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Abstract: Photovoltaic (PV) parameter extraction plays a key role in establishing accurate and reli-
able PV models based on the manufacturer’s current-voltage data. Owning to the characteristics such
as implicit and nonlinear of the PV model, it remains a challenging and research-meaningful task in
PV system optimization. Despite there are many methods that have been developed to solve this prob-
lem, they are often consuming a great deal of computing resources for more satisfactory results. To
reduce computing resources, in this paper, an advanced differential evolution with search space de-
composition is developed to effectively extract the unknown parameters of PV models. In proposed
approach, a recently proposed advanced differential evolution algorithm is used as a solver. In addition,
a search space decomposition technique is introduced to reduce the dimension of the problem, thereby
reducing the complexity of the problem. Three different PV cell models are selected for verifying the
performance of proposed approach. The experimental result is firstly compared with some represen-
tative differential evolution algorithms that do not use search space decomposition technique, which
demonstrates the effectiveness of the search space decomposition. Moreover, the comparison results
with some reported well-established parameter extraction methods suggest that the proposed approach
not only obtains accurate and reliable parameters, but also uses the least computational resources.

Keywords: parameter extraction; photovoltaic model; decomposition; differential evolution;
adaptation

1. Introduction

With the introduction of the concept of green economic development, the use of renewable en-
ergy has been paid great attention. The use of renewable energy can not only overcome the high cost
of traditional fossil energy, but also reduce the negative environmental impact such as environmental
pollution and global warming caused by traditional fossil energy [1–3]. In commonly used renewable
energy, the solar energy has been considered as an option of clean energy because it is widely available,
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and it has no pollution and no noise [4]. In addition, an important reason is that the solar energy is able
to be directly transformed into electricity by a PV device [5, 6]. In this connection, it is worthwhile
to mention that the performance of the PV system will be influenced by temperature and radiation.
Therefore, it is fairly common to establish accurate and reliable PV models according to the manufac-
turer’s current-voltage (I-V) data to predict and evaluate the performance of PV systems before being
installed [7]. Until now, researchers have put forward to several PV models to fit the manufacturer’s
I-V data under different conditions. They mainly include the single diode model [8], the double diode
model [9], and the triple diode model [10]. The single diode model is fairly simple and the double
diode model is deemed as more accurate on accuracy when compared with the former. As for the
triple diode model, it has ten unknown parameters which escalates the complexity [11]. Therefore, the
first two PV models are most commonly used in practice [12]. Unfortunately, the parameter values in
these PV models are not provided by manufacturers [13]. Thus, how to effectively extract the unknown
parameter values of these PV models has become an urgent work.

In recent years, many efforts have been devoted to design effective parameter extraction meth-
ods. From the reported studies, these parameter extraction methods could be broadly classified into
two types including deterministic methods and intelligent optimization methods. The deterministic
method is a commonly used parameter extraction method in earlier years, representative as the Newton-
Raphson methods [14] and Lambert W-function methods [15]. For such methods, they solve the prob-
lem mainly by analyzing the models equivalent circuit, deriving the relationship between unknown
parameters. They can quickly obtain unknown parameters to be extracted, but often suffer from not
high precision. Besides, it should be pointed out that the deterministic method has the following dis-
advantages: i) easy to trap into local optimum; ii) sensitive to provided initial solution; iii) have some
extra requirements on the model equation, i.e., convexity and differentiability. Unfortunately, in this
problem, the condition iii) is often not satisfied. With the rapid development of intelligent computing,
more and more intelligent optimization methods inspired by nature are favored by many researchers.
These methods have a simple structure and are easy to be coded. What should be pointed out is that
these methods have no additional requirements for the characteristics of the model. Over the years,
there are extensive intelligent optimization approaches that have been applied for extracting the param-
eters in PV models, such as pattern search (PS) [16], simulated annealing algorithm (SA) [17], genetic
algorithm (GA) [18], harmony search (HS) [19], particle swarm optimization (PSO) [20, 21], JAYA
(JAYA) [22, 23], differential evolution (DE) [24, 25], whale optimization algorithm (WOA) [26, 27],
artificial bee swarm optimization (ABSO) [28], backtracking search algorithm (BSA) [29,30], cuckoo
search (CS) [31], simplified swarm optimization (SSO) [32], teaching-learning-based optimization
(TLBO) [33, 34], fireworks algorithm (FA) [35], shuffled frog leaping algorithm (SFLA) [36, 37], hy-
brid algorithms [38,39], and so on. It goes without saying that these methods have yielded considerable
results when comparing with the deterministic methods. However, it must point out that the disadvan-
tage of the intelligent optimization methods is that they require significant computational resources
when it is employed for solving the PV parameters estimation problem. For example, in [26], the
maximum consumed computing resource (the maximum number of objective function calls) is set to
be 150,000; 1,500,000 in [27]; 100,000 in [40]; and 50,000 in [33, 34]. Thus, it is worth further study-
ing how to use as few computing resources as possible to obtain more accurate and reliable parameter
values.

In this study, to fast, accurately, and reliably extract the parameter values in PV models with less
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Figure 1. Equivalent circuit of the single diode model.

computing resources, an advanced DE with search space decomposition is proposed. Firstly, a search
space decomposition technique is presented, where the parameters of PV models have been decom-
posed into two parts i.e., linear part and nonlinear part. Subsequently, the advanced established adaptive
differential evolution (EJADE) proposed by Li et al. [41] is employed for a general solver. EJADE is
picked because it has good performance and no additional arithmetic parameters to set. The linear part
parameter decomposed by the search space decomposition technique is determined by the algebraic
method and the related nonlinear part parameter. While the nonlinear part parameter is solved by the
intelligent optimization algorithm i.e., EJADE in this paper. Due to the proposed search space decom-
position technique, the parameter to be extracted by EJADE is reduced. In consequence, significant
computational resources can be saved when employing the intelligent optimization methods and thus
the parameter extraction process can be greatly improved. The performance of proposed approach is
tested on three PV cell models. Experimental results of proposed method are competitive with those
of other state-of-the-art methods on accuracy and reliability with less computational resources.

The novelty and main contributions of this study can be listed as follows:

• An advanced differential evolution with search space decomposition algorithm is developed to
effectively extract PV models parameters.

• The search space decomposition technique is proposed to reduce the search space and thus reduce
the complexity of the problem.

• A lot of computing resources have been saved by adopting the proposed search space decompo-
sition technique.

• The performance of proposed algorithm has been verified by extracting the unknown parame-
ters in different PV cell models and a large number of reported well-established algorithms are
selected as its competitors.

The structure of the rest of this paper is organized as follows. The description of PV modes is given
in Section 2. Section 3 explains the proposed algorithm in detail. The experimental setting of this
paper is given in Section 4, and Section 5 reports the results and gives the analysis on these results.
Finally, the conclusion of this study is concluded in Section 6.

2. PV models

In this section, firstly, three different PV models are described. Then, the optimization objective of
PV models is defined.
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2.1. Single diode model

Figure 1 provides the equivalent circuit of the single diode model, where the output current I is
defined as follows [18]:

I = Ipv − Id − Ip (1)

where Ipv is the photo-generated current, Id denotes the diode current, and the shunt resistor current is
represented as Ip. Note that Id and Ip can be calculated as Eqs (2) and (3) by applying for Shockley
equation and Kirchhoffs Voltage Law.

Id = Isd

[
exp

(
(V + IRs) · q

nkT

)
− 1

]
(2)

Ip =
V + IRs

Rp
(3)

where Isd is the diode reverse saturation current, the output voltage is denoted as V , Rs and Rp are the
series and shunt resistance, n denotes the non-physical diode ideality factor, q is the electron charge
and its value is 1.60217646 × 10−19 C, k is the Boltzmann constant and its value is 1.3806503 × 10−23

J/K, and the temperature of junction in Kelvin is represented as T .
Based on above, the output current of this equivalent circuit can be represented as below:

I = Ipv − Isd

[
exp

(
(V + IRs) · q

nkT

)
− 1

]
−

V + IRs

Rp
(4)

where it is straightforward to see that there are five unknown parameters i.e., Ipv, Isd, Rs, Rp, and n that
need to be extracted.

2.2. Double diode model

From the equivalent circuit of the double diode model shown in Figure 2, it can be seen that there
are two diodes in this model. The output current I is expressed as follows [18]:

I = Ipv − Id1 − Id2 − Ip (5)

where Id1 and Id2 are the first and second diode currents, respectively. Similar to Eq (2), Id1 and Id2 can
be calculated using Eqs (6) and (7)

Id1 = Isd1

[
exp

(
(V + IRs) · q

n1kT

)
− 1

]
(6)

Id2 = Isd2

[
exp

(
(V + IRs) · q

n2kT

)
− 1

]
(7)

where Isd1 is the diffusion current, Isd2 is the saturation current, and the first and second non-physical
diode ideality factors are denoted as n1, n2, respectively.

