Citation: Ying Sun, Wei Du, Lili Yang, Min Dai, Ziying Dou, Yuxiang Wang, Jining Liu, Gang Zheng. Computational methods for recognition of cancer protein markers in saliva[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2453-2469. doi: 10.3934/mbe.2020134
[1] | Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350 |
[2] | Yang Gao, Qingzhong Ji . On the inverse stability of zn+c. Electronic Research Archive, 2025, 33(3): 1414-1428. doi: 10.3934/era.2025066 |
[3] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[4] | Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071 |
[5] |
Jorge Garcia Villeda .
A computable formula for the class number of the imaginary quadratic field |
[6] | Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220 |
[7] | Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064 |
[8] | Hai-Liang Wu, Li-Yuan Wang . Permutations involving squares in finite fields. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106 |
[9] | Li Rui, Nilanjan Bag . Fourth power mean values of one kind special Kloosterman's sum. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326 |
[10] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
Let Fq be the finite field of q elements with characteristic p, where q=pr, p is a prime number. Let F∗q=Fq∖{0} and Z+ denote the set of positive integers. Let s∈Z+ and b∈Fq. Let f(x1,…,xs) be a diagonal polynomial over Fq of the following form
f(x1,…,xs)=a1xm11+a2xm22+⋯+asxmss, |
where ai∈F∗q, mi∈Z+, i=1,…,s. Denote by Nq(f=b) the number of Fq-rational points on the affine hypersurface f=b, namely,
Nq(f=b)=#{(x1,…,xs)∈As(Fq)∣f(x1,…,xs)=b}. |
In 1949, Hua and Vandiver [1] and Weil [2] independently obtained the formula of Nq(f=b) in terms of character sum as follows
Nq(f=b)=qs−1+∑ψ1(a−11)⋯ψs(a−ss)J0q(ψ1,…,ψs), | (1.1) |
where the sum is taken over all s multiplicative characters of Fq that satisfy ψmii=ε, ψi≠ε, i=1,…,s and ψ1⋯ψs=ε. Here ε is the trivial multiplicative character of Fq, and J0q(ψ1,…,ψs) is the Jacobi sum over Fq defined by
J0q(ψ1,…,ψs)=∑c1+⋯+cs=0,ci∈Fqψ1(c1)⋯ψs(cs). |
Though the explicit formula for Nq(f=b) are difficult to obtain in general, it has been studied extensively because of their theoretical importance as well as their applications in cryptology and coding theory; see[3,4,5,6,7,8,9]. In this paper, we use the Jacobi sums, Gauss sums and the results of quadratic form to deduce the formula of the number of Fq2-rational points on a class of hypersurfaces over Fq2 under certain conditions. The main result of this paper can be stated as
Theorem 1.1. Let q=2r with r∈Z+ and Fq2 be the finite field of q2 elements. Let f(X)=a1xm11+a2xm22+⋯+asxmss, g(Y)=y1y2+y3y4+⋯+yn−1yn+y2n−2t−1+… +y2n−3+y2n−1+bty2n−2t+⋯+b1y2n−2+b0y2n, and l(X,Y)=f(X)+g(Y), where ai,bj∈F∗q2, mi≠1, (mi,mk)=1, i≠k, mi|(q+1), mi∈Z+, 2|n, n>2, 0≤t≤n2−2, TrFq2/F2(bj)=1 for i,k=1,…,s and j=0,1,…,t. For h∈Fq2, we have
(1) If h=0, then
Nq2(l(X,Y)=0)=q2(s+n−1)+∑γ∈F∗q2(s∏i=1((γai)mimi−1)(qs+2n−3+(−1)tqs+n−3)). |
(2) If h∈F∗q2, then
Nq2(l(X,Y)=h)=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑γ∈F∗q2∖{h}[s∏i=1((γai)mimi−1)(q2n+s−3+(−1)tqn+s−3)]. |
Here,
(γai)mi={1,ifγaiisaresidueofordermi,0,otherwise. |
To prove Theorem 1.1, we need the lemmas and theorems below which are related to the Jacobi sums and Gauss sums.
