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Abstract: In recent years, many studies have supported that cancer tissues can make disease-specific 

changes in some salivary proteins through some mediators in the pathogenesis of systemic diseases. 

These salivary proteins have the potential to become cancer-specific biomarkers in the early diagnosis 

stage. How to effectively identify these potential markers is one of the challenging issues. In this paper, 

we propose novel machine learning methods for recognition cancer biomarkers in saliva by two stages. 

In the first stage, salivary secreted proteins are recognized which are considered as candidate biomarkers 

of cancers. We picked up 557 salivary secretory proteins from 20379 human proteins by public 

databases and published literatures. Then, we present a training set construction strategy to solve the 

imbalance problem in order to make the classification methods get better accuracy. From all human 

protein set, the proteins belonging to the same families as salivary secretory proteins are removed. After 

that, we use SVC-KM method to cluster the remaining proteins, and select negative samples from each 

cluster in proportion. Next, the features of proteins are calculated by tools. We collect 24 protein 

properties such as sequence, structure and physicochemical properties, a total of 1087 features. An 

innovative procedure based on the local samples is proposed for selecting the appropriate features, in 

order to further improve the performance of SVM classifier. Experimental results show that the average 

sensitivity, specificity and accuracy of salivary secretory protein recognition using selected 32 features 
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in training set are 97.09%, 98.10%, 97.61%, respectively. The use of these methods can improve the 

accuracy of recognition by solving the problems of unbalanced sample size and uneven distribution in 

training set. In the second stage, we apply the best model to dig out the salivary secreted proteins from 

58 reported cancer markers, and get a total of 42 proteins which are considered to be used for salivary 

diagnosis. We analyze the gene expression data of three types of cancer, and predict that 33 genes will 

appear in saliva after they are translated into proteins. This study provides an important computational 

tool to help biologists and researchers reduce the number of candidate proteins and the cost of research. 

So as to further accelerate the discovery of cancer biomarkers in saliva and promote the development 

of saliva diagnosis. 

 

Keywords: salivary secretory protein; cancer biomarker; feature selection based on local samples; 

SVC-KM; computational methods 

 

1. Introduction  

In many cases, the diagnosis can only be made when the cancer cells metastasize to the 

surrounding tissues or when the whole body deteriorates [1]. At this moment, the traditional treatment 

methods for most patients are invalid. Some advanced diagnostic methods such as X-ray fluoroscopy 

and clinical biopsy of early thoracic cancers have improved the diagnostic ability of cancers. However, 

they can’t meet the needs of early detection of cancer due to the lack of obvious specific symptoms in 

the early stage of cancer. Early diagnosis of cancer is of great importance for cancer control and 

prevention. Now it is generally believed that the occurrence and development of cancer is related to 

gene mutation [2,3], so molecular level detection method can detect the existence of cancer earlier. 

Cancer biomarkers are substances produced directly by tumor cells or by non-tumor cells induced by 

tumor cells. The detection of cancer biomarkers can judge the diagnosis, pathogenesis and prognosis 

of tumor.  

Up to now, there are a lot of cancer markers in tissue samples, both in types and quantity, but they 

are not suitable for diagnosis of cancer. Some cancer markers in the blood have been used in the early 

diagnosis of cancer. Through the blood samples of physical examination, patients with early cancer 

can be found. There are four main types of cancer marker in body fluids: carcinoembryonic antigen 

(PSA [4], p53 [5], AFP [6], CEA [7]), enzymes (NSE [8]), hormones (in situ hormones, ectopic 

hormone HCG [9]), and glycoproteins. Most of them are secreted proteins which can appear in various 

body fluids, such as blood, saliva, urine, milk, sweat, etc. So far, most of the early marker studies 

focused on serum markers [10]. The main blood cancer markers provided by Chinese physical 

examination centers include: detection of alpha-fetoprotein (AFP), detection of carcinoembryonic 

antigen (CEA), ovarian cancer marker carcinoma(CA-125) [11], detection of breast cancer marker 

carcinoma (CA-153) [12], detection of non-small cell lung cancer and other cancers marker cytokeratin 

(CYFRA21-1) [13] and so on. The cancer markers are not lacking, however the sensitivity and 

specificity of a single marker is often not high enough to reach the clinical requirements. In theory and 

practice, simultaneous determination of multiple markers is advocated to improve sensitivity and 

specificity. Therefore, many researchers use machine learning algorithms to analyze human omics data, 

so as to find a combination of markers that can be used for specific cancer diagnosis. Around 2013, 

research on identifying cancer markers by computational methods reached its peak. A series of 
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biomarkers are selected by supervised or unsupervised computing methods based on transcriptome, 

proteomic data of genes and microRNAs. They can distinguish normal samples from cancer samples 

very efficiently. The algorithms include unsupervised dynamic hierarchical self -organization 

algorithm [14], a hybrid method combining genetic algorithms and SVM [15], binary state pattern 

clustering model [16], semi-supervised genetic learning model [17], general feature selection 

algorithm are based on linear support vector machine and reverse elimination method [18], knowledge-

guided multi-scale independent component analysis method [19]. 