Thus, the output current of the equivalent circuit of the double diode model can be represented as
below:
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Figure 2. Equivalent circuit of the double diode model.
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Figure 3. Equivalent circuit of the single based PV module.

I = Ipv − Isd1

[
exp

(
(V + IRs) · q

n1kT

)
− 1

]
− Isd2

[
exp

(
(V + IRs) · q

n2kT

)
− 1

]
−

V + IRs

Rp
(8)

where it is clear that there are seven unknown parameters i.e., Ipv, Isd1 , Isd2 , Rs, Rp, n1, and n2 to be
extracted in this model.

2.3. Single diode based PV module

On the basis of the single diode model, researchers proposed a new model, namely the single based
PV module. In Figure 3, the equivalent circuit of this model can be found, and the output current I can
be calculated as follows [26]:

I = IpvNp − IsdNp

[
exp

(
(VNp + IRsNs) · q

nNsNpkT

)
− 1

]
−

VNp + IRsNs

RpNs
(9)

where Ns denotes the count of PV cells connected in series, and Np is the count of PV cells connected
in parallel.

From Eq (9), five unknown parameters need to be extracted in the single based PV module like the
single diode model.

2.4. Optimization objective function

To extract the parameters in different PV models in Eqs (4)–(9) according to the measured data
provided by the manufacturers, an optimization objective function needs to be adopted when using
intelligent optimization as solver. In this paper, like many published studies [9,16,18,19,22,26,28,29,
33,34,36,42–50], the root mean square error (RMSE) is employed as the optimization objective, which
can reflect the degree of dispersion of the measured data and the simulated data. And it is expressed as
below:
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min RMSE(x) =

√√
1
N

N∑
i=1

(Ii − Îi)2 (10)

where x represents the parameter vector; for the single and the single based PV module, x =

[Ipv, Isd,Rs,Rp, n]; x = [Ipv, Isd1 , Isd2 ,Rs,Rp, n1, n2] for the double diode model. N is the total num-
ber of the measured I −V data provided by manufacturers. Î denotes the simulated current obtained by
proposed approach.

3. Proposed approach

In this section, we proposed our approach in detail. Firstly, the motivations of this study is described.
Then the search space decomposition technique is proposed, and the advanced adaptive differential
evolution is briefly introduced.

3.1. Motivations

In recent years, more and more intelligent computing methods have been employed for parameter
extraction of PV models. Although they have achieved better results to some extent, they need to
consume a lot of computing resources. One obvious reason is that intelligent optimization algorithms
need to extract all unknown parameters, which results in search space is very large. In consequence,
a considerable number of computing resources is required for these algorithms. If we can reduce
some unknown parameters, i.e., reduce the search space, and at this point the intelligent optimization
algorithm is called, which will save a lot of computing resources. Taking this cue, we can observe Eqs
(4), (8) and (9). We can observe that these unknown parameters can be divided into two groups: linear
parameters and nonlinear parameters. For example, in the single diode model and the single based PV
module, the linear parameters are Ipv, Isd, and Rp; and nonlinear parameters are Rs and n. In the double
diode model, the linear parameters are Ipv, Isd1 , Isd2 , and Rp; and nonlinear parameters are Rs, n1, and n2.
Based on the manufacturers measured data, the linear parameters can be determined by the nonlinear
parameters.

Taking the above observations into consideration, the search space decomposition technique is pro-
posed. Based on this decomposition technique, the linear parameters can be determined by the alge-
braic method while the intelligent optimization algorithms only extract the nonlinear parameters. As a
result, a considerable number of computing resources can be saved.

3.2. Search space decomposition technique

By observing Eq (10), it can be reformulated as

min RMSE(x) =

√
1
N

∑N
i=1(Ii − Îi)T (Ii − Îi)

sub ject to f (x, Ii,Vi) − Îi = 0 i = 1, · · · ,N

(11)

where

• Single diode model:
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f (x, Ii,Vi) = Ipv − Isd

[
exp

(
(V + IiRs) · q

nkT

)
− 1

]
−

V + IiRs

Rp
(12)

• Double diode model:

f (x, Ii,Vi) = Ipv − Isd1

[
exp

(
(V + IiRs) · q

n1kT

)
− 1

]
− Isd2

[
exp

(
(V + IiRs) · q

n2kT

)
− 1

]
−

V + IiRs

Rp
(13)

• Single diode based PV module:

f (x, Ii,Vi) = IpvNp − IsdNp

[
exp

(
(VNp + IiRsNs) · q

nNsNpkT

)
− 1

]
−

VNp + IiRsNs

RpNs
(14)

3.2.1. Decomposition on the single diode model and the single based PV module

According to generalized Benders-like decomposition [51], the parameter vector x in Eq (11) can
be decomposed two sub-parameter vector x1 and x2:
x1 = [n,Rs]
x2 = [Ipv, Isd,Rp]

Then, the nested form of Eq (11) can be defined as:

min

x1, Î RMSE(x) =

√
1
N

∑N
i=1(Ii − Îi)T (Ii − Îi) + ϕ(x1, Î)

sub ject to f (x1, x2, Ii) − Îi = 0 i = 1, · · · ,N

(15)

where

ϕ(x1, Î) =
min

x2, Î

√√
1
N

N∑
i=1

(Ii − Îi)T (Ii − Îi) (16)

It is postulated that x1 is extracted by the intelligent optimization algorithm, then, the linear param-
eters x2 can be extracted by solving the corresponding normal equation, which can be expressed as
follows:

B(x1)︷︸︸︷
ET I
MT I
QT I

 =

A(x1)︷                       ︸︸                       ︷
ET E ET M ET Q
MT E MT M MT Q
QT E QT M QT Q


x2︷︸︸︷
Ipv

Isd

Rp
′

 (17)

where Rp
′ = 1/Rp; E, M, and Q are vectors of size N, in which E is a unit vector. In addition, the

elements in M and Q are calculated by the following:

• Single diode model 
Mi = Mi(x1) = −

[
exp

(
(V+IiRs)·q

nkT

)
− 1

]
Qi = Qi(x1) = −(V + IiRs)

(18)
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• Single diode based PV module 
Mi(x1) = −

[
exp

(
(V+IRsNs)·q

aNskT

)
− 1

]
Qi(x1) = −V+IRsNs

Ns

(19)

According to Eq (17), it can be seen that once the value of the nonlinear parameter vector x1 is
given, the linear parameter vector x2 can be extracted by Eq (20).

x2 = A−1(x1)B(x1) (20)

3.2.2. Decomposition on the double diode model

In the double diode model, similar to the single diode model, the parameter vector x in Eq (11)
can also be decomposed into nonlinear parameters x1 and linear parameters x2, which is expressed as
follows:
x1 = [n1, n2,Rs]
x2 = [Ipv, Isd1 , Isd2 ,Rp]

Like the single diode model and the single based PV module, assume that x1 is provided by an
intelligent optimization algorithm, then the linear parameters x2 can be determined as below:

B(x1)︷︸︸︷
ET I
MT I
QT I
OT I

 =

A(x1)︷                                 ︸︸                                 ︷
ET E ET M ET Q ET O
MT E MT M MT Q MT O
QT E QT M QT Q QT O
OT E OT M OT Q OT O



x2︷︸︸︷
Ipv

Isd1

Isd2

Rp
′

 (21)

where the elements in M, Q, and O are calculated by the following:

Mi = Mi(x1) = −
[
exp

(
(V+IiRs)·q

n1kT

)
− 1

]
Qi = Qi(x1) = −

[
exp

(
(V+IiRs)·q

n2kT

)
− 1

]
Oi = Oi(x1) = −(V + IiRs)

(22)

It is worth mentioning that through this decomposition technique, there may be two scenarios:
1) The matrix A in Eqs (17) and (21) may not be inverse. If this happens, we will discard the values

of this set of nonlinear parameters x1 to ensure that the inversion of matrix A exists.
2) The other is that the linear parameters in x2 determined by x1 may violate the upper and lower

bounds. When this happens, then we truncate to its specified range.

3.3. Adaptive differential evolution with search space decomposition

Recently, a large number of differential evolution algorithms [52–56] have been proposed to solve
various practical problems. Adaptive differential evolution algorithm (JADE) as an effective and effi-
cient algorithm was proposed by Zhang et al in [52] to solve continuous optimization problem. In order
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to leverage this algorithm to deal with the PV problem. Li et al. [41] proposed an enhanced adaptive
differential evolution algorithm (EJADE). From the perspective of experimental results on PV models
parameter extraction, EJADE shows remarkably performance when compared with reported param-
eter extraction methods. Therefore, in this work, the EJADE algorithm is selected as the intelligent
optimization solver. For an overview of the algorithm, the reader is referred to [41].

