × 10-134 2.1253 × 10-130 4.6005 × 10-45 6.6491 × 10-16 7.9918 × 10-51 1.9680 1.0189 × 10-2 2.1645 1.4404 × 10-1 7.7151
    F14 Average 0.0000 0.0000 0.0000 0.0000 0.0000 2.9766 × 10-2 1.3756 × 10-5 1.4978 × 10-11 7.7284 × 10-1 4.7685 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 6.6554 × 10-2 5.5149 × 10-6 1.6901 × 10-11 1.0194 × 10-1 3.1623 × 10+3
    F15 Average 0.0000 0.0000 0.0000 0.0000 0.0000 2.6034 × 10-2 1.6210 × 10-2 2.1853 × 10-12 1.4857 × 10-3 11.962
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 3.6158 × 10-2 2.3634 × 10-2 4.5888 × 10-12 3.3054 × 10-3 20.858
    F16 Average 2.4308 × 10-132 1.4778 × 10-123 2.0964 × 10-56 9.9873 × 10-2 8.6246 × 10-51 2.3987 × 10-1 1.7988 × 10-1 1.3987 × 10-1 5.0070 × 10-1 22.327
    Std 5.4354 × 10-132 3.3046 × 10-123 4.6877 × 10-56 1.2637 × 10-8 1.6438 × 10-50 5.4772 × 10-2 4.4713 × 10-1=2 5.4772 × 10-2 1.2189 × 10-1 5.5834 × 10-1
    F17 Average 0.0000 0.0000 0.0000 0.0000 0.0000 21.667 23.760 5.1447 51.996 4.5831 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 22.730 21.422 4.6792 14.896 5.0338 × 10+3
    F18 Average 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 2.0365 × 10-9 8.8818 × 10-16 20.000 20.000 20.000 12.009 21.208
    Std 0.0000 0.0000 0.0000 4.5537 × 10-9 0.0000 3.6343 × 10-9 0.0000 5.8102 × 10-9 10.943 8.3420 × 10-2

     | Show Table
    DownLoad: CSV
    Table 12.  Test results of benchmark function (F1-F9, F19-F27), the dimension is fixed to 300.
    Fun Item VAIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F1 Average 8.5034 × 10-270 2.3079 × 10-261 3.3665 × 10-142 5.1609 × 10-52 4.3526 × 10-103 1.8230 × 10-7 2.7129 × 10-7 5.2054 × 10-12 5.1871 × 10-5 4.6751 × 10+4
    Std 0.0000 0.0000 7.1672 × 10-142 1.1540 × 10-51 5.1572 × 10-103 1.6248 × 10-7 3.2089 × 10-7 7.8125 × 10-12 3.9173 × 10-5 2.9835 × 10+3
    F2 Average 3.7912 × 10-145 7.2883 × 10-119 2.4149 × 10-63 1.3091 × 10-30 8.5396 × 10-50 2.1334 × 10-4 2.9038 × 10-4 2.8768 × 10-7 2.0031 × 10-2 9.2501 × 10+2
    Std 8.4775 × 10-145 1.6297 × 10-118 5.1948 × 10-63 2.9273 × 10-30 1.8982 × 10-49 3.7048 × 10-4 3.1308 × 10-4 3.0723 × 10-7 1.1255 × 10-2 53.869
    F3 Average 7.3174 × 10-303 7.7808 × 10-294 2.8079 × 10-141 1.8273 × 10-47 1.6119 × 10-99 9.4355 18.046 2.1366 × 10-5 2.7337 × 10+3 6.5635 × 10+11
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    F4 Average 0.0000 0.0000 1.0180 × 10-214 0.0000 1.9773 × 10-218 2.8943 × 10-17 5.9752 × 10-19 4.6456 × 10-29 1.1970 × 10-9 5.9402 × 10+7
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 5.6868 × 10-17 1.3144 × 10-18 8.3512 × 10-29 2.5358 × 10-9 1.3212 × 10+7
    F5 Average 3.5737 × 10-147 1.5840 × 10-146 3.9392 × 10-55 2.5504 × 10-2 1.8021 × 10-47 4.1602 × 10-2 1.3958 × 10-1 2.4564 × 10-3 1.3620 75.163
    Std 7.9911 × 10-147 2.4424 × 10-146 8.8083 × 10-55 2.3298 × 10-2 3.8369 × 10-47 3.5228 × 10-2 1.3822 × 10-1 1.9369 × 10-3 2.4597 × 10-1 1.1950
    F6 Average 8.6006 × 10-154 4.8798 × 10-138 4.5346 × 10-59 0.0000 1.4295 × 10-48 7.3639 × 10-6 3.8962 × 10-5 2.4319 × 10-8 2.7580 × 10-2 8.9581 × 10+7
    Best 3.4887 × 10-169 2.0631 × 10-163 1.6957 × 10-75 0.0000 1.3140 × 10-57 3.9492 × 10-6 8.9013 × 10-6 7.6014 × 10-9 8.2748 × 10--3 4.1897 × 10+7
    F7 Middle 8.6568 × 10-155 1.4478 × 10-162 2.0853 × 10-73 0.0000 1.0650 × 10-53 4.9859 × 10-6 4.3948 × 10-5 1.7779 × 10-8 1.0212 × 10-2 8.2422 × 10+7
    Std 1.8039 × 10-153 1.0912 × 10-137 1.0140 × 10-58 0.0000 3.1961 × 10-48 4.2023 × 10-6 2.3412 × 10-5 1.9170 × 10-8 3.1222 × 10-2 4.1768 × 10+7
    F8 Average 2.6834 × 10-290 2.3487 × 10-291 5.0829 × 10-107 2.9621 × 10-22 1.3730 × 10-95 3.1965 × 10-6 7.6805 × 10-5 1.4931 × 10-10 6.8479 × 10-3 6.3921 × 10+5
    Std 0.0000 0.0000 1.1366 × 10-106 6.6234 × 10-22 3.0614 × 10-95 3.1031 × 10-6 7.3720 × 10-5 2.5066 × 10-10 5.3827 × 10-3 5.9461 × 10+4
    F9 Average 0.0000 0.0000 8.6268 × 10-297 1.0809 × 10-85 9.3269 × 10-199 2.4077 × 10-10 1.8286 × 10-8 8.6589 × 10-18 6.6912 × 10-6 1.5498 × 10+8
    Std 0.0000 0.0000 0.0000 2.4170 × 10-85 0.0000 3.8745 × 10-10 2.1243 × 10-8 1.7220 × 10-17 6.5714 × 10-6 2.3799 × 10+7
    F10 Average 0.0000 0.0000 2.1467 × 10-278 1.5224 × 10-84 7.5095 × 10-192 1.6258 × 10-10 8.2123 × 10-8 1.0161 × 10--17 1.6788 × 10-3 2.3457 × 10+9
    Std 0.0000 0.0000 0.0000 3.4043 × 10-84 0.0000 2.5954 × 10-10 1.7044 × 10-7 1.9271 × 10-17 3.5113 × 10-3 5.2772 × 10+8
    F11 Average 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
    Std 0.0000 0.0000 0.0000 5.5017 × 10-9 0.0000 1.9167 × 10-11 7.2876 × 10-9 4.9847 × 10-11 5.3948 × 10-14 1.2245 × 10-8
    F12 Average 0.0000 0.0000 0.0000 1.4957 × 10-187 1.8815 × 10-284 3.1720 × 10-12 1.0875 × 10-8 1.5745 × 10-23 4.3439 × 10-3 1.7600 × 10+12
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 2.8874 × 10-12 1.5643 × 10-8 3.2855 × 10-23 9.0737 × 10-3 3.1814 × 10+11
    F13 Average 9.4565 × 10-3 2.0277 × 10-2 4.8216 × 10-2 7.1695 9.6104 × 10-3 7.6772 8.9345 7.8181 34.758 7.9339 × 10+8
    Std 6.9496 × 10-3 2.9629 × 10-2 6.3765 × 10-2 5.1244 × 10-1 1.9708 × 10-2 4.8319 × 10-1 9.7361 × 10-2 3.9107 × 10-1 66.473 3.7199 × 10+8
    F14 Average 1.3961 × 10-115 1.5967 × 10-19 1.8333 × 10-54 3.0679 × 10-61 3.6483 × 10-33 2.1743 × 10-1 1.1566 × 10-1 1.9336 × 10-3 23.391 5.2977 × 10+2
    Std 3.1217 × 10-115 3.5703 × 10-19 4.0993 × 10-54 6.8601 × 10-61 8.1579 × 10-33 4.1511 × 10-1 2.4825 × 10-1 2.3224 × 10-3 52.087 34.131
    F15 Average 0.0000 0.0000 0.0000 0.0000 0.0000 1.3587 × 10-5 3.1783 × 10-5 1.7297 × 10-10 7.4304 × 10-1 4.5561 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 2.5788 × 10-5 4.4060 × 10-5 3.5587 × 10-10 3.4849 × 10-1 2.4965 × 10+3
    F16 Average 0.0000 0.0000 0.0000 0.0000 0.0000 4.5692 × 10-2 1.4218 × 10-2 2.0649 × 10-2 9.8611 × 10-3 12.818
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 5.1199 × 10-2 1.9480 × 10-2 2.8551 × 10-2 6.7337 × 10-3 8.1075 × 10-1
    F17 Average 5.0522 × 10-31 2.4786 × 10-138 1.0165 × 10-3 9.9873 × 10-2 1.3072 × 10-50 2.3987 × 10-1 1.7987 × 10-1 1.3987 × 10-1 4.8019 × 10-1 22.103
    Std 1.1297 × 10-30 4.0631 × 10-138 2.2730 × 10-3 1.7264 × 10-8 2.8236 × 10-50 5.4772 × 10-2 4.4721 × 10-2 5.4772 × 10-2 4.4542 × 10-2 1.0527
    F18 Average 0.0000 0.0000 0.0000 0.0000 0.0000 20.896 10.683 5.5791 58.920 4.2836 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 6.5017 6.6700 6.4969 18.029 8.4056 × 10+3