Definition 2.1. Let χ be an additive character and ψ a multiplicative character of Fq. The Gauss sum Gq(ψ,χ) in Fq is defined by
Gq(ψ,χ)=∑x∈F∗qψ(x)χ(x). |
In particular, if χ is the canonical additive character, i.e., χ(x)=e2πiTrFq/Fp(x)/p where TrFq/Fp(y)=y+yp+⋯+ypr−1 is the absolute trace of y from Fq to Fp, we simply write Gq(ψ):=Gq(ψ,χ).
Let ψ be a multiplicative character of Fq which is defined for all nonzero elements of Fq. We extend the definition of ψ by setting ψ(0)=0 if ψ≠ε and ε(0)=1.
Definition 2.2. Let ψ1,…,ψs be s multiplicative characters of Fq. Then, Jq(ψ1,…,ψs) is the Jacobi sum over Fq defined by
Jq(ψ1,…,ψs)=∑c1+⋯+cs=1,ci∈Fqψ1(c1)⋯ψs(cs). |
The Jacobi sums Jq(ψ1,…,ψs) as well as the sums J0q(ψ1,…,ψs) can be evaluated easily in case some of the multiplicative characters ψi are trivial.
Lemma 2.3. ([10,Theorem 5.19,p. 206]) If the multiplicative characters ψ1,…,ψs of Fq are trivial, then
Jq(ψ1,…,ψs)=J0q(ψ1,…,ψs)=qs−1. |
If some, but not all, of the ψi are trivial, then
Jq(ψ1,…,ψs)=J0q(ψ1,…,ψs)=0. |
Lemma 2.4. ([10,Theorem 5.20,p. 206]) If ψ1,…,ψs are multiplicative characters of Fq with ψs nontrivial, then
J0q(ψ1,…,ψs)=0 |
if ψ1⋯ψs is nontrivial and
J0q(ψ1,…,ψs)=ψs(−1)(q−1)Jq(ψ1,…,ψs−1) |
if ψ1⋯ψs is trivial.
If all ψi are nontrivial, there exists an important connection between Jacobi sums and Gauss sums.
Lemma 2.5. ([10,Theorem 5.21,p. 207]) If ψ1,…,ψs are nontrivial multiplicative characters of Fq and χ is a nontrivial additive character of Fq, then
Jq(ψ1,…,ψs)=Gq(ψ1,χ)⋯Gq(ψs,χ)Gq(ψ1⋯ψs,χ) |
if ψ1⋯ψs is nontrivial and
Jq(ψ1,…,ψs)=−ψs(−1)Jq(ψ1,…,ψs−1)=−1qGq(ψ1,χ)⋯Gq(ψs,χ) |
if ψ1⋯ψs is trivial.
We turn to another special formula for Gauss sums which applies to a wider range of multiplicative characters but needs a restriction on the underlying field.
Lemma 2.6. ([10,Theorem 5.16,p. 202]) Let q be a prime power, let ψ be a nontrivial multiplicative character of Fq2 of order m dividing q+1. Then
Gq2(ψ)={q,ifmoddorq+1meven,−q,ifmevenandq+1modd. |
For h∈Fq2, define v(h)=−1 if h∈F∗q2 and v(0)=q2−1. The property of the function v(h) will be used in the later proofs.
Lemma 2.7. ([10,Lemma 6.23,p. 281]) For any finite field Fq, we have
∑c∈Fqv(c)=0, |
for any b∈Fq,
∑c1+⋯+cm=bv(c1)⋯v(ck)={0,1⩽k<m,v(b)qm−1,k=m, |
where the sum is over all c1,…,cm∈Fq with c1+⋯+cm=b.