In this paper, the proposed search space decomposition technique is infused in the EJADE algo-
rithm. For convenience, we refer to the algorithm simply as EJADE-D. Figure 4 provides the flowchart
of the proposed EJADE-D. Its main steps are described in Table 1:

Table 1. Main steps of EJADE-D algorithm.

Step 1: Firstly, load the measured I-V data of PV models provided by the manufacturers.

Step 2: Randomly initialize NP (population size) solutions of population, in which each solution Xi = x1 is initialized in their specified range.

Step 3:
According to each solution, calculate the linear unknown parameters x2 by using the proposed search space decomposition technique
i.e., Eqs (20) and (21).

Step 4:
After all solution have been done, then, each solution’s linear parameters x2 and nonlinear parameters x1 are substituted into Eq (10)
to calculate the objective function value of each solution.

Step 5: Leverage the advanced differential evolution algorithm i.e., EJADE to produce NP new solution.

Step 6:
Similar to the Step 3, calculate the linear parameters x2 according related nonlinear parameters x1 for each new solution by using
search space decomposition technique.

Step 7: Calculate the objection function value of each solution based on its linear parameters x2 and corresponding nonlinear parameters x1.

Step 8:
According to the objective function value, selection between the new solution and old solution to form the next generation population.
If the termination condition is met, then go to Step 9; else go to the loop: Steps 5–8.

Step 9: Output the best solution.

4. Experimental setting

4.1. PV model data

To verify the performance of proposed EJADE-D, three different PV models have been tested on
four PV data. For the first two PV models, the 57 mm diameter commercial R.T.C France solar cell
is selected. While for the single based PV module, two different solar cells, i.e., mono-crystalline
STM6-40/36 and ploy-crystalline STP6-120/36 are selected. The measured I-V data are obtained
from [14, 34, 57]. The detailed description about these PV data is provided in Table 2. In addition,
the upper and lower bound of unknown parameters of these solar cells are given in Table 3, which is
similar to several published literature [16, 18, 22, 34, 42, 45].

Table 2. Details description of PV models data.

Parameter The single/double diode model The single based PV module

Solar cell model R.T.C. France solar cell STM6-40/36 STP6-120/36
Ns 1 36 36
N p 1 1 1
Number of I-V data 26 20 24
Temperature 25 °C 51 °C 55 °C
Radiation 1000 W/m2 1000 W/m2 1000 W/m2

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7363–7388.
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Figure 4. Flowchart of EJADE-D when extracting PV models unknown parameters.
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Table 3. Upper and lower bound of unknown parameters in different PV models.
Unknown parameters R.T.C. France solar cell STM6-40/36 STP6-120/36

Lower Upper Lower Upper Lower Upper
Ipv (A) 0 1 0 2 0 8
Isd, Isd1 , Isd2 (µA) 0 1 0 50 0 50
Rs (Ω) 0 0.5 0 0.36 0 0.36
Rp (Ω) 0 100 0 1000 0 1500
n, n1, n2 1 2 1 60 1 50

4.2. Parameter setting

In order to demonstrate the effectiveness of the proposed adaptive differential evolution with search
space decomposition algorithm, basic differential evolution (DE) [58], Zhang’s adaptive differential
evolution (JADE) [52], and EJADE [41] have been selected for comparison. The arithmetic parameters
setting of the selected algorithms are shown in Table 4. Additionally, what should be pointed out is
that the maximum number of function evaluations (Max NFE) is set to 2000 for the single diode
model, 4000 for the double diode model, 3000, and 7000 for the STM6-40/36, and STP6-120/36,
respectively. Note that all algorithms are coded in Matlab and independently executed 30 runs. Besides,
the experiment environment is on a desktop PC with an Intel Core i7-9700 processor @ 3.0 GHz, 32GB
RAM, under the Windows 10 64-bit OS.

Table 4. Arithmetic parameters setting.
Algorithm Parameter value
DE NP = 50, F = 0.5, CR = 0.9
JADE NP = 50
EJADE NPmax = 50, NPmin = 4
EJADE-D NPmax = 50, NPmin = 4

5. Results and analysis

In this section, we first analyze the results including the extracted parameter values, statistical results
and convergence speed of different DEs algorithms. Then the result achieved by proposed EJADE-D
is compared with other state-of-the-art algorithms.

5.1. Comparison results under the single diode model

For the single diode model, the statistical results obtained by DE, JADE, EJADE, and proposed
EJADE-D are reported in Table 5, where the best RMSE (Best), worst RMSE (Worst), mean RMSE
(Mean), and standard deviation (Std) for 30 independent runs are included. From Table 5, it is clear
that DE, JADE and EJADE were unable to find the best RMSE value (9.8602E-04) at 2000 function
evaluations. In addition, from other statistical analysis indicators, what can be observed is that only
EJADE-D algorithm is able to achieve the best performance on the Worst, Mean, and Std RMSE values.
Besides, it is worth mentioning that the Std of EJADE-D is very small (3.67E-17) when compared with
its competitors, which means that the proposed algorithm has an excellent robustness.

Table 6 provides the best RMSE values and corresponding extracted parameter values achieved by
compared algorithms. In order to better explain the accuracy of the extracted parameters, we put these
parameter values into the objective function to calculate the experimental current called the simulated
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Table 5. Statistical results on the single diode model.

Algorithm RMSE

Best Worst Mean Std

DE 1.3733E-03 4.3933E-03 2.2122E-03 6.30E-04
JADE 2.4628E-03 9.0467E-03 4.6089E-03 1.64E-03
EJADE 9.9336E-04 2.1651E-03 1.4245E-03 3.03E-04
EJADE-D 9.8602E-04 9.8602E-04 9.8602E-04 3.67E-17
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(b) Current absolute value error obtained by compared al-
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Figure 5. Comparisons between the measured current and simulated current on the single
diode model.

current data. Figure 5(a) shows the fitting curve of the measured current data and the simulated current
data obtained from the parameters provided by EJADE-D. From Figure 5(a), what can be clearly seen
is that the simulated current data can fit the measured current data well, which proves that the extracted
parameter values provided by EJADE-D are very accurate. In addition, we also draw the current
absolute value error* of different algorithms in Figure 5(b), where it can be observed that the current
absolute value error of EJADE-D is small at each data point while DE and JADE are significantly
inferior to EJADE and EJADE-D.

Table 6. The best results obtained by compared algorithms on the single diode model.

Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

DE 0.75946361 0.41068723 0.03569428 86.22084780 1.50561834 1.3733E-03
JADE 0.76241894 0.65695921 0.03323643 80.94523627 1.55621196 2.4628E-03
EJADE 0.76070190 0.34171649 0.03613743 55.62560314 1.48687849 9.9336E-04
EJADE-D 0.76077553 0.32302079 0.03637709 53.71852020 1.48118359 9.8602E-04

Finally, in order to show that the proposed search space decomposition technique can accelerate
convergence, Figure 6 plots the convergence speed of different compared algorithms on this model.
What can be observed from this figure is that EJADE-D has the fastest convergence speed. Besides, DE
and JADE do not converge to the best RMSE value until all function evaluations have been consumed.

*which is the absolute of the measured current data and the simulated current data.
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Figure 6. Convergence curves on the single diode model.

Based on these, it can be concluded that the search space decomposition technique can be used to save
the computing resources.

5.2. Comparison results under the double diode model

For this model, we adopt the same experimental data as the single diode model. Different from the
latter, the double diode model has seven parameters (Ipv, Isd1 , Isd2 , Rs, Rp, n1, and n2) that need to be
extracted. Two more parameters complicate the problem. Table 7 gives the statistical results achieved
by different algorithms, where it could be seen that EJADE-D achieves the best RMSE value (9.8248E-
04), followed by EJADE (9.8497E-04), JADE (2.2919E-03), and DE (1.4793E-03). From the Worst,
Mean, and Std of the RMSE value, EJADE-D exhibits remarkable performance. Additionally, the best
RMSE value and corresponding extracted parameter values of different algorithms are reported in Ta-
ble 8. Thereby, these extracted parameter values are put into the objective function to get the simulated
current data. Figure 7 gives the comparisons between the measured current data and simulated current
data on the double diode model. From Figure 7(a), it is evident that the simulated data obtained by
EJADE-D is highly consistent with the measured current data, which demonstrates that the parameters
extracted by EJADE-D on this model are also very accurate. Moreover, from the current absolute value
error shown as Figure 7(b), EJADE-D has the smallest current absolute error, followed by EJADE, DE,
and JADE. It is worthwhile to mention that DE obtains better performance than JADE on this model.