However, due to the strict conditions of blood collection, the collection process will bring pain to 

patients. These markers are not suitable for the observation of the development and prognosis of cancer, 

especially the follow-up observation after taking medicine. In recent years, saliva diagnosis has 

gradually attracted the attention of researchers and medical practitioners. Compared with serum samples, 

saliva collection is safe, convenient, non-invasive, without the risk of blood-borne disease transmission, 

painless and easy to accept. Compared with urine samples, saliva has the advantage of real-time 

sampling. Saliva detection has aroused great interest, and some preliminary results have been achieved. 

Many studies have supported that in the pathogenesis of systemic diseases, cancer tissues can make 

disease-specific changes in some salivary proteins through some mediators. These salivary proteins 

have the potential to become disease-specific biomarkers. How to effectively identify these potential 

markers is one of the challenging issues.  

We insist that not all proteins are likely to be cancer markers in body fluids. So far, most of the 

cancer markers in body fluids are secreted proteins. This is related to the way they enter the body fluids. 

Therefore, we will search for cancer markers in body fluids in two steps. The first step is to identify 

candidate set of cancer biomarkers. The second step is to establish a model to predict which biomarkers 

in candidate set can enter the body fluid. Previous studies have shown that this method is effective. Cui 

et al. [20] first proposed the use of computational methods to predict proteins secreted by humans into 

the blood. They identified 85 features related to the process of protein secretion into the blood from 

1521 protein features. These features are used to train the support vector machine, and good 

classification results are obtained. This study was subsequently applied to the identification of 

biomarkers for gastric cancer [21]. Firstly, differentially expressed genes in cancer tissues and adjacent 

tissues were identified by gene expression data. Then, the proteins encoded by these genes were 

classified by classifier. Finally, five proteins in blood were found as blood biomarkers for gastric cancer 

detection by mass spectrometry. Hong et al. [22] used a similar calculation method to predict the 

secreted proteins in urine. They found 18 valid features, combined with gene expression data, and 

obtained six candidate proteins for urinary biomarkers of gastric cancer, five of which were detected 

by Western blot. Wang et al. [23] predicted the source of salivary protein, and combined with the gene 

expression data of breast cancer, 31 candidate salivary protein markers were predicted. We proposed a 

framework for recognition of salivary secretory proteins [24], and achieved good results in the 

identification of markers of head and neck squamous cell carcinoma. 

The main difficulties of these studies are as follows: Firstly, positive samples in training set can 

be obtained through literature collection, while negative samples are relatively difficult to select. 

Whether the negative samples are representative or not affects the recognition accuracy of the model. 

Secondly, the proteins in training set are also different. Although these proteins can be detected in the 

body fluid, the mechanism of their entry into the body fluid is not identical. They may be distributed 

far from each other in the classification space, which further restricts the accuracy of model prediction. 

In order to solve these problems, an improved recognition framework is proposed in this paper. 
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Firstly, the essential information of human proteins, including UniProt id, sequence information, 

structure information, physical and chemical properties, are widely collected as the features to classify 

proteins. Then, through literature search, the secretory proteins present in saliva are collected as 

positive samples in the training set. In order to overcome the class distribution imbalance problem, an 

improved support vector clustering method (SVC-KM) is used to help select non-salivary secretory 

protein samples. Finally, we use feature selection method based on local samples to select more 

effective features for classifier training. The new framework can solve the problem of unbalanced 

sample size and uneven distribution in training set in order to improve the accuracy of recognition.  

The rest of this paper is organized as follows: Section 2 presents our proposed method for salivary 

secretory proteins recognition. The section starts with an overview of the framework followed by the 

training set construction method using SVC-KM. A feature selection method based on local samples 

integrating SVM classifier is discussed, which makes two-class decisions for salivary secretory 

proteins recognition. Section 3 introduces the collection procedure of proteins and their properties. 

Section 4 discusses our experimental results. Section 5 concludes this paper with a summary of 

our work. 

2. Salivary secretory proteins recognition model 

2.1. Framework of the proposed method 

 

Figure 1. Flow chart of recognition and application of salivary secretory proteins. 
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Recognition of cancer biomarkers in saliva can be divided into two steps. The first step is to 

identify candidate set of cancer biomarkers. The second step is to establish a model to predict which 

biomarkers in candidate set can appear in saliva. The first step has been fully studied, and a large number 

of literatures have reported the identification methods of cancer biomarkers. While the second step is 

rarely reported. Therefore, our research focuses on the implementation of the second step. The 

framework of our proposed method and its application are shown in Figure 1.  

As far as we know, most salivary protein markers enter saliva through autocrine and paracrine. 

Therefore, when construct the model to predict which biomarkers in candidate set can appear in saliva, 

we use the information of salivary proteome and secretory proteome to easily get the positive set of 

salivary secretory proteins. However, it is difficult to collect negative samples, owing to we are not 

sure which proteins must not appear in saliva. In the next, we will introduce our strategy to collect 

negative set samples, and the improvement of the feature selection method to solve uneven distribution 

in training set. 