The quadratic forms have been studied intensively. A quadratic form f in n indeterminates is called nondegenerate if f is not equivalent to a quadratic form in fewer than n indeterminates. For any finite field Fq, two quadratic forms f and g over Fq are called equivalent if f can be transformed into g by means of a nonsingular linear substitution of indeterminates.
Lemma 2.8. ([10,Theorem 6.30,p. 287]) Let f∈Fq[x1,…,xn], q even, be a nondegenerate quadratic form. If n is even, then f is either equivalent to
x1x2+x3x4+⋯+xn−1xn |
or to a quadratic form of the type
x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n, |
where a∈Fq satisfies TrFq/Fp(a)=1.
Lemma 2.9. ([10,Corollary 3.79,p. 127]) Let a∈Fq and let p be the characteristic of Fq, the trinomial xp−x−a is irreducible in Fq if and only if TrFq/Fp(a)≠0.
Lemma 2.10. ([10,Lemma 6.31,p. 288]) For even q, let a∈Fq with TrFq/Fp(a)=1 and b∈Fq. Then
Nq(x21+x1x2+ax22=b)=q−v(b). |
Lemma 2.11. ([10,Theorem 6.32,p. 288]) Let Fq be a finite field with q even and let b∈Fq. Then for even n, the number of solutions of the equation
x1x2+x3x4+⋯+xn−1xn=b |
in Fnq is qn−1+v(b)q(n−2)/2. For even n and a∈Fq with TrFq/Fp(a)=1, the number of solutions of the equation
x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n=b |
in Fnq is qn−1−v(b)q(n−2)/2.
Lemma 2.12. Let q=2r and h∈Fq2. Let g(Y)∈Fq2[y1,y2,…,yn] be a polynomial of the form
g(Y)=y1y2+y3y4+⋯+yn−1yn+y2n−2t−1+⋯+y2n−3+y2n−1+bty2n−2t+⋯+b1y2n−2+b0y2n, |
where bj∈F∗q2, 2|n, n>2, 0≤t≤n2−2, TrFq2/F2(bj)=1, j=0,1,…,t. Then
Nq2(g(Y)=h)=q2(n−1)+(−1)t+1qn−2v(h). | (2.1) |
Proof. We provide two proofs here. The first proof is as follows. Let q1=q2. Then by Lemmas 2.7 and 2.10, the number of solutions of g(Y)=h in Fq2 can be deduced as
Nq2(g(Y)=h)=∑c1+c2+⋯+ct+2=hNq2(y1y2+y3y4+⋯+yn−2t−3yn−2t−2=c1)⋅Nq2(yn−2t−1yn−2t+y2n−2t−1+bty2n−2t=c2)⋯Nq2(yn−1yn+y2n−1+b0y2n=ct+2)=∑c1+c2+⋯+ct+2=h(qn−2t−31+v(c1)q(n−2t−4)/21)(q1−v(c2))⋯(q1−v(ct+2))=∑c1+c2+⋯+ct+2=h(qn−2t−21+v(c1)q(n−2t−2)/21−v(c2)qn−2t−31−v(c1)v(c2)q(n−2t−4)/21)⋅(q1−v(c3))⋯(q1−v(ct+2))=∑c1+c2+⋯+ct+2=h(qn−t−21+v(c1)q(n−2)/21−v(c2)qn−t−31+⋯+(−1)t+1v(c1)v(c2)⋯v(ct+2)q(n−2t−4)/21)=qn−11+q(n−2)/21∑c1∈Fq2v(c1)+⋯+(−1)t+1∑c1+c2+⋯+ct+2=hv(c1)v(c2)⋯v(ct+2)q(n−2t−4)/21. | (2.2) |
By Lamma 2.7 and (2.2), we have
Nq2(g(Y)=h)=qn−11+(−1)t+1v(h)q(n−2)/21=q2(n−1)+(−1)t+1v(h)qn−2. |
Next we give the second proof. Note that if f and g are equivalent, then for any b∈Fq2 the equation f(x1,…,xn)=b and g(x1,…,xn)=b have the same number of solutions in Fq2. So we can get the number of solutions of g(Y)=h for h∈Fq2 by means of a nonsingular linear substitution of indeterminates.