     | Show Table
    DownLoad: CSV
    Table 13.  Test results of benchmark function (F1–F9, F19–F27), the dimension is fixed to 500.
    Fun Item VAIAO IAO AO AOA HHO STOA CHIMP SOA PSO DE
    F1 Average 6.6313 × 10-248 1.0171 × 10-241 8.4862 × 10-144 7.1006 × 10-48 8.8334 × 10-95 3.8707 × 10-7 3.3576 × 10-6 4.3111 × 10-12 6.6836 × 10-5 4.5996 × 10+4
    Std 0.0000 0.0000 1.7980 × 10-143 1.4166 × 10-47 1.7142 × 10-94 3.7231 × 10-7 2.7747 × 10-6 1.7571 × 10-12 5.5540 × 10-5 5.1543 × 10+3
    F2 Average 1.7819 × 10-145 6.9639 × 10-136 1.5808 × 10-69 8.6734 × 10-53 5.6451 × 10-49 1.2085 × 10-4 1.6912 × 10-4 3.6835 × 10-7 1.1760 × 10-1 9.5069 × 10+2
    Std 3.9837 × 10-145 1.5564 × 10-135 3.4327 × 10-69 1.3821 × 10-52 1.1327 × 10-48 4.7589 × 10-5 1.2149 × 10-4 3.3018 × 10-7 1.3612 × 10-1 39.409
    F3 Average 0.0000 1.0874 × 10-291 8.6120 × 10-109 1.6761 × 10-93 1.5190 × 10-97 1.2145 8.2760 × 10-2 1.4082 × 10-6 9.1394 × 10+2 6.3988 × 10+11
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    F4 Average 0.0000 0.0000 4.5259 × 10-295 0.0000 1.7267 × 10-197 2.4355 × 10-15 1.1832 × 10-16 1.9752 × 10-27 2.5327 × 10-9 4.5378 × 10+7
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 5.4241 × 10-15 2.6449 × 10-16 4.1972 × 10-27 5.3850 × 10-9 8.1540 × 10+6
    F5 Average 1.1538 × 10-141 2.3397 × 10-129 5.8828 × 10-58 1.9148 × 10-2 4.9412 × 10-50 2.7255 × 10-2 5.4022 × 10-1 1.4371 × 10-3 1.4054 74.030
    Std 2.5801 × 10-141 5.2316 × 10-129 1.3154 × 10-57 1.6284 × 10-2 1.0977 × 10-49 1.1281 × 10-2 5.1437 × 10-1 1.2835 × 10-3 2.3314 × 10-1 1.5767
    F6 Average 5.1864 × 10-148 5.6589 × 10-142 3.2096 × 10-68 0.0000 5.1573 × 10-53 5.5248 × 10-6 2.1736 × 10-5 1.7515 × 10-8 1.3136 × 10-2 7.1716 × 10+8
    Std 1.1597 × 10-147 8.7834 × 10-142 7.1768 × 10-68 0.0000 7.0852 × 10-53 3.5567 × 10-6 2.4572 × 10-5 1.0438 × 10-8 1.0137 × 10-2 1.4532 × 10+9
    F7 Average 3.0218 × 10-299 4.5202 × 10-280 1.5705 × 10-146 2.4540 × 10-28 5.9460 × 10-96 4.2891 × 10-6 8.1426 × 10-5 1.3674 × 10-10 2.9373 × 10-3 6.2494 × 10+5
    Std 0.0000 0.0000 3.5076 × 10-146 5.4872 × 10-28 1.3267 × 10-95 2.7558 × 10-6 1.2553 × 10-4 1.6128 × 10-10 3.0603 × 10-3 9.8639 × 10+4
    F8 Average 0.0000 0.0000 4.9884 × 10-283 1.7473 × 10-89 4.7178 × 10-184 1.0944 × 10-10 1.1862 × 10-6 2.4482 × 10-19 1.3297 × 10-4 1.5343 × 10+8
    Std 0.0000 0.0000 0.0000 3.9071 × 10-89 0.0000 2.0330 × 10-10 2.2994 × 10-6 3.0112 × 10-19 2.1119 × 10-4 2.5921 × 10+7
    F9 Average 0.0000 0.0000 1.3983 × 10-289 8.5594 × 10-120 5.0159 × 10-202 2.9436 × 10-10 6.4955 × 10-7 2.6418 × 10-17 1.0147 × 10-3 2.2796 × 10+9
    Std 0.0000 0.0000 0.0000 1.9139 × 10-119 0.0000 3.4713 × 10-10 9.5399 × 10-7 5.8755 × 10-17 1.0989 × 10-3 3.6372 × 10+8
    F10 Average 0.0000 0.0000 1.1662 × 10-2 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
    Std 0.0000 0.0000 2.6076 × 10-2 1.3383 × 10-9 0.0000 2.6928 × 10-11 7.6557 × 10-10 2.5327 × 10-11 1.9230 × 10-16 1.8846 × 10-8
    F11 Average 0.0000 0.0000 8.3800 × 10-294 2.2833 × 10-131 1.3353 × 10-295 1.5095 × 10-10 6.2053 × 10-9 7.3865 × 10-24 6.6536 × 10-6 1.4321 × 10+12
    Std 0.0000 0.0000 0.0000 5.1056 × 10-131 0.0000 2.7488 × 10-10 9.7885 × 10-9 1.6436 × 10-23 7.2883 × 10-6 3.1233 × 10+11
    F12 Average 6.5458 × 10-3 8.8714 × 10-2 9.5595 × 10-3 7.5066 9.7117 × 10-3 7.3632 8.9502 7.3032 6.0514 9.4655 × 10+8
    Std 6.5556 × 10-3 1.7098 × 10-1 1.0124 × 10-2 4.4457 × 10-1 1.0480 × 10-2 3.7827 × 10-1 1.0031 × 10-1 2.3831 × 10-1 2.9727 3.9936 × 10+8
    F13 Average 1.0427 × 10-123 1.0306 × 10-121 5.0944 × 10-20 2.7879 × 10-44 8.2408 × 10-52 7.3789 × 10-1 3.4293 × 10-1 9.3585 × 10-4 6.9881 5.2362 × 10+2
    Std 2.3314 × 10-123 2.1964 × 10-121 1.1391 × 10-19 5.7506 × 10-44 1.5881 × 10-51 1.5253 6.0003 × 10-1 7.5831 × 10-4 1.4919 × 10+1 4.1865 × 10+1
    F14 Average 0.0000 0.0000 0.0000 0.0000 0.0000 6.0417 × 10-6 4.5754 × 10-5 2.5965 × 10-11 6.9428 × 10-1 4.6528 × 10+4
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 7.1292 × 10-6 9.8098 × 10-6= 2.6781 × 10-11 3.3943 × 10-1 2.3086 × 10+3
    F15 Average 0.0000 0.0000 0.0000 8.9007 × 10-9 0.0000 3.6310 × 10-8 6.0050 × 10-2 1.8778 × 10-8 6.4113 × 10-3 12.866
    Std 0.0000 0.0000 0.0000 1.9903 × 10-8 0.0000 4.4207 × 10-8 7.9379 × 10-2 4.1980 × 10-8 9.7735 × 10-3 9.4698 × 10-1
    F16 Average 4.7865 × 10-115 1.2149 × 10-26 9.0592 × 10-64 9.9873 × 10-2 4.6927 × 10-50 2.1987 × 10-1 1.7988 × 10-1 1.7987 × 10-1 4.8939 × 10-1 21.397 ×
    Std 1.0703 × 10-114 2.7166 × 10-26 2.0257 × 10-63 1.2063 × 10-8 1.0476 × 10-49 4.4721 × 10-2 4.4723 × 10-2 4.4722 × 10-2 7.5154 × 10-2 1.7984
    F17 Average 0.0000 0.0000 3.3621 × 10-2 0.0000 0.0000 12.486 20.821 4.1970 43.587 4.8691 × 10+4
    Std 0.0000 0.0000 7.5178 × 10-2 0.0000 0.0000 10.150 27.344 2.8825 9.4970 3.4889 × 10+3
    F18 Average 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 8.8818 × 10-16 20.000 20.000 20.000 20.688 21.197
    Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6.1862 × 10-1 1.7209 × 10-1