Table 7. Statistical results on the double diode model.

Algorithm RMSE

Best Worst Mean Std

DE 1.4793E-03 4.5821E-03 2.4962E-03 6.93E-04
JADE 2.2919E-03 5.1370E-03 3.4453E-03 7.37E-04
EJADE 9.8497E-04 2.0383E-03 1.2113E-03 2.83E-04
EJADE-D 9.8248E-04 9.8248E-04 9.8248E-04 5.50E-17

Figure 8 shows the convergence curves of EJADE-D and its competitors. From the convergence
curves, we can clearly see that DE, JADE, and EJADE converge faster than EJADE-D before NFE =

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7363–7388.
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Table 8. The best results obtained by compared algorithms on the double diode model.

Algorithm Ipv (A) Isd1 (µA) Rs (Ω) Rp (Ω) n1 Isd2 (µA) n2 RMSE

DE 0.76161938 0.29934314 0.03458265 62.11841082 1.95055472 0.44875729 1.51798488 1.4793E-03
JADE 0.75904695 0.13872632 0.03655444 47.70175773 1.43701409 0.16306212 1.52688650 2.2919E-03
EJADE 0.76077378 0.24691111 0.03653971 54.42053982 1.46090798 0.21482898 1.76404886 9.8497E-04
EJADE-D 0.76078108 0.22597441 0.03674043 55.48543767 1.45101682 0.74934630 2.00000000 9.8248E-04
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Figure 7. Comparisons between the measured current data and simulated current data on the
double diode.

1000, but after 1000, EJADE-D quickly converges to the best RMSE value (9.8248E-04). The reason is
that EJADE-D needs a certain number of function evaluation times to find the better nonlinear unknown
parameters in PV models, once these better solutions are found, the use of search space decomposition
technique will quickly find the linear unknown parameters. Therefore, EJADE-D will converge quickly
in the later period.

5.3. Comparison results under the single based PV module

5.3.1. Comparison results under the STM6-40/36

For the mono-crystalline STM6-40/36, the statistical results are given in Table 9, where it can
be clearly seen that EJADE-D shows remarkable performance on the Best, Worst, Mean, and Std
RMSE values, especially in Std (9.85E-18) when compared with other algorithms. Table 10 reports
the extracted parameters values obtained by different methods, and Figure 9 provides the comparisons
between the measured current data and simulated current data. From this figure, two points can be
observed: i) the simulated current data achieved by EJADE-D are consistent with the measured current
data; ii) the proposed EJADE-D has the smallest current absolute value error at each measured data.
Note that the current absolute value error of DE at the last point is relatively large, which may be due
to inaccurate extraction parameters. In addition, the convergence curve of compared algorithms on
this model is drawn in Figure 10, in which it can be obviously observed that EJADE-D exhibits very
competitive performance on the convergence speed. Besides, another fact worth saying is that other
DEs methods are not able to converge to the best RMSE value (1.7298E-03).
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Figure 8. Convergence curves on the double diode model.

Table 9. Statistical results on the STM6-40/36.

Algorithm RMSE

Best Worst Mean Std

DE 1.0448E-02 2.5021E-01 7.4874E-02 6.90E-02
JADE 5.6988E-03 1.3783E-02 7.5998E-03 1.71E-03
EJADE 2.6987E-03 4.0918E-03 3.3056E-03 2.78E-04
EJADE-D 1.7298E-03 1.7298E-03 1.7298E-03 9.85E-18

Table 10. The best results obtained by compared algorithms on the STM6-40/36.

Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

DE 1.65602020 7.78528613 0.00090772 317.05546222 1.70743127 1.0448E-02
JADE 1.65376894 5.35917258 0.00130049 289.11110965 1.65342824 5.6988E-03
EJADE 1.66220446 3.98041243 0.00125715 20.23972593 1.61727931 2.6987E-03
EJADE-D 1.66390478 1.73865681 0.00427377 15.92829378 1.52030292 1.7298E-03
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Figure 9. Comparisons between the measured current data and simulated current data on the
STM6-40/36.
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Figure 10. Convergence curves on the STM6-40/36.

5.3.2. Comparison results under the STP6-120/36

The statistical results of 30 independent runs on the ploy-crystalline STP6-120/36 PV module are
shown in Table 11, where it is obvious that EJADE and EJADE-D achieve the best RMSE value
(1.6602E-02), followed by DE (2.2855E-02), and JADE (3.2110E-02). However, for the other evalua-
tion indicators, proposed EJADE-D also provides the best result. And the best RMSE value obtained
by different algorithms and its corresponding parameter values are reported in Table 12. In addition,
from Figure 11(a), it can be obviously observed that the simulated data obtained by EJADE-D agree
well with the measured data, which also reflects the accuracy of the extracted parameter values in this
model. Besides, the current absolute value error of EJADE-D fluctuates less than other algorithms
shown as Figure 11(b).

Table 11. Statistical results on the STP6-120/36.

Algorithm RMSE

Best Worst Mean Std

DE 2.2855E-02 2.4084E-01 5.7271E-02 5.53E-02
JADE 3.2110E-02 2.5739E-01 4.8897E-02 3.97E-02
EJADE 1.6601E-02 4.0248E-02 1.7799E-02 4.27E-03
EJADE-D 1.6601E-02 1.6601E-02 1.6601E-02 1.55E-16

Table 12. The best results obtained by compared algorithms on the STP6-120/36.

Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

DE 7.48185880 6.48830083 0.00406738 1124.25574692 1.35185994 2.2855E-02
JADE 7.48402233 1.15549180 0.00369744 1359.20725027 1.41018636 3.2110E-02
EJADE 7.47249358 2.33478056 0.00459468 22.26217949 1.26009565 1.6601E-02
EJADE-D 7.47252992 2.33499494 0.00459463 22.21989617 1.26010347 1.6601E-02

Figure 12 gives the convergence curves obtained by different methods on the STP6-120/36, where
it is evident that EJADE-D also has the fastest convergence speed, about NFE = 2000. Similar to the
previous three models, DE and JADE can not converge to the best RMSE value (1.6602E-02) until all
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Figure 11. Comparisons between the measured current data and simulated current data on
the STP6-120/36.

function evaluations have been consumed.

5.4. Comparisons between EJADE-D and other reported well-establish methods

Based on above, the efficiency of proposed EJADE-D has been verified. In this section, in or-
der to further illustrate the superiority of the EJADE-D algorithm, the result of EJADE-D has been
compared with other reported well-established algorithms. Note that these algorithms are chosen
because they have achieved better results and are recently proposed. These compared algorithms
are generalized oppositional TLBO (GOTLBO) [47], self-adaptive TLBO (SATLBO) [33], improved
JAYA (IJAYA) [45], hybrid TLBO and ABC (TLABC) [48], multiple learning BSA (MLBSA) [29],
hybrid DE and WOA (DE/WOA) [59], opposition-based WOA (OBWOA) [27], improved TLBO
(ITLBO) [34], performance-guided JAYA (PGJAYA) [22], hybrid BH and CS (BHCS) [38], flexible
PSO (FPSO) [60], improved Lozi map based COA (ILCOA) [61], BSA with reusing differential vectors
(BSARDVs) [30], enhanced Lévy flight bat algorithm (ELBA) [62], either-or TLBO (ELTLBO) [63],
comprehensive learning JAYA (CLJAYA) [4], BSA with competitive learning (CBSA) [64], hybrid
adaptive TLBO and DE (ATLDE) [39], enhanced JAYA (EJAYA) [23], improved gaining-sharing
knowledge algorithm (IGSK) [65], enhanced adaptive butterfly optimization algorithm (EABOA) [66],
shuffled frog leaping with memory pool (SFLBS) [67], reinforcement learning-based DE (RLDE) [68],
chaotic WOA (CWOA) [26], modified simplified swarm optimization (MSSO) [32], improved WOA
(IWOA) [40], hybrid FA and PS (HFAPS) [35], similarity-guided DE (SGDE) [24], classified pertur-
bation mutation PSO (CPMPSO) [20], niche-based PSO with parallel computing (NPSOPC) [21]. The
comparison results on different PV models are reported in Tables 13–16. Note that “NA” in these tables
means that the result is not available in the reported literature. From the results, it can be observed that:

• For the single diode model, most reported algorithms can achieve the best RMSE value (9.8602E-
04). However, for the Worst, Mean, and Std, only DE/WOA, ITLBO, BHCS, ELBA, EOTLBO,
ATLDE, EJAYA, IGSK, RLDE, and EJADE-D are able to obtain the best result. Besides, from the
perspective of the computing resources consumed, it is straightforward to see that the proposed
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Figure 12. Convergence curves on the STP6-120/36.