Let k(X)∈Fq2[x1,x2,x3,x4] and k(X)=x1x2+x21+Ax22+x3x4+x23+Bx24, where TrFq2/F2(A)=TrFq2/F2(B)=1. We first show that k(x) is equivalent to x1x2+x3x4.
Let x3=y1+y3 and xi=yi for i≠3, then k(X) is equivalent to y1y2+y1y4+y3y4+Ay22+y23+By24.
Let y2=z2+z4 and yi=zi for i≠2, then k(X) is equivalent to z1z2+z3z4+Az22+z23+Az24+Bz24.
Let z1=α1+Aα2 and zi=αi for i≠1, then k(X) is equivalent to α1α2+α23+α3α4+(A+B)α24.
Since TrFq2/F2(A+B)=0, we have α23+α3α4+(A+B)α24 is reducible by Lemma 2.9. Then k(X) is equivalent to x1x2+x3x4. It follows that if t is odd, then g(Y) is equivalent to x1x2+x3x4+⋯+xn−1xn, and if t is even, then g(Y) is equivalent to x1x2+x3x4+⋯+xn−1xn+x2n−1+ax2n with TrFq2/F2(a)=1. By Lemma 2.11, we get the desired result.
From (1.1), we know that the formula for the number of solutions of f(X)=0 over Fq2 is
Nq2(f(X)=0)=q2(s−1)+d1−1∑j1=1⋯ds−1∑js=1¯ψj11(a1)⋯¯ψjss(as)J0q2(ψj11,…,ψjss), |
where di=(mi,q2−1) and ψi is a multiplicative character of Fq2 of order di. Since mi|q+1, we have di=mi. Let H={(j1,…,js)∣1≤ji<mi, 1≤i≤s}. It follows that ψj11⋯ψjss is nontrivial for any (j1,…,js)∈H as (mi,mj)=1. By Lemma 2, we have J0q2(ψj11,…,ψjss)=0 and hence Nq2(f(X)=0)=q2(s−1).
Let Nq2(f(X)=c) denote the number of solutions of the equation f(X)=c over Fq2 with c∈F∗q2. Let V={(j1,…,js)|0≤ji<mi,1≤i≤s}. Then
Nq2(f(X)=c)=∑γ1+⋯+γs=cNq2(a1xm11=γ1)⋯Nq2(asxmss=γs)=∑γ1+⋯+γs=cm1−1∑j1=0ψj11(γ1a1)⋯ms−1∑js=0ψjss(γsas). |
Since ψi is a multiplicative character of Fq2 of order mi, we have
Nq2(f(X)=c)=∑γ1c+⋯+γsc=1∑(j1,…,js)∈Vψj11(γ1c)ψj11(ca1)⋯ψjss(γsc)ψjss(cas)=∑(j1,…,js)∈Vψj11(ca1)⋯ψjss(cas)∑γ1c+⋯+γsc=1ψj11(γ1c)⋯ψjss(γsc)=∑(j1,…,js)∈Vψj11(ca1)⋯ψjss(cas)Jq2(ψj11,…,ψjss). |
By Lemma 2.3,
Nq2(f(X)=c)=q2(s−1)+∑(j1,…,js)∈Hψj11(ca1)⋯ψjss(cas)Jq2(ψj11,…,ψjss). |
By Lemma 2.5,
Jq2(ψj11,…,ψjss)=Gq2(ψj11)⋯Gq2(ψjss)Gq2(ψj11⋯ψjss). |
Since mi|q+1 and 2∤mi, by Lemma 2.6, we have
Gq2(ψj11)=⋯=Gq2(ψjss)=Gq2(ψj11⋯ψjss)=q. |
Then
Nq2(f(X)=c)=q2(s−1)+qs−1m1−1∑j1=1ψj11(ca1)…ms−1∑js=1ψjss(cas)=q2(s−1)+qs−1(m1−1∑j1=0ψj11(ca1)−1)⋯(ms−1∑js=0ψjss(cas)−1). |
It follows that
Nq2(f(X)=c)=q2(s−1)+qs−1s∏i=1((cai)mimi−1), | (3.1) |
where
(cai)mi={1,ifcai is a residue of ordermi,0,otherwise. |
For a given h∈Fq2. We discuss the two cases according to whether h is zero or not.