2.2. Clustering method for construction of negative sample set 

As mentioned above, it is very difficult to collect negative samples. There are two common 

solutions. One is to construct a one-class classifier so that no negative samples need to be collected. 

The other is to try to collect more reasonable negative samples. The one-class classifier often requires 

a very large positive sample size, while secreted proteins have been reported to appear in saliva are 

obviously insufficient. Therefore, we attempt to solve this problem by the second way. 

In previous studies [24], we excluded proteins belonging to the same family as salivary secretory 

proteins from human proteins. The remaining proteins were randomly selected to form a negative 

sample set. This brings uncertainty to the model. It cannot guarantee that the selected proteins can well 

describe the distribution of negative sample sets. In this paper, we propose a clustering method to guide 

the selection of proteins in negative sample sets. 

In 2001, Ben-Hur et al. [25] proposed a kernel-based unsupervised clustering method, Support 

Vector Clustering (SVC). In this method, the sample points X are mapped from the sample space to 

the high-dimensional feature space by using the non-linear function   . In this feature space, a 

minimum hypersphere is found which can envelop all the sample points. The formulization is as the 

following equation: 

2
2 2min . . ( ) , 1, ,j jR s t R j N −  + =x a  (1)  

where (x )j is the image of the sample points in the feature space, 
2

  is the Euclidean distance, 

a  is the center of the hypersphere, R  is the radius of the minimum hypersphere, and  
j  is the 

relaxation variable. By transforming the objective function into a quadratic programming problem, the 

Eq.2 can be obtained: 
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where αi is a lagrange operator and C is a constant. Here, the inner product of the sample point 

images is represented by the Gauss kernel function: 

2
( )

( , ) ( ) ( ) i jq

i j i jK e
− −

=   =
x x

x x x x  (3)  

where q is the kernel width. The distance from the image of the sample to the center of the 

hypersphere in the feature space can be expressed as: 

22

,
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The quadratic programming problem solved by the original SVC algorithm can theoretically 

obtain the global optimal solution. But it runs very slowly. 

Therefore, we use SVC-KM algorithm to cluster proteins. The specific steps are as follows: 

(1) A sample set containing N sample points is set up, and the sample points are mapped into the 

high-dimensional space by using the non-linear transformation to find the smallest hypersphere that 

can envelop almost sample points. 

(2) The proteins outside the hypersphere are eliminated at this stage. K-means algorithm is used 

to classify the remaining proteins and adjust the value of k to obtain the optimal classification results. 

For previously eliminated proteins, assign them to the nearest cluster label. 

We extract proteins proportionally from the optimal classification results. Because the number of 

samples in each cluster is different, we choose samples with a certain probability according to formula 

5, which is related to the number of samples in the cluster. 

* 1,...,
j

j pos

negc

m
c N j K

N

 
= = 
  

 (5)  

where Npos represents the number of proteins in the salivary secretion protein set, mj represents 

the number of samples contained in the jth cluster, and Nnegc represents the candidate set of non 

salivary secretory proteins. There are K clusters in total. Finally, the number of proteins selected 

from the jth cluster is cj . The number of proteins selected in this way will be very close to the number 

of positive samples. 

2.3. Feature extraction and selection 

Feature selection method is a very important method in the field of machine learning. By selecting 

feature subset, we can improve the accuracy of the model, reduce the complexity of the model and the 

running time. Traditional methods are based on the samples in the whole training set to extract features, 

rarely considering the impact of abnormal samples and sample distribution. Among the problems to be 

solved in this paper, the unbalanced distribution of samples is a very prominent problem. The author 

proposes a method to improve the feature selection effect of filter by sample localization. For each test 
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sample, only the nearest sample is used for information feature selection. By using localized samples, 

the influence of abnormal samples and sample distribution on feature selection results can be 

effectively overcome. As an example, the flow chart of the algorithm is shown in Fig. 2 to find the 

nearest neighbor of a test sample in the positive sample set. 

 

Figure 2. Flow chart of local samples acquisition method for a test sample in positive set. 

In Figure 2, Pt represents a protein sample from the test set, Pj ( j = 1 ,…, n1 ) represents a protein 

sample from the positive set, fi represents a feature of the protein, and. By formula 6, the Euclidean 

distance between the test sample and the training sample can be calculated. 

2
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After obtaining the dist between the test sample and each training sample, we use an ascending 

numerical sort, stored in Rj. Similarly, for each training sample Pj, we can also get the ranking of Pt in 

Pj neighbors, stored in rj. Finally, we can get the comprehensive ranking according to the sum of the 

two rankings. 

According to above process, for each test sample, k nearest neighbors can be selected from each 

category to form the final training set. Generally, we use proportional parameter ratio instead of k. By 

adjusting ratio, we can get different number of local samples. After neighbors obtained, we use SVM 

method to classify the samples. 
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3. Data preparation 

3.1. Protein collection 

In order to collect salivary secretory proteins, we search for secretory proteins and salivary 

proteins in public databases and published literature respectively. The source and the number of 

corresponding proteins is detailed in Table 1. The two collections of proteins have 557 in common, 

which are used to form the positive sample set. 