Table 13. EJADE-D compared with other reported methods on statistical results for the
single diode model.

learning BSA (MLBSA) [31], hybrid DE and WOA (DE/WOA) [46], opposition-based WOA (OBWOA) [38], im-292

proved TLBO (ITLBO) [42], performance-guided JAYA (PGJAYA) [29], hybrid BH and CS (BHCS) [35], flexible293

PSO (FPSO) [19], improved Lozi map based COA (ILCOA) [53], BSA with reusing differential vectors (BSARD-294

Vs) [32], enhanced Lévy flight bat algorithm (ELBA) [54], either-or TLBO (ELTLBO) [55], comprehensive learning295

JAYA (CLJAYA) [2], BSA with competitive learning (CBSA) [33], hybrid adaptive TLBO and DE (ATLDE) [47],296

enhanced JAYA (EJAYA) [30], improved gaining-sharing knowledge algorithm (IGSK) [56], enhanced adaptive but-297

terfly optimization algorithm (EABOA) [57], shuffled frog leaping with memory pool (SFLBS) [58], reinforcement298

learning-based DE (RLDE) [26], chaotic WOA (CWOA) [36], modified simplified swarm optimization (MSSO) [39],299

improved WOA (IWOA) [37], hybrid FA and PS (HFAPS) [43], similarity-guided DE (SGDE) [24], classified pertur-300

bation mutation PSO (CPMPSO) [20], niche-based PSO with parallel computing (NPSOPC) [21]. The comparison301

results on different PV models are reported in Tables 12-15. Note that the NA in these tables means that the result is302

not available in the reported literature. From these Tables, it can be observed that:303

Table 12: EJADE-D compared with other reported methods on statistical results for the single diode model.
Algorithm RMSE NFEs

Best Worst Mean Std

GOTLBO (2016) 9.8744E-04 1.9824E-03 1.3349E-03 2.09E-04 10,000
SATLBO (2017) 9.8602E-04 9.9494E-03 9.8780E-04 2.30E-06 50,000
IJAYA (2017) 9.8603E-04 1.0622E-03 9.9204E-04 1.40E-05 50,000
TLABC (2018) 9.8602E-04 1.0397E-03 9.9852E-04 1.86E-05 50,000
MLBSA (2018) 9.8602E-04 9.8602E-04 9.8602E-04 9.15E-12 50,000
DE/WOA (2018) 9.8602E-04 9.8602E-04 9.8602E-04 3.55E-17 50,000
OBWOA (2018) 9.8602E-04 NA 9.8603E-03 1.02E-08 1,500,000
ITLBO (2019) 9.8602E-04 9.8602E-04 9.8602E-04 2.19E-17 50,000
PGJAYA (2019) 9.8602E-04 9.8603E-04 9.8602E-04 1.45E-09 50,000
BHCS (2019) 9.8602E-04 9.8602E-04 9.8602E-04 2.61E-17 50,000
FPSO (2019) 9.8602E-04 NA NA NA NA
ILCOA (2019) 9.8602E-04 NA NA 1.01E-08 10,000*NP
BSARDVs (2020) 9.8602E-04 NA NA NA 25,000
ELBA (2020) 9.8602E-04 9.8602E-04 9.8602E-04 1.97E-17 50,000
EOTLBO (2020) 9.8602E-04 9.8602E-04 9.8602E-04 4.13E-17 20,000
CLJAYA (2020) 9.8602E-04 NA NA NA 20,000
CBSA (2020) 9.8602E-04 NA NA NA 25,000
IEO (2020) 9.8602E-04 NA NA NA 1,500,000
ATLDE (2020) 9.8602E-04 9.8602E-04 9.8602E-04 2.44E-17 30,000
EJAYA (2021) 9.8602E-04 9.8602E-04 9.8602E-04 6.80E-17 30,000
IGSK (2021) 9.8602E-04 9.8602E-04 9.8602E-04 3.58E-17 10,000
EABOA (2021) 9.8602E-04 9.8784E-04 9.8678E-04 9.30E-07 50,000
SFLBS (2021) 9.8602E-04 9.8602E-04 9.8602E-04 1.43E-14 60,000
RLDE (2021) 9.8602E-04 9.8602E-04 9.8602E-04 3.48E-17 30,000
EJADE-D 9.8602E-04 9.8602E-04 9.8602E-04 3.67E-17 2,000

• For the single diode model, most reported algorithms can achieve the best RMSE value (9.8602E-04). Howev-304

er, for the Worst, Mean, and Std, only DE/WOA, ITLBO, BHCS, ELBA, EOTLBO, ATLDE, EJAYA, IGSK,305

RLDE, and EJADE-D are able to obtain the best result. Besides, from the perspective of the computing re-306

sources consumed, it is straightforward to see that the proposed EJADE-D only consumes 2,000 objective307

function evaluations, while 10,000 for IGSK, 20,000 for EOTLBO, 30,000 for ATLDE, EJAYA, and RLDE,308

50,000 for DE/WOA, ITLBO, BHCS, and ELBA.309

• For the double diode model, it is clear that DE/WOA, ITLBO, BSARDVs, ELBA, EOTLBO, CBSA, IEO,310

ATLDE, EJAYA, IGSK, and RLDE obtain the same RMSE value (9.8248E-04). Different from the single311

diode model, in this model, only proposed EJADE-D can provide the best result on the Worst, Mean, and Std312

metrics, which shows that EJADE-D has great advantages in accuracy and reliability on this model. In addition,313

EJADE-D also consumes the fewest NFEs, using only 4,000.314

• For the single based PV model, almost all recently proposed algorithms can provide the best RMSE values,315

i.e., 1.7298E-03 for STM6-40/36 and 1.6601E-02 for STP6-120/36. Moreover, except the BHCS and IEO,316

the proposed EJADE-D and other algorithms can obtain a very good statistical results. However, EJADE-D317

consumes less computing resources, only 3,000 NFEs for the STM6-40/36 and 7,000 NFEs for the STP6-318

120/36.319

16

Mathematical Biosciences and Engineering Volume 18, Issue 6, 7363–7388.



7381

Table 14. EJADE-D compared with other reported methods on statistical results for the
double diode model.

Table 13: EJADE-D compared with other reported methods on statistical results for the double diode model.
Algorithm RMSE NFEs

Best Worst Mean Std

GOTLBO (2016) 9.8318E-04 1.7877E-03 1.2436E-03 2.09E-04 20,000
SATLBO (2017) 9.8280E-04 1.0470E-03 9.9811E-04 1.95E-05 50,000
IJAYA (2017) 9.8293E-04 1.4055E-03 1.0269E-03 9.83E-05 50,000
TLABC (2018) 9.8415E-04 1.5048E-03 1.0555E-03 1.55E-04 50,000
MLBSA (2018) 9.8249E-04 9.8798E-04 9.8518E-04 1.35E-06 50,000
DE/WOA (2018) 9.8248E-04 9.8604E-04 9.8297E-04 9.15E-07 50,000
OBWOA (2018) 9.8251E-04 NA 9.8294E-04 1.13E-07 1,500,000
PGJAYA (2019) 9.8263E-04 9.9499E-04 9.8582E-04 2.54E-06 50,000
BHCS (2019) 9.8249E-04 9.8687E-04 9.8380E-04 1.54E-06 50,000
FPSO (2019) 9.8253E-04 NA NA NA NA
ILCOA (2019) 8.8257E-04 NA NA 6.25E-07 10,000*NP
ITLBO (2019) 9.8248E-04 9.8812E-04 9.8497E-04 1.54E-06 50,000
BSARDVs (2020) 9.8248E-04 NA NA NA 45,000
ELBA (2020) 9.8248E-04 9.8615E-04 9.8349E-04 1.43E-06 50,000
EOTLBO (2020) 9.8248E-04 9.8942E-04 9.8473E-04 1.69E-06 20,000
CLJAYA (2020) 9.8249E-04 NA NA NA 48,000
CBSA (2020) 9.8248E-04 NA NA NA 50,000
IEO (2020) 9.8248E-04 NA NA NA 1,500,000
ATLDE (2020) 9.8248E-04 9.8603E-04 9.8372E-04 1.37E-06 30,000
EJAYA (2021) 9.8248E-04 9.8602E-04 9.8448E-04 1.51E-06 30,000
IGSK (2021) 9.8248E-04 9.8602E-04 9.8273E-04 8.96E-07 20,000
EABOA (2021) 9.8607E-04 1.0012E-03 9.9190E-04 6.62E-06 50,000
SFLBS (2021) 9.8249E-04 9.8787E-04 9.8541E-04 1.79E-06 60,000
RLDE (2021) 9.8248E-04 9.8695E-04 9.8457E-04 1.75E-06 30,000
EJADE-D 9.8248E-04 9.8248E-04 9.8248E-04 5.50E-17 4,000