     | Show Table
    DownLoad: CSV

    The Wilcoxon statistical tests are often introduced to verify the performance of the proposed algorithm. If the proposed algorithm value is smaller than another algorithm, it's proved the proposed algorithm is superior. This experiment is carried out 30 times, and the results of the Wilcoxon statistical test on Table 14. Table 14 shows that the Wilcoxon statistical test results for 27 functions are less than 0.05 in most cases. The results of the Wilcoxon sign-rank test and Friedman test on 27 functions are shown in Tables 1518. That also means the VAIAO algorithm is better than the others.

    Table 14.  The results of the Wilcoxon statistical test on 27 functions.
    Fun VAIAO Vs. IAO VAIAO Vs. AO VAIAO Vs. AOA VAIAO Vs. HHO VAIAO Vs. STOA VAIAO Vs. ChOA VAIAO Vs. SOA
    F1 3.1600 × 10−2 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F2 3.8811 × 10−4 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F3 2.5600 × 10−2 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F4 NAN 1.7300 × 10−6 NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F5 2.0000 × 10−3 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F6 1.4000 × 10−2 1.7300 × 10−6 3.7900 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F7 4.0400 × 10−2 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F8 NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F9 NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F10 1.7000 × 10−3 7.8100 × 10−3 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F11 3.5152 × 10−6 NAN 1.2300 × 10−5 1.9200 × 10−6 3.1800 × 10−6 3.6100 × 10−3 5.2200 × 10−6
    F12 2.3000 × 10−2 1.4000 × 10−2 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F13 NAN 9.3200 × 10−6 1.7300 × 10−6 NAN 4.8800 × 10−4 8.3000 × 10−6 1.9500 × 10−3
    F14 NAN NAN NAN NAN 7.8100 × 10−3 1.8200 × 10−5 3.9100 × 10−3
    F15 4.0700 × 10−2 NAN NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F16 9.8000 × 10−3 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F17 1.9600 × 10−2 0.50000 0.25000 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F18 NAN NAN NAN NAN NAN NAN NAN
    F19 NAN 1.7300 × 10−6 6.1000 × 10−5 NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F20 NAN 3.8500 × 10−3 1.7500 × 10−2 1.8200 × 10−5 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F21 4.9500 × 10−2 1.7300 × 10−6 9.7700 × 10−4 1.2900 × 10−3 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F22 2.3000 × 10−2 NAN NAN 1.4000 × 10−2 1.7300 × 10−6 1.7300 × 10−6 3.1800 × 10−6
    F23 NAN NAN NAN NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F24 NAN 1.7300 × 10−6 1.2200 × 10−4 NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F25 2.3000 × 10−3 1.7300 × 10−6 5.9600 × 10−5 3.5900 × 10−4 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F26 NAN 1.7300 × 10−6 1.2200 × 10−4 NAN 1.7300 × 10−6 1.7300 × 10−6 1.7300 × 10−6
    F27 NAN NAN NAN NAN 6.0500 × 10−7 4.3200 × 10−8 1.4500 × 10−7