Table 1. Sources and quantities of proteins collected [24]. 

Secretory proteins Num. Proteins in saliva Num. 

SPD [26] 2194 Sys-body Fluid [29] 2161 

LOCATE [27] 3376 Hu et al. [30] 331 

UniProt [28] 1847 Denny et al. [31] 1166 

Elimination duplicates 4312 Elimination duplicates 1987 

 

Since some databases are no longer maintained, the data in this table from our earlier paper [24]. 

At present, there is no clear report on non-salivary secretory proteins. Therefore, we use protein family 

information to construct negative sample set by exclusion method. Protein family domain database 

(Pfam) [32] is a widely used protein family database. In this database, proteins and protein families 

are many-to-many relationships, that is, a protein may belong to one or more protein families, a protein 

family contains several to hundreds of different proteins. How to select excellent representatives of 

non-salivary secretory proteins is a challenging problem. The selection method proposed in this paper 

is shown in Figure 3. We obtained all human proteins from the Uniprot database and their family 

information in the Pfam database, and screened them according to the following steps: (1) excluding 

salivary secretory proteins (dataset 1) from the human protein collection; (2) excluding all proteins 

(dataset 2) contained in the salivary secretory proteins family; (3) further excluding the proteins 

(dataset 3) in the protein families, which the dataset 2 proteins are belong to, that are not excluded 

before; (4) clustering the remain proteins by SVC-KM based on the collected features; (5) selecting 

non-salivary secretory proteins from each cluster by ratio. 

 

 

Figure 3. Sketch of negative sample set selection strategy. 
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3.2. Computation of protein properties 

We convert protein properties into data array representation, and each property may correspond 

to multiple values. Detailed properties list, dimension corresponding to properties and acquisition tools 

are detailed in Table 2.  

Table 2. List of proteins properties and tools. 

Type Name of the properties（Num. of the features） Tools 

General 

sequence 

features 

Sequence length (1), Fldbin 

Amino acid composition (20), 

Di-peptides composition (400), 

Normalized Moreau-Broto autocorrelation (90), 

Moran autocorrelation (90), 

Geary autocorrelation (90), 

Sequence order (160), 

Pseudo amino acid composition (80) 

Profeat 

Physicochemical 

properties 

Hydrophobicity (21), 

Normalized Van der Waals volume (21), 

Polarity (21), 

Polarizability (21), 

Charge (21), 

Secondary structure (21), 

Solvent accessibility (21), 

Profeat 

Unfoldability (1), 

Fldbin charge (1), 

Longest disordered regions (1), 

Isoelectric point (1), 

Molecular weight (1), 

Fldbin 

 

Domains/Motifs Log P BBTM/Non-BBTM protein ratio (1), 

Twin-arginine signal peptide (1), 

Transmembrane domains (1), 

Singal peptide (1) 

 

 

These properties can be classified into four types, including (1) sequence characteristic 

information, such as amino acid composition information; (2) domain properties, such as secondary 

structure information of proteins; (3) independent folding units and functional domains within the 

tertiary structure of proteins, such as transmembrane domain and signal peptide sequence; (4) 

physicochemical properties, such as polarity and hydrophobicity. There are 24 properties mentioned 

in Table 2, and after converting them into array representation by computational method, there are a 

total of 1087 features. 

4. Experiments results and discussion 

4.1. Negative sample set 
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The UniProt is the central for the collection of functional information on proteins, with accurate, 

consistent and rich annotation. In the latest version, there are a total of 20379 human proteins in Swiss-

Prot, which means that all records are with information extracted from literature and curator-evaluated 

computational analysis. As mentioned in section 3.2, 557 proteins were collected as positive samples 

in the training set. After the exclusion method, there are 4062 proteins left. Then, we use SVC-KM 

method to cluster these proteins into 24 clusters. From each cluster, we select about one-seventh of the 

samples size nearest to the center of the cluster and finally there are 579 proteins to form the negative 

sample set. 

4.2. Feature selection results based on local samples 

Direct use of all 1087 features of proteins to train classifiers is not very effective, because there 

are many problem-independent features and noises, which will affect the effectiveness of classifiers. 

Therefore, these feature elements are filtered by t-test method. The threshold of significance level is 

p-value <= 0.05, and 486 of 1087 feature are selected. Then, we use feature selection method based on 

local samples to select these 486 features. In order to ensure the number of local samples, the 

proportion ratio of local samples is defined as 1/4. Then, combined with t-test, all features are ranked 

according to the p value of the features. Finally, SVM is used to evaluate the results of feature selection. 

When the average accuracy reaches the maximum, the feature set is used to construct the final 

recognition model. Accuracy, sensitivity, and specificity are used to evaluate the effect of the model. 

The formulas are as follows: 

Accuracy
+

TP TN

TP TN FP FN

+
=

+ +
 (7)  

Sensitivity
TP

TP FN
=

+
 (8) 

Specificity
TN

TN FP
=

+
 (9) 

while, TP represents the number of the correctly recognized positive samples, TN represents the 

number of the correctly recognized negative samples, FP represents the number of negative samples 

recognized as positive samples, and FN represents the number of positive samples recognized as 

negative samples. 