Case 1: h=0. If f(X)=0, then g(Y)=0; if f(X)≠0, then g(Y)≠0. Then
Nq2(l(X,Y)=0)=∑c1+c2=0Nq2(f(X)=c1)Nq2(g(Y)=c2)=q2(s−1)(q2(n−1)+(−1)t+1(q2−1)qn−2)+∑c1+c2=0c1,c2∈F∗q2Nq2(f(X)=c1)Nq2(g(Y)=c2). | (3.2) |
By Lemma 2.12, (3.1) and (3.2), we have
Nq2(l(X,Y)=0)=q2(s+n−2)+(−1)t+1q2(s−1)+hn−(−1)t+1q2(s−2)+n+∑c1∈F∗q2[q2(s+n−2)−(−1)t+1q2(s−2)+n+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−2)+(−1)t+1q2(s−1)+n−(−1)t+1q2(s−2)+n+q2(s+n−1)−(−1)t+1q2(s−1)+n−q2(s+n−2)+(−1)t+1q2(s−2)+n+∑c1∈F∗q2[s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−1)+∑c1∈F∗q2[s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]. | (3.3) |
Case 2: h∈F∗q2. If f(X)=h, then g(Y)=0; if f(X)=0, then g(Y)=h; if f(X)∉{0,h}, then g(Y)∉{0,h}. So we have
Nq2(l(X,Y))=h)=∑c1+c2=hNq2(f(X)=c1)Nq2(g(Y)=c2)=Nq2(f(X)=0)Nq2(g(Y)=h)+Nq2(f(X)=h)Nq2(g(Y)=0)+∑c1+c2=hc1,c2∈F∗q2∖{h}Nq2(f(X)=c1)Nq2(g(Y)=c2). | (3.4) |
By Lemma 2.12, (3.1) and (3.4),
Nq2(l(X,Y)=h)=2q2(s+n−2)+(−1)t+1q2s+n−2−(−1)t+12q2s+n−4+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[q2(s+n−2)−(−1)t+1q2s+n−4+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]. |
It follows that
Nq2(l(X,Y)=h)=2q2(s+n−2)+(−1)t+1q2s+n−2−(−1)t+12q2s+n−4+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[q2(s+n−2)−(−1)t+1q2s+n−4+s∏i=1((c1ai)mimi−1)(q2n+s−3−(−1)t+1qn+s−3)]=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1((hai)mimi−1)+∑c1∈F∗q2∖{h}[s∏i=1((c1ai)mimi−1)⋅(q2n+s−3+(−1)tqn+s−3)]. | (3.5) |
By (3.3) and (3.5), we get the desired result. The proof of Theorem 1.1 is complete.
There is a direct corollary of Theorem 1.1 and we omit its proof.
Corollary 4.1. Under the conditions of Theorem 1.1, if a1=⋯=as=h∈F∗q2, then we have
Nq2(l(X,Y)=h)=q2(s+n−1)+(qs+2n−3+(−1)t+1(q2−1)qs+n−3)s∏i=1(mi−1)+∑γ∈F∗q2∖{h}[s∏i=1((γh)mimi−1)(q2n+s−3+(−1)tqn+s−3)], |
where
(γh)mi={1,ifγhisaresidueofordermi,0,otherwise. |
Finally, we give two examples to conclude the paper.