     | Show Table
    DownLoad: CSV
    Table 15.  The results of the Wilcoxon sign-rank test between VAIAO and the compared algorithms (IAO, AO, AOA).
    No. VAIAO vs IAO VAIAO vs AO VAIAO vs AOA
    R+ R- sign R+ R- sign R+ R- sign
    F1 465.0 0.0 + 0.0 465.0 0.0 465.0
    F2 0.0 465.0 465.0 0.0 + 465.0 0.0 +
    F3 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F4 232.5 232.5 465.0 0.0 + 232.5 232.5
    F5 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F6 465.0 0.0 + 465.0 0.0 + 0.0 465.0
    F7 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F8 232.5 232.5 465.0 0.0 + 465.0 0.0 +
    F9 232.5 232.5 232.5 232.5 232.5 232.5
    F10 232.5 232.5 232.5 232.5 465.0 0.0 +
    F11 232.5 232.5 232.5 232.5 232.5 232.5
    F12 0.0 465.0 0.0 465.0 465.0 0.0 +
    F13 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F14 232.5 232.5 232.5 232.5 232.5 232.5
    F15 232.5 232.5 232.5 232.5 232.5 232.5
    F16 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F17 232.5 232.5 232.5 232.5 232.5 232.5
    F18 232.5 232.5 232.5 232.5 232.5 232.5
    F19 232.5 232.5 465.0 0.0 + 232.5 232.5
    F20 465.0 0.0 + 0.0 465.0 0.0 465.0
    F21 232.5 232.5 232.5 232.5 232.5 232.5
    F22 232.5 232.5 232.5 232.5 232.5 232.5
    F23 232.5 232.5 232.5 232.5 232.5 232.5
    F24 0.0 465.0 465.0 0.0 + 0.0 465.0
    F25 0.0 465.0 465.0 0.0 + 0.0 465.0
    F26 232.5 232.5 232.5 232.5 232.5 232.5
    F27 232.5 232.5 465.0 0.0 + 232.5 232.5
    +-≈ 8/4/15 13/3/11 10/5/12

     | Show Table
    DownLoad: CSV
    Table 16.  The results of the Wilcoxon sign-rank test between VAIAO and the compared algorithms (HHO, STOA, ChOA).
    No. VAIAO vs HHO VAIAO vs STOA VAIAO vs ChOA
    R+ R- sign R+ R- sign R+ R- sign
    F1 0.0 465.0 0.0 465.0 0.0 465.0
    F2 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F3 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F4 465.0 0.0 + 465.0 0.0 + 232.5 232.5 +
    F5 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F6 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F7 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F8 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F9 232.5 232.5 232.5 232.5 232.5 232.5
    F10 232.5 232.5 465.0 0.0 + 465.0 0.0 +
    F11 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F12 0.0 465.0 465.0 0.0 + 465.0 0.0 +
    F13 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F14 232.5 232.5 465.0 0.0 + 465.0 0.0 +
    F15 232.5 232.5 232.5 232.5 232.5 232.5
    F16 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F17 232.5 232.5 232.5 232.5 232.5 232.5
    F18 232.5 232.5 232.5 232.5 232.5 232.5
    F19 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F20 0.0 465.0 0.0 465.0 0.0 465.0
    F21 232.5 232.5 232.5 232.5 232.5 232.5
    F22 232.5 232.5 465.0 0.0 + 465.0 0.0 +
    F23 232.5 232.5 232.5 232.5 232.5 232.5
    F24 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F25 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F26 232.5 232.5 232.5 232.5 232.5 232.5
    F27 232.5 232.5 465.0 0.0 + 232.5 232.5
    +-≈ 13/3/11 18/2/7 17/2/8

     | Show Table
    DownLoad: CSV
    Table 17.  The results of the Wilcoxon sign-rank test between VAIAO and the compared algorithms (SOA, PSO, DE).
    No. VAIAO vs SOA VAIAO vs PSO VAIAO vs DE
    R+ R- sign R+ R- sign R+ R- sign
    F1 0.0 465.0 0.0 465.0 0.0 465.0
    F2 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F3 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F4 465.0 0.0 + 465.0 0.0 + 232.5 232.5 +
    F5 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F6 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F7 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F8 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F9 232.5 232.5 232.5 232.5 232.5 232.5
    F10 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F11 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F12 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F13 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F14 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F15 232.5 232.5 232.5 232.5 232.5 232.5
    F16 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F17 0.0 465.0 0.0 465.0 0.0 465.0
    F18 232.5 232.5 232.5 232.5 232.5 232.5
    F19 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F20 0.0 465.0 465.0 0.0 + 0.0 465.0
    F21 232.5 232.5 232.5 232.5 232.5 232.5
    F22 465.0 0.0 + 465.0 0.0 + 232.5 232.5
    F23 465.0 0.0 + 465.0 0.0 + 232.5 232.5
    F24 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F25 465.0 0.0 + 465.0 0.0 + 465.0 0.0 +
    F26 232.5 232.5 232.5 232.5 232.5 232.5
    F27 232.5 232.5 465.0 0.0 + 232.5 232.5
    +-≈ 18/3/6 20/2/5 16/3/9

     | Show Table
    DownLoad: CSV
    Table 18.  The results of the Friedman test on 27 Functions.
    Algorithm Final-Rank
    VAIAO 3.48
    IAO 3.64
    AO 3.75
    AOA 4.31
    HHO 3.75
    STOA 6.57
    ChOA 6.53
    SOA 5.57
    PSO 9.87
    DE 7.48

     | Show Table
    DownLoad: CSV

    Since the proposed VAIAO introduced two improvement strategies, velocity-aided global search mechanism and adaptive opposition-based learning. Therefore, it is necessary to improve these strategies by ablation experiments.

    In VAIAO, there are two variants. The first variant is VAIAO-2 which is with only velocity-aided global search mechanism. The second variant is VAIAO-3 which with adaptive opposition-based learning. Three single-peak functions (F1, F2, F3), three two-dimensional multi-channel functions (F12, F13, F16), and 3 multidimensional multi-peak functions (F24, F25, F26) are tested. The results of the ablation experiments are shown in Table 19.

    Table 19.  the results of the ablation experiments on 27 Functions.
    Functions Item VAIAO VAIAO-2 VAIAO-3
    F1 Average 1.6451 × 10−293 5.9584 × 10−275 1.1838 × 10−245
    Std 0.0000 0.0000 0.0000
    F2 Average 2.5965 × 10−148 5.0994 × 10−134 1.1056 × 10−132
    Std 4.5876 × 10−148 1.1403 × 10−133 2.4723 × 10−132
    F3 Average 3.9676 × 10−276 3.2373 × 10−259 3.2917 × 10−289
    Std 0.0000 0.0000 0.0000
    F12 Average 3.6658 × 10−3 0.11316 3.1808 × 10−2
    Std 1.5875 × 10−3 0.24508 3.6911 × 10−2
    F13 Average 2.6766 × 10−129 4.3596 × 10−123 1.5940 × 10−124
    Std 5.9850 × 10−129 9.7483 × 10−123 2.9863 × 10−124
    F16 Average 3.0590 × 10−146 6.4337 × 10−134 6.9369 × 10−122
    Std 0.0000 0.0000 0.0000
    F24 Average 8.5225 × 10−138 2.5222 × 10−135 1.1379 × 10−128
    Std 1.9057 × 10−137 5.6294 × 10−135 2.5445 × 10−128
    F25 Average 7.4699 × 10−3 3.5276 × 10−2 1.9608 × 10−2
    Std 0.0000 0.0000 0.0000
    F26 Average 1.4884 × 10−301 4.3692 × 10−293 1.4242 × 10−272
    Std 0.0000 0.0000 0.0000

     | Show Table
    DownLoad: CSV

    Engineering design problems are used to test the performance of algorithm, the results of the engineering design problem in real world can reflect the advantages and disadvantages of an algorithms. It is important to use the traditional engineering design problem to test proposed VAIAO algorithm.