For different feature combinations, we mainly use accuracy as the measurement standard. This 

process is based on the idea of SVM-RFE: we remove one feature from the feature set at a time, if and 

only if the removed feature set obtains the highest average accuracy. When the number of features 

reaches dozens, the average accuracy no longer changes significantly. When the number of features is 

less than 32, the average accuracy begins to decline. Therefore, we select 32 features to form the feature 

set of the model. When the accuracy of classifier reaches the maximum during the feature selection 

procedure based on local samples, there are 32 features as shown in Table 3. 

We train the SVM classifier with 1087 features, 486 features and 32 features respectively. 100 

times of 10-fold cross validation to test the effectiveness of classifier. The average sensitivity, 

specificity, and accuracy are shown in Table 4. 
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Table 3. List of selected protein features and properties. 

Features (Num. of Dimensions) 

Amino acid composition (2) 

transmembrane domain (1) 

Di-peptides composition (6) 

Moran autocorrelation (3) 

Sequence order (4) 

Secondary structure (3) 

normalized Van der Waals volume (1) 

Pseudo amino acid composition (5) 

Polarizability (3) 

Signal peptide (1) 

Polarity (1) 

Solvent accessibility (2) 

Table 4. Performance evaluation of classifier using different features. 

No. of features 
Average Sensitivity 

(%) 

Average Specificity 

(%) 
Average Accuracy (%) 

1087 64.73 72.71 68.82 

486 88.73 93.61 91.23 

32 97.09 98.10 97.61 

 

The experimental results show that the average sensitivity, specificity and accuracy of salivary 

secretory protein recognition using selected features have been improved. These features provide 

useful information, including amino acid composition, transmembrane domain, Di-peptides 

composition, Moran autocorrelation, sequence order, secondary structure, normalized Van der Waals 

volume, pseudo amino acid composition, polarizability, signal peptide, polarity, solvent accessibility. 

Among them, transmembrane domain is one of the most important features for recognizing secreted 

proteins. Most of the proteins secreted through endoplasmic reticulum contain signal peptides. 

According to the information of signal peptides, these proteins are transported (transferred) to 

different places. 

4.3. Prediction of cancer biomarkers by proteins 

In practice, the user can input the ID of one protein (or one group of proteins) into the model, and 

the model will show whether this protein (or a group of proteins) can be a salivary secreted protein or 

not. If this protein is a salivary secreted protein, this means it can be used as a candidate cancer protein 

marker for saliva diagnosis, which needs to be further confirmed by biological experiments.  

we collected 58 known cancer protein markers (shown as Table 5), and identified 42 of them 

through the model, which may be used for salivary diagnosis. The 42 salivary secretion proteins are 

shown in Table 5 with the bold font. These proteins will be the first choice for biologists to test. 
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Table 5. List of known cancer biomarkers. 

No. UniProt ID Protein Name Disease Name 

1 P01033 TIMP-1 cancer; cardiovascular diseases; diabetes 

2 P54108 CRISP-3 Sjogren's syndrome 

3 P02766 transthyretin (TTR)  familial amyloidotic polyneuropathy（FAP） 

4 
Q12794 Hyaluronidase (HAse) 

head and neck squamous cell carcinoma 

(HNSCC) 

5 Q8WWA0 lactoferrin Sjogren's syndrome 

6 
Q01469 

epidermal fatty acid-binding 

protein 
rheumatoid arthritis 

7 P01034 Cystatin-C Sjogren's syndrome 

8 P16562 Cysteine-rich secretory protein 2 Sjogren's syndrome 

9 
Q2M3T9 Hyaluronidase-4 

head and neck squamous cell carcinoma 

(HNSCC) 

10 P54107 Cysteine-rich secretory protein 1 Sjogren's syndrome 

11 Q12891 Hyaluronidase-2 Sjogren's syndrome 

12 
P05305 Endothelin-1(ET-1) 

oral lichen planus or oral cancer in 

remission 

13 O43820 Hyaluronidase-3 Sjogren's syndrome 

14 P61626 Lysozyme C Sjogren's syndrome 

15 Q02747 Guanylin pleomorphic adenoma warthin tumors 

16 P05231 Interleukin-6 Sjogren's syndrome 

17 Q16661 Guanylate cyclase activator 2B pleomorphic adenoma warthin tumors  

18 P01037 cystatin SA-I oral squamous cell carcinoma 

19 
P43080 

Guanylyl cyclase-activating 

protein 1 
pleomorphic adenoma warthin tumors  

20 
Q9HC47 

Cutaneous T-cell lymphoma-

associated antigen 1 
lymphomas 

21 P21217 Leb antigen pancreatic cancer 

22 P09228 salivary cystatin S discriminate plaque resistant, periodontitis 

23 P01036 salivary cystatin S discriminate plaque resistant, periodontitis 

24 P04637 Cellular tumor antigen p53 head and neck squamous cell carcinomas 

25 P31947 14-3-3 protein rheumatoid arthritis 

26 P05109 Calgranulin-A rheumatoid arthritis 

27 P29622 Kallikrein Sjogren's syndrome 

28 P60568 Interleukin-2 Sjögren's syndrome 

29 P12104 Fatty acid-binding protein rheumatoid arthritis 

30 P63104 14-3-3 protein zeta/delta rheumatoid arthritis 

31 P02144 Myoglobin acute myocardial infarction (AMI) 

32 
P52209 

6-phosphogluconate 

dehydrogenase 
rheumatoid arthritis 

                                                                        Continued on next page 
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No. UniProt ID Protein Name Disease Name 