Table 14: EJADE-D compared with other reported methods on statistical results for the the STM6-40/36.
Algorithm RMSE NFEs

Best Worst Mean Std

BHCS (2019) 1.7298E-03 3.3299E-03 1.8365E-03 4.06E-04 50,000
ITLBO (2019) 1.7298E-03 1.7298E-03 1.7298E-03 4.75E-18 50,000
ELBA (2020) 1.7298E-03 1.7298E-03 1.7298E-03 6.16E-18 50,000
IEO (2020) 1.7298E-03 NA NA NA 1,500,000
ATLDE (2020) 1.7298E-03 1.7298E-03 1.7298E-03 8.22E-18 30,000
EJAYA (2021) 1.7298E-03 1.7298E-03 1.7298E-03 1.47E-17 30,000
IGSK (2021) 1.7298E-03 1.7298E-03 1.7298E-03 7.02E-18 15,000
RLDE (2021) 1.7298E-03 1.7298E-03 1.7298E-03 1.58E-17 30,000
EJADE-D 1.7298E-03 1.7298E-03 1.7298E-03 9.85E-18 3,000

Table 15: EJADE-D compared with other reported methods on statistical results for the STP6-120/36.
Algorithm RMSE NFEs

Best Worst Mean Std

BHCS (2019) 1.6601E-02 1.3482E-01 2.4360E-02 2.61E-02 50,000
ITLBO (2019) 1.6601E-02 1.6601E-02 1.6601E-02 7.22E-17 50,000
IEO (2020) 1.6601E-02 NA NA NA 1,500,000
ATLDE (2020) 1.6601E-02 1.6601E-02 1.6601E-02 1.02E-16 30,000
EJAYA (2021) 1.6601E-02 1.6601E-02 1.6601E-02 2.68E-16 30,000
IGSK (2021) 1.6601E-02 1.6601E-02 1.6601E-02 1.71E-16 15,000
RLDE (2021) 1.6601E-02 1.6601E-02 1.6601E-02 1.98E-16 30,000
EJADE-D 1.6601E-02 1.6601E-02 1.6601E-02 1.55E-16 7,000
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Table 17. The best results obtained by reported algorithms for the single diode model.

In summary, the EJADE-D algorithm proposed in this paper can provide better, or at least comparably results,320

in terms of the accuracy and reliability of the extracted parameter values when compared with most reported well-321

established parameter extraction algorithms. However, it is worthwhile to mention that among all the compared322

algorithms, only the proposed EJADE-D uses the least computational resources. In addition, the best RMSE value323

obtained by different compared algorithms and its corresponding parameter values on different PV models are reported324

in Tables 16-19, which makes it easier for researchers to find some relevant extracted parameters data.325

Table 16: The best results obtained by reported algorithms for the single diode model.
Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

GOTLBO (2016) 0.7608 0.3316 0.0363 54.1154 1.4838 9.8744E-04
IJAYA (2017) 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603E-04
SATLBO (2017) 0.7608 0.3232 0.0363 53.7256 1.4812 9.8602E-04
CWOA (2017) 0.76077 0.3239 0.03636 53.7987 1.4812 9.8602E-04
MSSO (2017) 0.760777 0.323564 0.036370 53.742465 1.481244 9.8607E-04
IWOA (2018) 0.7608 0.3232 0.0364 53.7317 1.4812 9.8602E-04
HFAPS (2018) 0.760777 0.322622 0.0363819 53.6784 1.48106 9.8602E-04
TLABC (2018) 0.76078 0.32302 0.03638 53.71636 1.48118 9.8602E-04
MLBSA (2018) 0.7608 0.32302 0.0364 53.7185 1.4812 9.8602E-04
DE/WOA (2018) 0.760776 0.323021 0.036377 53.718524 1.481184 9.8602E-04
OBWOA (2018) 0.76077 0. 3232 0. 0363 53.6836 1.5208 9.8602E-04
PGJAYA (2019) 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04
BHCS (2019) 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04
FPSO (2019) 0.76077552 0.323020 0.036370 53.718520 1.48110817 9.8602E-04
ILCOA (2019) 0.760775 0.323021 0.036377 53.718679 1.481108 9.8602E-04
ITLBO (2019) 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04
BSARDVs (2020) 0.760776 0.323021 0.036377 53.718520 1.481184 9.8602E-04
ELBA (2020) 0.760776 0.323021 0.036377 53.718523 1.481185 9.8602E-04
EOTLBO (2020) 0.76077553 0.32302083 0.03637709 53.71852514 1.48118359 9.8602E-04
SGDE (2020) 0.76078 0.32302 0.036377 53.71853 1.481184 9.8602E-04
CLJAYA (2020) 0.76078 0.3230208 0.0363771 53.718521 1.481184 9.8602E-04
CPMPSO (2020) 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602E-04
NPSOPC (2020) 0.7608 0.3325 0.03639 53.7583 1.4814 9.8856E-04
CBSA (2020) 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602E-04
LFBSA (2020) 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602E-04
IEO (2020) 0.760775529 0.323 0.036377 53.71852 1.481183 9.8602E-04
ATLDE (2020) 0.76077553 0.32302082 0.03637712 53.71852699 1.48118359 9.8602E-04
EJAYA (2021) 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04
IGSK (2021) 0.76077553 0.323 0.036377093 53.71852532 1.481183592 9.8602E-04
EABOA (2021) 0.760771077 0.322929 0.036379593 53.76600144 1.481153457 9.8602E-04
SFLBS (2021) 0.76078 0.323021 0.03638 53.7185 1.481184 9.8602E-04
RLDE (2021) 0.7608 0.3231 0.0364 53.7185 1.4812 9.8602E-04
EJADE-D 0.76077553 0.32302079 0.03637709 53.71852020 1.48118359 9.8602E-04

6. Conclusions326

In order to use less computing resources to accurately and reliably extract unknown parameters in PV models, in327

this paper, an advanced differential evolution with search space decomposition (EJADE-D) is developed. In EJADE-D,328

the search space decomposition technique is proposed to reduce the dimension of the PV models parameter extraction329

problem. Benefit from this technique, the advanced adaptive differential evolution is employed as a solver. The330

proposed EJADE-D has been used to extract the unknown parameters of different PV models. Experimental results331

achieved by EJADE-D are firstly compared with DE, JADE, and EJADE, and the comparison results demonstrate the332

superiority of the EJADE-D. In addition, many recently reported well-established parameter extraction algorithms are333

selected for comparison. When compared with these advanced algorithms, proposed EJADE-D can not only obtain334

accurate and reliable results, especially for the double diode model, but also consume the least computing resources.335

Therefore, it can be leveraged as a accurate and reliable alternative to extracting the unknown parameters in PV336

models.337

In future works, we intended to applied the proposed search space decomposition technique for more complex338

optimization such as optimal power flow [59] and nonlinear equations [60].339
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EJADE-D only consumes 2000 objective function evaluations, while 10,000 for IGSK, 20,000
for EOTLBO, 30,000 for ATLDE, EJAYA, and RLDE, 50,000 for DE/WOA, ITLBO, BHCS, and
ELBA.

• For the double diode model, it is clear that DE/WOA, ITLBO, BSARDVs, ELBA, EOTLBO,
CBSA, IEO, ATLDE, EJAYA, IGSK, and RLDE provide the same RMSE value (9.8248E-04).
Unlike the single diode model, in this model, only proposed EJADE-D can achieve the best result
in terms of the Worst, Mean, and Std metrics, which shows that EJADE-D has great advantages
in accuracy and reliability on this model. In addition, EJADE-D also consumes the fewest NFEs,
using only 4000.

• For the single based PV model, almost all recently proposed algorithms can get the best RMSE
values, i.e., 1.7298E-03 for STM6-40/36 and 1.6601E-02 for STP6-120/36. Moreover, except the
BHCS and IEO, the proposed EJADE-D and other algorithms can obtain a very good statistical
results. However, EJADE-D consumes less computing resources, only 3000 NFEs for the STM6-
40/36 and 7000 NFEs for the STP6-120/36.

In summary, the EJADE-D algorithm proposed in this paper can provide better, or at least compa-
rably results, in terms of the accuracy and reliability of the extracted parameter values when compared
with most reported well-established parameter extraction algorithms. However, it is worthwhile to
mention that among all the compared algorithms, only the proposed EJADE-D uses the least computa-
tional resources. In addition, the best RMSE value obtained by different compared algorithms and its
corresponding parameter values on different PV models are reported in Tables 17–20, which makes it
easier for researchers to find some relevant extracted parameters data.
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Table 18. The best results obtained by reported algorithms for the double diode model.
Table 17: The best results obtained by reported algorithms for the double diode model.