    The three-bar truss is a classic optimization problem which is an engineering design problem. The schematic model of three-bar truss is shown in Figure 6. The pressure of each Truss member is σ. the cross-sectional area is A1(=x1) and A2(=x2). The two parameters are optimized to minimize the total weight in the case of satisfying three limiting conditions. The three constraints are as follows:

    x=[x1x2]=[A1A2]
    Figure 6.  The schematic model of three-bar truss [72].

    Objective:

    f(x)=(22x1+x2)l

    Subject to:

    g1(x)=2x1+x22x21+2x1x2pσ0
    g2(x)=x22x22+2x1x2pσ0
    g1(x)=12x2+x1pσ0

    Variable range:

    0x1,x21

    Wheel l=100cm,P=2KN/cm2,σ=2KN/cm2, Table 20 shows the results of three bar truss design problem. T It can be seen from the data results in the table 20 that the best value of VAIAO smaller than that of other algorithms. From this reason, it can be concluded that VAIAO can better solve the engineering problem.

    Table 20.  The results of three bar truss design problem.
    Algorithm X1 X2 Best
    VAIAO 0.78975 0.40516 263.8926
    IAO 0.80211 0.38269 265.1395
    AO 0.77612 0.44565 264.0855
    AOA 0.809 0.35403 264.2239
    HHO 0.76304 0.48595 264.4203
    STOA 0.79306 0.39626 263.9367
    ChOA 0.77768 0.44029 263.9912
    SOA 0.79261 0.39721 263.9045
    PSO 0.78867 0.40818 264.5890
    DE 0.84867 0.71405 318.1953

     | Show Table
    DownLoad: CSV

    The compression spring design problem is one of the classic engineering optimization problems in mechanical engineering. The schematic model of compression spring design problem is shown in Figure 7. The essence of the compression spring design problem is to minimize the weight of the tension and compression spring by optimizing three parameters (wire diameter (d), average coil diameter (D) and effective coil number (N)).

    Figure 7.  The schematic model of compression spring design problem [72].

    Consider:

    x1=[x1,x2,x3]=[d D N]

    Objective:

    f(x)=(x3+2)x2x21

    Subject to:

    g1(x)=1x32x371785x410
    g2(x)=4x22x1x212566(x2x31x41)+15108x2110
    g3(x)=1140.45x3x22x30
    g4(x)=x1+x21.510

    Variable ranges:

    0.05x12.00
    0.25x21.30
    2.00x315.00

    The experimental results are shown in Table 21. The schematic model of the Compression Spring Design Problem is shown in Figure 7. Table 21 shows the final results of VAIAO and comparative algorithms after solving this engineering problem. As shown in the table 16, VAIAO achieves the minimum weight of the compression spring. IAO and AO are in all cases applied to this engineering problem the algorithm presents the worst objective value.

    Table 21.  The results of compression spring design problem.
    Algorithm X1 X2 X3 Best
    VAIAO 0.05 0.316923 14.1159 0.012769
    IAO 0.075746 0.592546 11.6982 0.04657
    AO 0.07433 1.0468 2.4959 0.026002
    AOA 0.05 0.311514 15 0.013239
    HHO 0.057138 0.50254 6.0288 0.013173
    STOA 0.051846 0.359471 11.3453 0.012895
    ChOA 0.05 0.315274 14.4887 0.012996
    SOA 0.05014 0.320512 13.997 0.01289
    PSO 0.05886 0.55504 5.039 0.014581
    DE 0.05000 0.32349 14.0266 0.0129611

     | Show Table
    DownLoad: CSV

    The pressure vessel design is also an engineering problem which needs to optimize cost, including material cost, molding cost and welding cost, to minimize the total cost. This problem has four issues that need to be optimized (the thickness of the shell (X1), the thickness of the head (X2), the inner radius (X3), the length of the vessel section (X4). There are 4 constraints in this problem.

    Consider:

    x=[x1,x2,x3,x4]

    Objective:

    f(x)=0.6224x1x3x4+1.7781x2x23+3.1661x21x4+19.84x21x3

    Subject to:

    g1(x)=x1+0.0193x30
    g2(x)=x3+0.0954x30
    g3(x)=πx23x443πx33+12960000
    g4(x)=x42400

    Variable ranges:

    0x199
    0x299
    10x3200
    10x4200

    The schematic model of pressure vessel is shown in Figure 8. Table 22 shows that the best value of VAIAO is the smallest, which means that the optimized solution is obtained by VAIAO.

    Figure 8.  The schematic model of pressure vessel [72].
    Table 22.  The results of pressure vessel.
    Algorithm X1 X2 X3 X4 Best
    VAIAO 1.00954 0.496241 52.2862 90.309 6.73 × 103
    IAO 1.33753 1.42724 53.4433 86.9307 1.35 × 104
    AO 1.04199 0.558116 54.073 70.3731 6.78 × 103
    AOA 1.03106 1.867994 44.41967 200 1.39 × 104
    HHO 1.1552 0.5725 58.5983 42.0081 6.99 × 103
    STOA 1.23586 0.598644 63.3739 18.6267 7.23 × 103
    ChOA 1.27118 0.658186 65.6949 10 7.73 × 103
    SOA 0.779165 0 40.32663 200 1.53 × 105
    PSO 0.983267 0.486026 51.0843 89.9709 6.34 × 103
    DE 76.03506 27.32045 159.8693 18.81918 3.4 × 105

     | Show Table
    DownLoad: CSV

    The speeds reducer design problem needs to optimize 7 variables to get the minimize the weight of the reducer. Face width parameter is b ( = x1), Tooth modulus is m ( = x2), the number of teeth in the pinion is z ( = x3). Between bearings, the length of the first shaft is l1 ( = x4) and the length of the second shaft l2 ( = x5). the diameter of first shafts is d1 ( = x6), and the diameter of second shafts is d2 ( = x7). At the same time, the speed reducer design problem has 11 constraints:

    Consider:

    x=[x1,x2,x3,x4,x5,x6,x7]

    Objective:

    f(x)=0.7854x1x22(3.3333x23+14.9334x343.0934)1.508x1(x36+x37)+0.7854(x4x26+x5x27)

    Subject to:

    g1(x)=27x1x22x310
    g2(x)=397.5x1x22x2310
    g3(x)=1.934x34x2x3x4610
    g4(x)=1.93x35x2x3x4710
    g5(x)=(745x4x2x3)2+16.9×106110x3610
    g6(x)=(745x4x2x3)2+157.5×10685x3710
    g7(x)=x2x34010
    g8(x)=5x2x110
    g9(x)=x112x210
    g10(x)=1.5x6+1.9x410
    g11(x)=1.1x1+1.9x510

    Variable ranges:

    2.6x13.6
    0.7x20.8
    17x328
    7.3x48.3
    7.8x58.3
    2.9x63.9
    5.0x75.5

    The schematic model of speeds reducer design problem is shown in Figure 9. The experimental results are shown in Table 23. Table 23 shows the final results of the VAIAO and comparison algorithms after solving the speed reducer design problem. As shown in Table 21, VAAIO has the smallest best value compared to another algorithm.