    

33 Q04917 14-3-3 protein eta rheumatoid arthritis 

34 P61981 14-3-3 protein gamma rheumatoid arthritis 

35 P10645 Chromogranin-A sleep bruxism  

36 
P06731 

Carcinoembryonic antigen 

(CEA) 
Colorectal cancer 

37 P01266 Thyroglobulin (Tg) Papillary and follicular thyroid cancer 

38 P01137 TGFβ Malignant tumors 

39 P07288 Prostate specific antigen Prostate cancer 

40 P02771 Alpha-foetoprotein (AFP) Hepatocellular carcinomas (HCC) 

41 P15941 Cancer antigen 15-3 (CA15-3) Breast cancer 

42 Q969X2 Cancer antigen 19-9 (CA 19-9) Pancreatic cancer; Bladder cancer 

43 P38398 BRCA-1 Breast cancer 

44 P51587 BRCA-2 Breast cancer 

45 

Q8WXI7 Mucin-16 

pelvic masses; malignant pelvic tumors; 

malignant ovarian tumors; epithelial ovarian 

cancer 

46 P30044 Peroxiredoxin-5 rheumatoid arthritis 

47 P01583 Interleukin-1 alpha periodontal disease 

48 
O15511 

Actin-related protein 2/3 complex 

subunit 5 
upper-aerodigestive-tract cancer 

49 
Q10981 

Galactoside 2-alpha-L-

fucosyltransferase 2 
pancreatic cancer 

50 P01584 Interleukin-1 beta periodontal disease 

51 P02647 Apolipoprotein A-I rheumatoid arthritis 

52 P22894 Matrix metalloproteinase-8 oral disease, rheumatoid arthritis (RA) 

53 P62258 14-3-3 protein epsilon rheumatoid arthritis 

54 P10415 Apoptosis regulator Bcl-2 Burkitt’s lymphoma 

55 
P25054 APC gene 

Adenocarcinoma, squamous cell carcinoma of 

the stomach, pancreas, thyroid and ovary 

56 P07339 Cathepsin D breast cancer 

57 P31151 psoriasin pulmonary involvement in systemic sclerosis 

58 P80511 Protein S100-A12 rheumatoid arthritis 

4.4. Prediction of cancer biomarkers by gene expression data 

If a user has cancer and control gene expression data samples. He should recognize differentially 

expressed genes first, then translate differentially expressed genes into proteins. Put the features of 

these proteins into our model to get the prediction results. 

In order to acquire the cancer and control set of gene expression data used in this subject, we select 

the data collection and download it in the GEO gene expression database. The quality control of the 

gene expression data set of the needed tumor is carried out. Try to select the sample in the data set was 

http://www.uniprot.org/uniprot/P06731
http://www.uniprot.org/uniprot/P01266
http://www.uniprot.org/uniprot/P01137
http://www.uniprot.org/uniprot/P07288
http://www.uniprot.org/uniprot/P15941
http://www.uniprot.org/uniprot/Q969X2
http://www.uniprot.org/uniprot/P38398
http://www.uniprot.org/uniprot/P25054
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labeled and clearly divided data sets as experimental research samples, and the Matrix Data file in the 

data set is downloaded to prepare for the upcoming work. After downloading the required tumor gene 

expression data, manual classification is performed according to the sample of health and cancer in 

order to complete the subsequent experimental work. Ordinary preprocessing involves the following 

stages: if the difference between the maximum and minimum values is less than a specific value or the 

difference multiple (maximum/minimum value) is less than a specific value, then filtering excludes 

genes from the data set, where the maximum and minimum values are for a particular gene. Highest 

and lowest expression. 

Perform a 2-based logarithmic transformation of each gene expression value; data normalization 

is used to eliminate systematic differences between samples. Due to the characteristics of high-

dimensional small samples of gene expression data, the data distribution will have a large standard 

deviation, and the data needs to be normalized by logarithmic transformation. Can have a great impact 

on subsequent experimental research. 

We use T-test and restrain fold change to remove the irrelevant genes and redundant genes from 

each dataset. Organize the genes in the new data set according to the level of gene expression. Then 

mapping the heat map to analyze the gene expression levels of different genes in tumor samples. The 

gene expression level Heat maps with classification results are shown as Figure 4. 

 

Figure 4. Sketch of negative sample set selection strategy. 