Example 4.2. Let F210=⟨α⟩=F2[x]/(x10+x3+1) where α is a root of x10+x3+1. Suppose l(X,Y)=α33x31+x112+y23+α10y24+y1y2+y3y4. Clearly, TrF210/F2(α10)=1, m1=3, m2=11, s=2, n=4, t=0, a2=1. By Theorem 1.1, we have
N210(l(X,Y)=0)=10245+(327+323)×20=1126587102265344. |
Example 4.3. Let F212=⟨β⟩=F2[x]/(x12+x6+x4+x+1) where β is a root of x12+x6+x4+x+1. Suppose l(X,Y)=x51+x132+y23+β10y24+y1y2+y3y4. Clearly, TrF212/F2(β10)=1, m1=5, m2=13, s=2, n=4, t=0, a1=a2=1. By Corollary 1, we have
N212(l(X,Y)=1)=25×12+(647−643×4095)×48=1153132559312355328. |
This work was jointly supported by the Natural Science Foundation of Fujian Province, China under Grant No. 2022J02046, Fujian Key Laboratory of Granular Computing and Applications (Minnan Normal University), Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics.
The authors declare there is no conflicts of interest.
[1] | R. Ruddon, Cancer Biology, Oxford University Press, 2007. |
[2] | Y. Wang, S. Liang, Y. Tian, J. Zhao, W. Du, Y. Liang, et al., Using machine learning to measure relatedness between genes: a multi-features model, Sci. Rep., 9 (2019), 1-15. |
[3] | S. Liang, A. Ma, S. Yang, Y. Wang, Q. Ma, A review of Matched-pairs feature selection methods for gene expression data analysis, Comput. Structur. Biotechnol. J., 16 (2018), 88-97. |
[4] | A.W. Partin, J. Yoo, H. B. Carter, J. D. Pearson, D. W. Chan, J. I. Epstein, et al., The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer, J. Urol., 150 (1993), 110-114. |
[5] | M. Hollstein, D. Sidransky, B. Vogelstein, C. C. Harris, P53 mutations in human cancers, J. Sci., 253 (1991), 49-53. |
[6] | K. E. Stuart, A. J. Anand, R. L. Jenkins, Hepatocellular carcinoma in the United States: prognostic features, treatment outcome, and survival, Cancer Interdiscipl. Int. J. Am. Cancer Soc., 77 (1996), 2217-2222. |
[7] | P. Kuusela, C. Haglund, P. J. Roberts, Comparison of a new tumour marker CA 242 with CA 199, CA 50 and carcinoembryonic antigen (CEA) in digestive tract diseases, British J. Cancer, 63 (1991), 636-640. |
[8] | J. Schneider, H. G. Velcovsky, H. Morr, N. Katz, K. Neu, E. Eigenbrodt, Comparison of the tumor markers tumor M2-PK, CEA, CYFRA 21-1, NSE and SCC in the diagnosis of lung cancer, Anticancer Res., 20 (2000), 5053-5058. |
[9] | L. A. Cole, J. M. Sutton, Selecting an appropriate hCG test for managing gestational trophoblastic disease and cancer, J. Reproduct. Med., 49 (2004), 545-553. |
[10] | J. A. Ludwig, J. N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection, Nat. Rev. Cancer, 5(2005), 845-856. |
[11] | G. J. Rustin, M. Marples, A. E. Nelstrop, M. Mahmoudi, T. Meyer, Use of CA-125 to define progression of ovarian cancer in patients with persistently elevated levels, J. Clin. Oncol., 19 (2001), 4054-4057. |
[12] | H. Zheng, R. C. Luo, Diagnostic value of combined detection of TPS, CA153 and CEA in breast cancer, J. First Milit. Med. Univers., 25 (2003), 1293. |
[13] | H. Q. Zhang, R. B.Wang, H. J. Yan, W. Zhao, K. L. Zhu, S. M. Jiang, et al., Prognostic significance of CYFRA21-1, CEA and hemoglobin in patients with esophageal squamous cancer undergoing concurrent chemoradiotherapy, Asian Pacific J. Cancer Prevent., 13 (2012), 199-203. |