    Figure 9.  The schematic model of speeds reducer design problem [72].
    Table 23.  The results of speeds reducer design problem.
    Algorithm X1 X2 X3 X4 X5 X6 X7 Best
    VAIAO 3.48616 0.7 17 7.42066 8.01342 3.35348 5.31633 3032.273
    IAO 3.6 0.7 17 8.3 8.3 3.9 5.5 3363.876
    AO 3.49415 0.7 17.0532 8.26393 7.80686 3.43739 5.32147 3060.208
    AOA 3.6 0.7 17 7.3 8.3 3.48962 5.29573 3089.259
    HHO 3.49436 0.7 17 7.95063 7.8 3.76166 5.28586 3121.865
    STOA 3.55498 0.7 17 7.98411 7.89628 3.38054 5.29571 3039.726
    ChOA 3.54913 0.7 17 8.3 8.3 3.51904 5.32825 3108.260
    SOA 3.49757 0.7 17 8.3 7.8 3.47918 5.28433 3039.816
    PSO 3.6 0.7 17 8.3 7.8 3.35006 5.2857 3035.2958
    DE 2.70401 0.752413 21.7262 7.61006 8.3 3.89253 5.43619 7120.8812

     | Show Table
    DownLoad: CSV

    The gear design problem is also a classic engineering optimization problem. The problem is to achieve the minimum transmission ratio cost by optimizing the number of teeth. The four gears are A(x1), B(x2), C(x3), A(x4). This engineering optimization problems has no constraints.

    Consider:

    x=[x1,x2,x3,x4]

    Objective:

    f(x)=(16.913x2x3x1x4)2

    Variable ranges:

    12x1,x2,x3,x460

    The schematic model of gear design problem is shown in Figure 10. The results of gear design problem are shown in Table 24 The results of VAIAO algorithm are also the best compared with other algorithms. As shown in Table 24, Compared with IAO, AO and other objective algorithms, the most competitive results.

    Figure 10.  The schematic model of gear design problem [72].
    Table 24.  The results of gear design problem.
    Algorithm X1 X2 X3 X4 Best
    VAIAO 44 20 16 49 2.70 × 10−12
    IAO 52 14 14 27 4.78 × 10−7
    AO 49 23 18 55 1.17 × 10−10
    AOA 60 13 12 19 2.73 × 10−8
    HHO 44 17 19 50 2.70 × 10−12
    STOA 47 12 14 24 9.92 × 10−10
    ChOA 48 13 12 23 1.36 × 10−9
    SOA 50 14 17 34 2.36 × 10−9
    PSO 23 12 13 47 9.92 × 10−10
    DE 24 23 18 60 6.74 × 10−3

     | Show Table
    DownLoad: CSV

    In this paper, an enhanced AO algorithm is proposed to improve the exploration ability and convergence speed of IAO. Inspired by the velocity-Aided Global Search Mechanism, the velocity parameters and acceleration parameters are introduced into the AO algorithm to help the search agent update the position and prevent a number of good positions from being missed during the optimization process. In addition, introduced the adaptive opposition-based learning rule is introduced to improve the local optimum. The performance proposed VAIAO algorithm and the comparison algorithms are tested by 27 classical benchmark functions, and five engineering optimization problems. The results of the experiment show that the VAIAO algorithm is easier to obtain better global exploration and exploitation capabilities, faster convergence speed and higher convergence accuracy than any other algorithm. Because the effect of the proposed VAIAO algorithm is better than the original algorithm in terms of optimization. In future work, the proposed VAIAO will be used to solve complex multidisciplinary problems and real-meaning engineering problems, such as Photovoltaic module model parameter extraction, image segmentation and engineering problems of multi-objective optimization.

    This work was supported by the Innovation Fund for Industry-University-Research in Chinese Universities with grant number 2021ZYA11012, the open project of Hubei Engineering Research Center for Specialty Flowers Biological Breeding with grant number 2022ZD006, the educational teaching research project of Jingchu university of technology with grant number JX 2022-016, the science research project of Jingchu university of technology with grant number YY202203 and the general funded science and technology research project of Jingmen with grant number 2022YFYB152.

    All authors declare no conflicts of interest in this paper.