For each dataset, we choose the top 20 differentially expressed genes. The selected gene symbols 

are list in Table 6. Using these genes to classify the healthy and cancer samples, the classification 
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accuracy can reach 99.07% for lung cancer, 100% for Leukemia, 93.88% for colorectal cancer, 98.81% 

for multiple cancers, respectively. Then, we use our model to identify the salivary secreted proteins as 

candidate cancer biomarkers, which are showed in bold in Table 6. There are total 80 genes from four 

datasets. After removing the repeat value, 75 different genes are left. For gene OR7E47P, we didn't find 

the protein information. By our model, 33 of them are identified as salivary secretion proteins. 

Table 6. List of Selected feature gene symbol for each dataset. 

NO. 
Gene symbol 

Lung cancer Leukemia Colorectal cancer Multiple cancers 

1 CD36 KCNH2 GUCA2A ARHGAP6 

2 FHL1 MYH10 PKM2 CD93 

3 JAM2 GMPR ALPI ABCA3 

4 CLEC3B RTN1 GTF2IRD1 HEG1 

5 AGTR1 AURKA MCM7 KCNK3 

6 LDB2 AHR UBE2C GPM6A 

7 LMO2 PBK MTHFD2 GPM6B 

8 S1PR1 RFC4 SYNM NTRK2 

9 SASH1 ALDH1A1 C20orf20 ADH1B 

10 FIGF PTGS2 RRM2 RAMP2 

11 PGC TSPYL5 FANCG OLFML2A 

12 GIMAP6 PLXNC1 SLCO4A1 LRRC32 

13 DNASE1L3 TUBG1 BUB1B THBD 

14 C14orf132 SLC15A2 BACE2 LDB2 

15 HOXA5 SPAG5 VSNL1 PDLIM2 

16 RRM2 PRTN3 EIF4EBP1 BCHE 

17 AGR2 FOXM1 KPNA2 OR7E47P 

18 FOXF1 REXO2 CLDN8 TNNC1 

19 THBD RHCE CXCL9 EMCN 

20 CACNA2D2 TFR2 FHL1 CACNA2D2 

5. Conclusion 

In this work, methods based on machine learning are proposed to identify cancer biomarkers that 

can appear in saliva. We have improved the existing methods in two respects：To build a training set, 

SVC-KM method is used to help select non-salivary secretory protein samples based on protein family 

information. The feature selection method based on local samples is used for feature selection. Using 

these machine learning algorithms to get the features for training and classification, it is expected that 

a higher rate of salivary secretory proteins recognition can be achieved. Furthermore, we have 

predicted some proteins and genes in saliva, which can provide reference for the research of biology 

and medicine workers. 

Acknowledgments 

This work was supported by National Natural Science Foundation of China (61872418), Natural 



                                                                                             2468 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2453–2469. 

Science Foundation of Jilin Province (20180101050JC), Open Project Foundation of Information 

Technology Research Base of Civil Aviation Administration of China (NO. CAAC-ITRB-201603).  

Conflict of interest 

The authors declare that there is no conflict of interest. 

References 

1. R. Ruddon, Cancer Biology, Oxford University Press, 2007.  

2. Y. Wang, S. Liang, Y. Tian, J. Zhao, W. Du, Y. Liang, et al., Using machine learning to measure 

relatedness between genes: a multi-features model, Sci. Rep., 9 (2019), 1–15. 

3. S. Liang, A. Ma, S. Yang, Y. Wang, Q. Ma, A review of Matched-pairs feature selection methods 

for gene expression data analysis, Comput. Structur. Biotechnol. J., 16 (2018), 88–97. 

4. A.W. Partin, J. Yoo, H. B. Carter, J. D. Pearson, D. W. Chan, J. I. Epstein, et al., The use of prostate 

specific antigen, clinical stage and Gleason score to predict pathological stage in men with 

localized prostate cancer, J. Urol., 150 (1993), 110–114. 

5. M. Hollstein, D. Sidransky, B. Vogelstein, C. C. Harris, P53 mutations in human cancers, J. Sci., 

253 (1991), 49–53. 

6. K. E. Stuart, A. J. Anand, R. L. Jenkins, Hepatocellular carcinoma in the United States: prognostic 

features, treatment outcome, and survival, Cancer Interdiscipl. Int. J. Am. Cancer Soc., 77 (1996), 

2217–2222. 

7. P. Kuusela, C. Haglund, P. J. Roberts, Comparison of a new tumour marker CA 242 with CA 199, 

CA 50 and carcinoembryonic antigen (CEA) in digestive tract diseases, British J. Cancer, 63 

(1991), 636–640. 

8. J. Schneider, H. G. Velcovsky, H. Morr, N. Katz, K. Neu, E. Eigenbrodt, Comparison of the tumor 

markers tumor M2-PK, CEA, CYFRA 21-1, NSE and SCC in the diagnosis of lung cancer, 

Anticancer Res., 20 (2000), 5053–5058. 

9. L. A. Cole, J. M. Sutton, Selecting an appropriate hCG test for managing gestational trophoblastic 

disease and cancer, J. Reproduct. Med., 49 (2004), 545–553. 

10. J. A. Ludwig, J. N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection, 

Nat. Rev. Cancer, 5(2005), 845–856. 