Algorithm Ipv (A) Isd1 (µA) Rs (Ω) Rp (Ω) n1 Isd2 (µA) n2 RMSE

GOTLBO (2016) 0.7608 0.8002 0.0368 56.0753 2 0.2205 1.4490 9.8318E-04
IJAYA (2017) 0.7601 0.0050445 0.0376 77.8519 1.2186 0.75904 1.6247 9.8293E-04
SATLBO (2017) 0.7608 0.2509 0.0366 55.1170 1.4598 0.5454 1.9994 9.8280E-04
CWOA (2017) 0.76077 0.24150 0.03666 55.20160 1.45651 0.60000 1.98990 9.8272E-04
MSSO (2017) 0.760748 0.234925 0.036688 55.714662 1.454255 0.671593 1.995305 9.8281E-04
IWOA (2018) 0.7608 0.6771 0.0367 55.4082 2 0.2355 1.4545 9.8255E-04
HFAPS (2018) 0.760781 0.225974 0.0367404 55.4855 1.45101 0.7493580 2.000000 9.8248E-04
TLABC (2018) 0.76081 0.42394 0.03667 54.66797 1.90750 0.24011 1.45671 9.8415E-04
MLBSA (2018) 0.7608 0.22728 0.0670 55.4612 1.4515 0.73835 2.0000 9.8249E-04
DE/WOA (2018) 0.760781 0.225974 0.036740 55.485437 1.451017 0.749346 2.000000 9.8248E-04
OBWOA (2018) 0.76076 0.22990 0.03671 55.3990 1.49154 0.61956 2.000000 9.8251E-04
PGJAYA (2019) 0.7608 0.21031 0.0368 55.8135 1.4450 0.88534 2.0000 9.8263E-04
BHCS (2019) 0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 9.8249E-04
FPSO (2019) 0.76078 0.22731 0.036737 55.39230 1.45160 0.72786 1.99969 9.8253E-04
ILCOA (2019) 0.76078 0.22601 0.036739 55.5320 1.45101 0.74921 2.00000 9.8257E-04
ITLBO (2019) 0.7608 0.2260 0.0367 55.4854 1.4510 0.7493 2.0000 9.8248E-04
SGDE (2020) 0.76079 0.28070 0.036480 54.3667 1.46966 0.24996 1.93228 9.8441E-04
BSARDVs (2020) 0.760781 0.225808 0.036741 55.4878 1.45096 0.750861 2 9.8248E-04
ELBA (2020) 0.760781 0.749338 0.03674 55.48544 2 0.225975 1.451018 9.8248E-04
EOTLBO (2020) 0.76078108 0.22597468 0.03674043 55.48543568 1.45101692 0.74934431 2 9.8248E-04
CLJAYA (2020) 0.76078 0.226051 0.03674 55.48599 1.45105 0.74876 1.99999 9.8249E-04
CPMPSO (2020) 0.76078 0.74935 0.03674 55.48544 2 0.22597 1.45102 9.8248E-04
NPSOPC (2020) 0.76078 0.25093 0.03663 55.117 1.45982 0.545418 1.99941 9.8208E-04
CBSA (2020) 0.76078 0.2259739 0.03674 55.48544 1.451017 0.74935 2 9.8248E-04
LFBSA (2020) 0.760781 0.225974 0.03674 55.48543 1.451017 0.749345 2 9.8249E-04
IEO (2020) 0.760781 0.749 0.03674 55.48544 1.451016 0.226 1.999999 9.8248E-04
ATLDE (2020) 0.76078108 0.22597412 0.03674043 55.48544744 1.45101671 0.74934885 2.00000000 9.8248E-04
EJAYA (2021) 0.76078 0.22597 0.03674 55.48509 1.45102 0.74934 2 9.8248E-04
IGSK (2021) 0.760781079 0.7493 0.036740429 55.48543425 2 0.226 1.451016893 9.8248E-04
EABOA (2021) 0.76082865 0.25072 0.0366266 55.3660129 1.45988481 0.72069 1.99997318 9.8607E-04
SFLBS (2021) 0.76077 0.775995 0.036755 55.5496 2 1.449857 9.8249E-04
RLDE (2021) 0.7608 0.226 0.0367 55.4847 2 0.7492 1.451 9.8248E-04
EJADE-D 0.76078108 0.22597441 0.03674043 55.48543767 1.45101682 0.74934630 2.00000000 9.8248E-04

Table 18: The best results obtained by reported algorithms for the STM6-40/36.
Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

CWOA (2017) 1.7 1.6338 0.0050 15.4 1.5 1.8000E-03
HFAPS (2018) 1.6663 1.0703 0.24849 490.03 53.016 1.9700E-03
OBWOA (2018) 1.6642 1.65025 0.0044 15.5299 1.51424 1.7530E-03
BHCS (2019) 1.66390 1.73866 0.00427 15.92829 1.52030 1.7298E-03
FPSO (2019) 1.2323 7.4732 0.0049 9.6889 1.2086 1.3000E-03
ILCOA (2019) 1.2001 7.4812 0.0049 9.6991 1.2067 1.6932E-02
ITLBO (2019) 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298E-03
ELBA (2020) 1.663905 1.738657 0.004274 15.928294 1.520305 1.7298E-03
IEO (2020) 1.663904802 1.74 0.004274 15.92827 1.520303 1.7298E-03
ATLDE (2020) 1.66390478 1.73865697 0.00427377 15.92829439 1.52030293 1.7298E-03
EJAYA (2021) 1.6639 1.73866 0.00427 15.92829 1.5203 1.7298E-03
IGSK (2021) 1.663904777 1.7387 0.004273771 15.92829435 1.520302921 1.7298E-03
RLDE (2021) 1.6639 1.7387 0.00427 15.9283 1.5203 1.7298E-03
EJADE-D 1.66390478 1.73865681 0.00427377 15.92829378 1.52030292 1.7298E-03

Table 19: The best results obtained by reported algorithms for the STP6-120/36.
Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

CWOA (2017) 7.4760 1.2 0.00000490 9.7942 1.2069 1.7601E-02
ITLBO (2019) 7.4725 2.335 0.0046 22.2199 1.2601 1.6601E-02
BHCS (2019) 7.47253 2.33499 0.00459 22.21990 1.26010 1.6601E-02
IEO (2020) 7.472531264 2.23 0.004595 22.21679 1.260101 1.6601E-02
ATLDE (2020) 7.47252992 2.33499485 0.00459463 22.21989607 1.26010347 1.6601E-02
EJAYA (2021) 7.47253 2.33499 0.00459 22.21989 1.2601 1.6601E-02
IGSK (2021) 7.47252992 2.335 0.004594635 22.21989406 1.260103467 1.6601E-02
RLDE (2021) 7.4725 2.335 0.0046 22.2199 1.2601 1.6601E-02
EJADE-D 7.47252992 2.33499494 0.00459463 22.21989617 1.26010347 1.6601E-02
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Table 17: The best results obtained by reported algorithms for the double diode model.
Algorithm Ipv (A) Isd1 (µA) Rs (Ω) Rp (Ω) n1 Isd2 (µA) n2 RMSE

GOTLBO (2016) 0.7608 0.8002 0.0368 56.0753 2 0.2205 1.4490 9.8318E-04
IJAYA (2017) 0.7601 0.0050445 0.0376 77.8519 1.2186 0.75904 1.6247 9.8293E-04
SATLBO (2017) 0.7608 0.2509 0.0366 55.1170 1.4598 0.5454 1.9994 9.8280E-04
CWOA (2017) 0.76077 0.24150 0.03666 55.20160 1.45651 0.60000 1.98990 9.8272E-04
MSSO (2017) 0.760748 0.234925 0.036688 55.714662 1.454255 0.671593 1.995305 9.8281E-04
IWOA (2018) 0.7608 0.6771 0.0367 55.4082 2 0.2355 1.4545 9.8255E-04
HFAPS (2018) 0.760781 0.225974 0.0367404 55.4855 1.45101 0.7493580 2.000000 9.8248E-04
TLABC (2018) 0.76081 0.42394 0.03667 54.66797 1.90750 0.24011 1.45671 9.8415E-04
MLBSA (2018) 0.7608 0.22728 0.0670 55.4612 1.4515 0.73835 2.0000 9.8249E-04
DE/WOA (2018) 0.760781 0.225974 0.036740 55.485437 1.451017 0.749346 2.000000 9.8248E-04
OBWOA (2018) 0.76076 0.22990 0.03671 55.3990 1.49154 0.61956 2.000000 9.8251E-04
PGJAYA (2019) 0.7608 0.21031 0.0368 55.8135 1.4450 0.88534 2.0000 9.8263E-04
BHCS (2019) 0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 9.8249E-04
FPSO (2019) 0.76078 0.22731 0.036737 55.39230 1.45160 0.72786 1.99969 9.8253E-04
ILCOA (2019) 0.76078 0.22601 0.036739 55.5320 1.45101 0.74921 2.00000 9.8257E-04
ITLBO (2019) 0.7608 0.2260 0.0367 55.4854 1.4510 0.7493 2.0000 9.8248E-04
SGDE (2020) 0.76079 0.28070 0.036480 54.3667 1.46966 0.24996 1.93228 9.8441E-04
BSARDVs (2020) 0.760781 0.225808 0.036741 55.4878 1.45096 0.750861 2 9.8248E-04
ELBA (2020) 0.760781 0.749338 0.03674 55.48544 2 0.225975 1.451018 9.8248E-04
EOTLBO (2020) 0.76078108 0.22597468 0.03674043 55.48543568 1.45101692 0.74934431 2 9.8248E-04
CLJAYA (2020) 0.76078 0.226051 0.03674 55.48599 1.45105 0.74876 1.99999 9.8249E-04
CPMPSO (2020) 0.76078 0.74935 0.03674 55.48544 2 0.22597 1.45102 9.8248E-04
NPSOPC (2020) 0.76078 0.25093 0.03663 55.117 1.45982 0.545418 1.99941 9.8208E-04
CBSA (2020) 0.76078 0.2259739 0.03674 55.48544 1.451017 0.74935 2 9.8248E-04
LFBSA (2020) 0.760781 0.225974 0.03674 55.48543 1.451017 0.749345 2 9.8249E-04
IEO (2020) 0.760781 0.749 0.03674 55.48544 1.451016 0.226 1.999999 9.8248E-04
ATLDE (2020) 0.76078108 0.22597412 0.03674043 55.48544744 1.45101671 0.74934885 2.00000000 9.8248E-04
EJAYA (2021) 0.76078 0.22597 0.03674 55.48509 1.45102 0.74934 2 9.8248E-04
IGSK (2021) 0.760781079 0.7493 0.036740429 55.48543425 2 0.226 1.451016893 9.8248E-04
EABOA (2021) 0.76082865 0.25072 0.0366266 55.3660129 1.45988481 0.72069 1.99997318 9.8607E-04
SFLBS (2021) 0.76077 0.775995 0.036755 55.5496 2 1.449857 9.8249E-04
RLDE (2021) 0.7608 0.226 0.0367 55.4847 2 0.7492 1.451 9.8248E-04
EJADE-D 0.76078108 0.22597441 0.03674043 55.48543767 1.45101682 0.74934630 2.00000000 9.8248E-04

Table 18: The best results obtained by reported algorithms for the STM6-40/36.
Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

CWOA (2017) 1.7 1.6338 0.0050 15.4 1.5 1.8000E-03
HFAPS (2018) 1.6663 1.0703 0.24849 490.03 53.016 1.9700E-03
OBWOA (2018) 1.6642 1.65025 0.0044 15.5299 1.51424 1.7530E-03
BHCS (2019) 1.66390 1.73866 0.00427 15.92829 1.52030 1.7298E-03
FPSO (2019) 1.2323 7.4732 0.0049 9.6889 1.2086 1.3000E-03
ILCOA (2019) 1.2001 7.4812 0.0049 9.6991 1.2067 1.6932E-02
ITLBO (2019) 1.6639 1.7387 0.0043 15.9283 1.5203 1.7298E-03
ELBA (2020) 1.663905 1.738657 0.004274 15.928294 1.520305 1.7298E-03
IEO (2020) 1.663904802 1.74 0.004274 15.92827 1.520303 1.7298E-03
ATLDE (2020) 1.66390478 1.73865697 0.00427377 15.92829439 1.52030293 1.7298E-03
EJAYA (2021) 1.6639 1.73866 0.00427 15.92829 1.5203 1.7298E-03
IGSK (2021) 1.663904777 1.7387 0.004273771 15.92829435 1.520302921 1.7298E-03
RLDE (2021) 1.6639 1.7387 0.00427 15.9283 1.5203 1.7298E-03
EJADE-D 1.66390478 1.73865681 0.00427377 15.92829378 1.52030292 1.7298E-03

Table 19: The best results obtained by reported algorithms for the STP6-120/36.
Algorithm Ipv (A) Isd (µA) Rs (Ω) Rp (Ω) n RMSE

CWOA (2017) 7.4760 1.2 0.00000490 9.7942 1.2069 1.7601E-02
ITLBO (2019) 7.4725 2.335 0.0046 22.2199 1.2601 1.6601E-02
BHCS (2019) 7.47253 2.33499 0.00459 22.21990 1.26010 1.6601E-02
IEO (2020) 7.472531264 2.23 0.004595 22.21679 1.260101 1.6601E-02
ATLDE (2020) 7.47252992 2.33499485 0.00459463 22.21989607 1.26010347 1.6601E-02
EJAYA (2021) 7.47253 2.33499 0.00459 22.21989 1.2601 1.6601E-02
IGSK (2021) 7.47252992 2.335 0.004594635 22.21989406 1.260103467 1.6601E-02
RLDE (2021) 7.4725 2.335 0.0046 22.2199 1.2601 1.6601E-02
EJADE-D 7.47252992 2.33499494 0.00459463 22.21989617 1.26010347 1.6601E-02

19

Table 20. The best results obtained by reported algorithms for the STP6-120/36.

Table 17: The best results obtained by reported algorithms for the double diode model.
Algorithm Ipv (A) Isd1 (µA) Rs (Ω) Rp (Ω) n1 Isd2 (µA) n2 RMSE
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SATLBO (2017) 0.7608 0.2509 0.0366 55.1170 1.4598 0.5454 1.9994 9.8280E-04
CWOA (2017) 0.76077 0.24150 0.03666 55.20160 1.45651 0.60000 1.98990 9.8272E-04
MSSO (2017) 0.760748 0.234925 0.036688 55.714662 1.454255 0.671593 1.995305 9.8281E-04
IWOA (2018) 0.7608 0.6771 0.0367 55.4082 2 0.2355 1.4545 9.8255E-04
HFAPS (2018) 0.760781 0.225974 0.0367404 55.4855 1.45101 0.7493580 2.000000 9.8248E-04
TLABC (2018) 0.76081 0.42394 0.03667 54.66797 1.90750 0.24011 1.45671 9.8415E-04
MLBSA (2018) 0.7608 0.22728 0.0670 55.4612 1.4515 0.73835 2.0000 9.8249E-04
DE/WOA (2018) 0.760781 0.225974 0.036740 55.485437 1.451017 0.749346 2.000000 9.8248E-04
OBWOA (2018) 0.76076 0.22990 0.03671 55.3990 1.49154 0.61956 2.000000 9.8251E-04
PGJAYA (2019) 0.7608 0.21031 0.0368 55.8135 1.4450 0.88534 2.0000 9.8263E-04
BHCS (2019) 0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 9.8249E-04
FPSO (2019) 0.76078 0.22731 0.036737 55.39230 1.45160 0.72786 1.99969 9.8253E-04
ILCOA (2019) 0.76078 0.22601 0.036739 55.5320 1.45101 0.74921 2.00000 9.8257E-04
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LFBSA (2020) 0.760781 0.225974 0.03674 55.48543 1.451017 0.749345 2 9.8249E-04
IEO (2020) 0.760781 0.749 0.03674 55.48544 1.451016 0.226 1.999999 9.8248E-04
ATLDE (2020) 0.76078108 0.22597412 0.03674043 55.48544744 1.45101671 0.74934885 2.00000000 9.8248E-04
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6. Conclusions

In order to use less computing resources to accurately and reliably extract unknown parameters in
PV models, in this paper, an advanced differential evolution with search space decomposition (EJADE-
D) is developed. In EJADE-D, the search space decomposition technique is proposed to reduce the
dimension of the PV models parameter extraction problem. Benefit from this technique, the advanced
adaptive differential evolution is employed as a solver. The proposed EJADE-D has been used to extract
the unknown parameters of different PV models. Experimental results achieved by EJADE-D are firstly
compared with DE, JADE, and EJADE, and the comparison results demonstrate the superiority of the
EJADE-D. In addition, many recently reported well-established parameter extraction algorithms are
selected for comparison. When compared with these advanced algorithms, proposed EJADE-D can
not only obtain accurate and reliable results, especially for the double diode model, but also consume
the least computing resources. Therefore, it can be leveraged as an effective approach to extracting the
unknown parameters in PV models.

In future works, we will use the proposed search space decomposition technique for more complex
optimization, such as pollution isolation [69], supplier selection [70], nonlinear equations [71].
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