[14] | A. Hsu, S. L. Tang, S. Halgamuge, An unsupervised hierarchical dynamic self-organising approach to cancer class discovery and marker gene identification in microarray data, Bioinformatics, 19 (2003), 2131-2140. |
[15] | J. J. Liu, G. Cutler, W. Li, Z. Pan, S. Peng, T. Hoey, et al., Multiclass cancer classification and biomarker discovery using GA-based algorithms, Bioinformatics, 21 (2005), 2691-2697. |
[16] | B. J. Beattie, P. N. Robinson, Binary state pattern clustering: A digital paradigm for class and biomarker discovery in gene microarray studies of cancer, J. Comput. Biol., 13 (2006), 1114-1130. |
[17] | C. Harris, N. Ghaffari, Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning, BMC Genomics, 9(2008), S7. |
[18] | T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, Y. Saeys, Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, Bioinformatics, 26 (2010), 392-398. |
[19] | L. Chen, J. Xuan, C. Wang, I. M. Shih, Y. Wang, Z. Zhang, et al., Knowledge-guided multi-scale independent component analysis for biomarker identification, BMC Bioinformatics, 9 (2008), 416. |
[20] | J. Cui, Q. Liu, D. Puett, Y. Xu, Computational prediction of human proteins that can be secreted into the bloodstrea, Bioinformatics, 24 (2008), 2370-2375. |
[21] | J. Cui, Y. Chen, W. C. Chou, L. Sun, L. Chen, J. Suo, et al., An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer, Nucleic Acids Res., 39 (2011),1197-1207. |
[22] | C. S. Hong, J. Cui, Z. Ni, Y. Su, D. Puett, F. Li, et al., A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine, PloS One, 6 (2011), e16875. |
[23] | J. Wang, Y. Liang, Y. Wang, J. Cui, M. Liu, W. Du, et al., Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification, PloS One, 8 (2013), e80211. |
[24] | Y. Sun, W. Du, C. Zhou, Y. Zhou, Z. Cao, Y. Tian, et al., A Computational Method for Prediction of Saliva-Secretory Proteins and its Application to Identification of Head and Neck Cancer Biomarkers for Salivary Diagnosis, IEEE Transact. Nanobiosci., 14 (2015),167-174. |
[25] | A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, A support vector method for clustering, Adv. Neural Inform. Process. Syst., 13 (2001), 367-373. |
[26] | Y. Chen, Y. Zhang, Y. Yin, G. Gao, S. Li, Y. Jiang, et al., SPD-a web-based secreted protein database, Nucleic Acids Res., 33 (2005), D169-D173. |
[27] | J. Sprenger, J. Lynn Fink, S. Karunaratne, K. Hanson, N. A. Hamilton, R. D. Teasdale, LOCATE: A mammalian protein subcellular localization database, Nucleic Acids Res., 36 (2007), D230-D233. |
[28] | M. Magrane, Uniprot knowledgebase: A hub of integrated protein data, Database, 2011 (2011). |
[29] | S. J. Li, M. Peng, H. Li, B. S. Liu, C. Wang, J. R. Wu, et al., Sys-bodyfluid: A systematical database for human body fluid proteome research, Nucleic Acids Res., 37 (2009), 907-912. |
[30] | S. Hu, J. A. Loo, D. T. Wong, Human saliva proteome analysis and disease biomarker discovery, Expert Rev. Proteom., 4 (2007), 531-538. |
[31] | P. Denny, F. K. Hagen, M. Hardt, L. Liao, W. Yan, M. Arellanno, et al., The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions, J. Proteom. Res., 7 (2008), 1994-2006. |
[32] | S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, et al., The Pfam protein families database in 2019, Nucleic Acids Res., 47 (2019), D427-D432. |