11. G. J. Rustin, M. Marples, A. E. Nelstrop, M. Mahmoudi, T. Meyer, Use of CA-125 to define 

progression of ovarian cancer in patients with persistently elevated levels, J. Clin. Oncol., 19 

(2001), 4054–4057. 

12. H. Zheng, R. C. Luo, Diagnostic value of combined detection of TPS, CA153 and CEA in breast 

cancer, J. First Milit. Med. Univers., 25 (2003), 1293. 

13. H. Q. Zhang, R. B.Wang, H. J. Yan, W. Zhao, K. L. Zhu, S. M. Jiang, et al., Prognostic significance 

of CYFRA21-1, CEA and hemoglobin in patients with esophageal squamous cancer undergoing 

concurrent chemoradiotherapy, Asian Pacific J. Cancer Prevent., 13 (2012), 199–203. 

14. A. Hsu, S. L. Tang, S. Halgamuge, An unsupervised hierarchical dynamic self-organising approach 

to cancer class discovery and marker gene identification in microarray data, Bioinformatics, 19 

(2003), 2131–2140. 

15. J. J. Liu, G. Cutler, W. Li, Z. Pan, S. Peng, T. Hoey, et al., Multiclass cancer classification and 

biomarker discovery using GA-based algorithms, Bioinformatics, 21 (2005), 2691–2697. 



                                                                                             2469 

Mathematical Biosciences and Engineering  Volume 17, Issue 3, 2453–2469. 

16. B. J. Beattie, P. N. Robinson, Binary state pattern clustering: A digital paradigm for class and 

biomarker discovery in gene microarray studies of cancer, J. Comput. Biol., 13 (2006), 1114–1130. 

17. C. Harris, N. Ghaffari, Biomarker discovery across annotated and unannotated microarray datasets 

using semi-supervised learning, BMC Genomics, 9(2008), S7. 

18. T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, Y. Saeys, Robust biomarker identification for 

cancer diagnosis with ensemble feature selection methods, Bioinformatics, 26 (2010), 392–398. 

19. L. Chen, J. Xuan, C. Wang, I. M. Shih, Y. Wang, Z. Zhang, et al., Knowledge-guided multi-scale 

independent component analysis for biomarker identification, BMC Bioinformatics, 9 (2008), 416. 

20. J. Cui, Q. Liu, D. Puett, Y. Xu, Computational prediction of human proteins that can be secreted 

into the bloodstrea, Bioinformatics, 24 (2008), 2370–2375.  

21. J. Cui, Y. Chen, W. C. Chou, L. Sun, L. Chen, J. Suo, et al., An integrated transcriptomic and 

computational analysis for biomarker identification in gastric cancer, Nucleic Acids Res., 39 

(2011),1197–1207.  

22. C. S. Hong, J. Cui, Z. Ni, Y. Su, D. Puett, F. Li, et al., A computational method for prediction of 

excretory proteins and application to identification of gastric cancer markers in urine, PloS One, 6 

(2011), e16875. 

23. J. Wang, Y. Liang, Y. Wang, J. Cui, M. Liu, W. Du, et al., Computational prediction of human 

salivary proteins from blood circulation and application to diagnostic biomarker identification, 

PloS One, 8 (2013), e80211. 

24. Y. Sun, W. Du, C. Zhou, Y. Zhou, Z. Cao, Y. Tian, et al., A Computational Method for Prediction 

of Saliva-Secretory Proteins and its Application to Identification of Head and Neck Cancer 

Biomarkers for Salivary Diagnosis, IEEE Transact. Nanobiosci., 14 (2015),167–174. 

25. A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, A support vector method for clustering, Adv. 

Neural Inform. Process. Syst., 13 (2001), 367–373. 

26. Y. Chen, Y. Zhang, Y. Yin, G. Gao, S. Li, Y. Jiang, et al., SPD—a web-based secreted protein 

database, Nucleic Acids Res., 33 (2005), D169–D173. 

27. J. Sprenger, J. Lynn Fink, S. Karunaratne, K. Hanson, N. A. Hamilton, R. D. Teasdale, LOCATE: A 

mammalian protein subcellular localization database, Nucleic Acids Res., 36 (2007), D230–D233.  

28. M. Magrane, Uniprot knowledgebase: A hub of integrated protein data, Database, 2011 (2011). 

29. S. J. Li, M. Peng, H. Li, B. S. Liu, C. Wang, J. R. Wu, et al., Sys-bodyfluid: A systematical database 

for human body fluid proteome research, Nucleic Acids Res., 37 (2009), 907–912. 

30. S. Hu, J. A. Loo, D. T. Wong, Human saliva proteome analysis and disease biomarker discovery, 

Expert Rev. Proteom., 4 (2007), 531–538. 

31. P. Denny, F. K. Hagen, M. Hardt, L. Liao, W. Yan, M. Arellanno, et al., The proteomes of human 

parotid and submandibular/sublingual gland salivas collected as the ductal secretions, J. Proteom. 

Res., 7 (2008), 1994–2006. 

32. S. El-Gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani, S. C. Potter, et al., The Pfam protein 

families database in 2019, Nucleic Acids Res., 47 (2019), D427–D432. 

 

©2020 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 