    [1] T. Teo, T. Logenthiran, W. Woo, Forecasting of photovoltaic power using extreme learning machine, in 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA), (2015), 1–6.
    [2] V. De, T. Teo, W. Woo, T. Logenthiran, Photovoltaic power forecasting using lstm on limited dataset, in 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), (2018), 710–715.
    [3] I. Ibrahim, M. Hossain, B. Duck, M. Nadarajah, An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model, Energy Convers. Manage., 213 (2020), 112872. doi: 10.1016/j.enconman.2020.112872
    [4] Y. Zhang, M. Ma, Z. Jin, Comprehensive learning jaya algorithm for parameter extraction of photovoltaic models, Energy, 211 (2020), 118644. doi: 10.1016/j.energy.2020.118644
    [5] B. Dong, A. Luzin, D. Gura, The hybrid method based on ant colony optimization algorithm in multiple factor analysis of the environmental impact of solar cell technologies, Math. Biosci. Eng., 17 (2020), 6342–6354. doi: 10.3934/mbe.2020334
    [6] S. Li, W Gong, Q. Gu, A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models, Renew. Sustain. Energy Rev., 141 (2021), 110828. doi: 10.1016/j.rser.2021.110828
    [7] S. Bana, R. Saini, Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints, Renew. Energy, 101 (2017), 1299–1310. doi: 10.1016/j.renene.2016.10.010
    [8] T. Ayodele, A. Ogunjuyigbe, E. Ekoh, Evaluation of numerical algorithms used in extracting the parameters of a single-diode photovoltaic model, Sustain. Energy Technol. Assess., 13 (2016), 51–59.
    [9] T. Babu, J. Ram, K. Sangeetha, A. Laudani, N. Rajasekar. Parameter extraction of two diode solar pv model using fireworks algorithm, Sol. Energy, 140 (2016), 265–276. doi: 10.1016/j.solener.2016.10.044
    [10] V. Khanna, B. Das, D. Bisht, Vandana, P. Singh, A three diode model for industrial solar cells and estimation of solar cell parameters using pso algorithm, Renew. Energy, 78 (2015), 105–113. doi: 10.1016/j.renene.2014.12.072
    [11] A. Jordehi. Parameter estimation of solar photovoltaic (pv) cells: A review, Renew. Sustain. Energy Rev., 61 (2016), 354–371.
    [12] W. Gong, Z. Cai, Parameter extraction of solar cell models using repaired adaptive differential evolution, Sol. Energy, 94 (2013), 209–220. doi: 10.1016/j.solener.2013.05.007
    [13] D. Kler, P. Sharma, A. Banerjee, K. Rana, V. Kumar, Pv cell and module efficient parameters estimation using evaporation rate based water cycle algorithm, Swarm Evol. Comput., 35 (2017), 93–110. doi: 10.1016/j.swevo.2017.02.005
    [14] T. Easwarakhanthan, J. Bottin, I. Bouhouch, C. Boutrit, Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers, Int. J. Sol. Energy, 4 (1986), 1–12. doi: 10.1080/01425918608909835
    [15] A. Ortiz-Conde, F. Sˊanchez, J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated characteristics, Sol. Energy Mater Sol. Cells, 90 (2006), 352–361. doi: 10.1016/j.solmat.2005.04.023
    [16] M. AlHajri, K. El-Naggar, M. AlRashidi, A. Al-Othman, Optimal extraction of solar cell parameters using pattern search, Renew. Energy, 44 (2012), 238–245. doi: 10.1016/j.renene.2012.01.082
    [17] R. Ben-Messaoud, Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization, Energy Rep., 6 (2020), 350–357. doi: 10.1016/j.egyr.2020.01.016
    [18] M. Alrashidi, M. Alhajri, K. Elnaggar, A. Alothman, A new estimation approach for determining the i-v characteristics of solar cells, Sol. Energy, 85 (2011), 1543–1550. doi: 10.1016/j.solener.2011.04.013
    [19] A. Askarzadeh, A. Rezazadeh, Parameter identification for solar cell models using harmony search-based algorithms, Sol. Energy, 86 (2012), 3241–3249. doi: 10.1016/j.solener.2012.08.018
    [20] J. Liang, S. Ge, B. Qu, K. Yu, F. Liu, H. Yang, et al., Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models, Energy Convers. Manage., 203 (2020), 112138. doi: 10.1016/j.enconman.2019.112138
    [21] X. Lin, Y. Wu, Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture, Energy, 196 (2020), 117054. doi: 10.1016/j.energy.2020.117054
    [22] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module, Appl. Energy, 237 (2019), 241–257. doi: 10.1016/j.apenergy.2019.01.008
    [23] X. Yang, W. Gong, Opposition-based jaya with population reduction for parameter estimation of photovoltaic solar cells and modules, Appl. Soft Comput., 104 (2021), 107218. doi: 10.1016/j.asoc.2021.107218
    [24] J. Liang, K. Qiao, M. Yuan, K. Yu, B. Qu, S. Ge, et al., Evolutionary multi-task optimization for parameters extraction of photovoltaic models, Energy Convers. Manage., 207 (2020), 112509. doi: 10.1016/j.enconman.2020.112509
    [25] W. Li, W. Gong, Differential evolution with quasi-reflection-based mutation, Math. Biosci. Eng., 18 (2021), 2425–2441. doi: 10.3934/mbe.2021123
    [26] D. Oliva, M. Aziz, A. Hassanien, Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm, Appl. Energy, 200 (2017), 141–154. doi: 10.1016/j.apenergy.2017.05.029
    [27] M. Elaziz, D. Oliva, Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm, Energy Convers. Manage., 171 (2018), 1843–1859. doi: 10.1016/j.enconman.2018.05.062
    [28] A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization algorithm for parameters identification of solar cell models, Appl. Energy, 102 (2013), 943–949. doi: 10.1016/j.apenergy.2012.09.052
    [29] K. Yu, J. Liang, B. Qu, Z. Cheng, H. Wang, Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Appl. Energy, 226 (2018), 408–422. doi: 10.1016/j.apenergy.2018.06.010
    [30] Y. Zhang, C. Huang, Z. Jin, Backtracking search algorithm with reusing differential vectors for parameter identification of photovoltaic models, Energy Convers. Manage., 223 (2020), 113266. doi: 10.1016/j.enconman.2020.113266
    [31] T. Kang, J. Yao, M. Jin, S. Yang, T. Duong, A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (pv) models, Energies, 11 (2018), 1–31.
    [32] P. Lin, S. Cheng, W. Yeh, Z. Chen, L. Wu, Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm, Sol. Energy, 144 (2017), 594–603. doi: 10.1016/j.solener.2017.01.064
    [33] K. Yu, X. Chen, X. Wang, Z. Wang, Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization, Energy Convers. Manage., 145 (2017), 233–246. doi: 10.1016/j.enconman.2017.04.054
    [34] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, et al., Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization, Energy Convers. Manage., 189 (2019), 293–305.
    [35] A. Beigi, A. Maroosi, Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms, Sol. Energy, 171 (2018), 435–446. doi: 10.1016/j.solener.2018.06.092
    [36] H. Hasanien, Shuffled frog leaping algorithm for photovoltaic model identification, IEEE Trans. Sustain. Energy, 6 (2015), 509–515. doi: 10.1109/TSTE.2015.2389858
    [37] Y. Fan, P. Wang, A. Heidari, X. Zhao, H. Turabieh, H. Chen, Delayed dynamic step shuffling frog-leaping algorithm for optimal design of photovoltaic models, Energy Rep., 7 (2021), 228–246. doi: 10.1016/j.egyr.2020.12.013
    [38] X. Chen, K. Yu, Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters, Sol. Energy, 180 (2019), 192–206. doi: 10.1016/j.solener.2019.01.025
    [39] S. Li, W. Gong, L. Wang, X. Yan, C. Hu, A hybrid adaptive teaching-learning-based optimization and differential evolution for parameter identification of photovoltaic models, Energy Convers. Manage., 225 (2020), 113474. doi: 10.1016/j.enconman.2020.113474
    [40] G. Xiong, J. Zhang, D. Shi, Y. He, Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm, Energy Convers. Manage., 174 (2018), 388–405. doi: 10.1016/j.enconman.2018.08.053
    [41] S. Li, Q. Gu, W. Gong, B. Ning, An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models, Energy Convers. Manage., 205 (2020), 112443. doi: 10.1016/j.enconman.2019.112443
    [42] K. El-Naggar, M. AlRashidi, M. AlHajri, A. Al-Othman, Simulated annealing algorithm for photovoltaic parameters identification, Sol. Energy, 86 (2012), 266–274. doi: 10.1016/j.solener.2011.09.032
    [43] W. Huang, C. Jiang, L. Xue, D. Song, Extracting solar cell model parameters based on chaos particle swarm algorithm, in 2011 International Conference on Electric Information and Control Engineering, (2011), 398–402.
    [44] K. Ishaque, Z. Salam, S. Mekhilef, A. Shamsudin, Parameter extraction of solar photovoltaic modules using penalty-based differential evolution, Appl. Energy, 99 (2012), 297–308. doi: 10.1016/j.apenergy.2012.05.017
    [45] K. Yu, J. Liang, B. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved jaya optimization algorithm, Energy Convers. Manage., 150 (2017), 742–753. doi: 10.1016/j.enconman.2017.08.063
    [46] J. Ram, T. Babu, T. Dragicevic, N. Rajasekar, A new hybrid bee pollinator flower pollination algorithm for solar pv parameter estimation, Energy Convers. Manage., 135 (2017), 463–476. doi: 10.1016/j.enconman.2016.12.082
    [47] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters identification of solar cell models using generalized oppositional teaching learning based optimization, Energy, 99 (2016), 170–180. doi: 10.1016/j.energy.2016.01.052
    [48] X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation, Appl. Energy, 212 (2018), 1578–1588. doi: 10.1016/j.apenergy.2017.12.115
    [49] F. Zeng, H. Shu, J. Wang, Y. Chen, B. Yang, Parameter identification of pv cell via adaptive compass search algorithm, Energy Rep., 7 (2021), 275–282. doi: 10.1016/j.egyr.2021.01.069
    [50] G. Xiong, L. Li, A. Mohamed, X. Yuan, J. Zhang, A new method for parameter extraction of solar photovoltaic models using gaining–sharing knowledge based algorithm, Energy Rep., 7 (2021), 3286–3301. doi: 10.1016/j.egyr.2021.05.030
    [51] R. Rahmaniani, T. Crainic, M. Gendreau, W. Rei, The benders decomposition algorithm: A literature review, Eur. J. Oper. Res., 259 (2017), 801–817. doi: 10.1016/j.ejor.2016.12.005
    [52] J. Zhang, A. Sanderson, Jade: Adaptive differential evolution with optional external archive, IEEE Trans. Evol. Comput., 13 (2009), 945–958. doi: 10.1109/TEVC.2009.2014613
    [53] S. Li, W. Gong, L. Wang, X. Yan, C. Hu, Optimal power flow by means of improved adaptive differential evolution, Energy, 198 (2020), 117314. doi: 10.1016/j.energy.2020.117314
    [54] K. Yu, J. Liang, B. Qu, Y. Luo, C. Yue, Dynamic selection preference-assisted constrained multiobjective differential evolution, IEEE Trans. Syst. Man Cybern. Syst., (2021), 1–12.
    [55] K. Yu, J. Liang, B. Qu, C. Yue, Purpose-directed two-phase multiobjective differential evolution for constrained multiobjective optimization, Swarm Evol. Comput., 60 (2021), 100799. doi: 10.1016/j.swevo.2020.100799
    [56] S. Li, W. Gong, C. Hu, X. Yan, L. Wang, Q. Gu, Adaptive constraint differential evolution for optimal power flow, Energy, 235 (2021), 121362. doi: 10.1016/j.energy.2021.121362
    [57] N. Tong, W. Pora, A parameter extraction technique exploiting intrinsic properties of solar cells, Appl. Energy, 176 (2016), 104–115. doi: 10.1016/j.apenergy.2016.05.064
    [58] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. doi: 10.1023/A:1008202821328
    [59] G. Xiong, J. Zhang, X. Yuan, D. Shi, Y. He, . Yao, Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm, Sol. Energy, 176 (2018), 742–761. doi: 10.1016/j.solener.2018.10.050
    [60] S. Ebrahimi, E. Salahshour, M. Malekzadeh, F. Gordillo, Parameters identification of pv solar cells and modules using flexible particle swarm optimization algorithm, Energy, 179 (2019), 358–372. doi: 10.1016/j.energy.2019.04.218
    [61] N. Pourmousa, S. Ebrahimi, M. Malekzadeh, M. Alizadeh, Parameter estimation of photovoltaic cells using improved lozi map based chaotic optimization algorithm, Sol. Energy, 180 (2019), 180–191. doi: 10.1016/j.solener.2019.01.026
    [62] L. Deotti, J. Pereira, I. Jˊenior, Parameter extraction of photovoltaic models using an enhanced lˊevy flight bat algorithm, Energy Convers. Manage., 221 (2020), 113114. doi: 10.1016/j.enconman.2020.113114
    [63] G. Xiong, J. Zhang, D. Shi, L. Zhu, X. Yuan, Parameter extraction of solar photovoltaic models with an either-or teaching learning based algorithm, Energy Convers. Manage., 224 (2020), 113395. doi: 10.1016/j.enconman.2020.113395
    [64] Y. Zhang, M. Ma, Z. Jin, Backtracking search algorithm with competitive learning for identification of unknown parameters of photovoltaic systems, Expert Syst. Appl., 160 (2020), 113750. doi: 10.1016/j.eswa.2020.113750
    [65] K. Sallam, M. Hossain, R. Chakrabortty, M. Ryan, An improved gaining-sharing knowledge algorithm for parameter extraction of photovoltaic models, Energy Convers. Manage., 237 (2021), 114030. doi: 10.1016/j.enconman.2021.114030
    [66] W. Long, T. Wu, M. Xu, M. Tang, S. Cai, Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm, Energy, 229 (2021), 120750. doi: 10.1016/j.energy.2021.120750
    [67] Y. Liu, A. Heidari, X. Ye, C. Chi, X. Zhao, C. Ma, et al., Evolutionary shuffled frog leaping with memory pool for parameter optimization, Energy Rep., 7 (2021), 584–606. doi: 10.1016/j.egyr.2021.01.001
    [68] Z. Hu, W. Gong, S. Li, Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models, Energy Rep., 7 (2021), 916–928. doi: 10.1016/j.egyr.2021.01.096
    [69] C. Hu, J. Cai, D. Zeng, X. Yan, W. Gong, L. Wang, Deep reinforcement learning based valve scheduling for pollution isolation in water distribution network, Math. Biosci. Eng., 17 (2020), 105–121. doi: 10.3934/mbe.2020006
    [70] A. Alejo-Reyes, E. Olivares-Benitez, A. Mendoza, A. Rodriguez, Inventory replenishment decision model for the supplier selection problem using metaheuristic algorithms, Math. Biosci. Eng., 17 (2020), 2016–2036. doi: 10.3934/mbe.2020107
    [71] W. Gong, Z. Liao, X. Mi, L. Wang, Y. Guo, Nonlinear equations solving with intelligent optimization algorithms: A survey, Complex Syst. Model. Simul., 1 (2021), 15–32. doi: 10.23919/CSMS.2021.0002
  • This article has been cited by:

    1. Pengjin Wu, Jiabao Shen, Brain tumor diagnosis based on convolutional neural network improved by a new version of political optimizer, 2023, 85, 17468094, 104853, 10.1016/j.bspc.2023.104853
    2. Gopi S., Prabhujit Mohapatra, Chaotic Aquila Optimization algorithm for solving global optimization and engineering problems, 2024, 108, 11100168, 135, 10.1016/j.aej.2024.07.058
    3. Youfa Fu, Dan Liu, Shengwei Fu, Jiadui Chen, Ling He, Enhanced Aquila optimizer based on tent chaotic mapping and new rules, 2024, 14, 2045-2322, 10.1038/s41598-024-53064-6
    4. S. Gopi, Prabhujit Mohapatra, Fast random opposition-based learning Aquila optimization algorithm, 2024, 10, 24058440, e26187, 10.1016/j.heliyon.2024.e26187
    5. Buddhadev Sasmal, Abdelazim G. Hussien, Arunita Das, Krishna Gopal Dhal, A Comprehensive Survey on Aquila Optimizer, 2023, 30, 1134-3060, 4449, 10.1007/s11831-023-09945-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2959) PDF downloads(93) Cited by(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog