Citation: Yinong Wang, Xiaomin Liu, Xiangfen Song, Qing Wang, Qianjin Feng, Wufan Chen. Global Tracking of Myocardial Motion in Ultrasound Sequence Images: A Feasibility Study[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 478-493. doi: 10.3934/mbe.2020026
[1] | B. Bijnens, M. Cikes, C. Butakoff, et al., Myocardial motion and deformation: What does it tell us and how does it relate to function?, Fetal Diagn. Ther., 32 (2012), 5-16. |
[2] | N. Mangner, K. Scheuermann, E. Winzer, et al., Childhood obesity: Impact on cardiac geometry and function, JACC Cardiovasc. Imaging, 7 (2014), 1198-1205. |
[3] | T. Asanuma and S. Nakatani, Myocardial ischaemia and post-systolic shortening, Heart, 101 (2015), 509-516. |
[4] | P. Brainin, K. G. Skaarup, A. Z. Iversen, et al., Post-systolic shortening predicts heart failure following acute coronary syndrome, Int. J. Cardiol., 276 (2019), 191-197. doi: 10.1016/j.ijcard.2018.11.106 |
[5] | M. S. Huang, W. H. Lee, H. R. Tsai, et al., Value of layer-specific strain distribution patterns in hypertrophied myocardium from different etiologies, Int. J. Cardiol., 281 (2019), 69-75. |
[6] | K. Shiino, A. Yamada, G. M. Scalia, et al., Early changes of myocardial function after transcatheter aortic valve implantation using multilayer strain speckle tracking echocardiography, Am. J. Cardiol., 123 (2019), 956-960. |
[7] | W. N. McDicken, G. R. Sutherland, C. M. Moran, et al., Colour Doppler velocity imaging of the myocardium, Ultrasound Med. Biol., 18 (1992), 651-654. doi: 10.1016/0301-5629(92)90080-T |
[8] | J. Ophir, I. Cespedes, H. Ponnekanti, et al., Elastography: A quantitative method for imaging the elasticity of biological tissues, Ultrason. Imaging, 13 (1991), 111-134. |
[9] | E. E. Konofagou, J. D'Hooge and J. Ophir, Myocardial elastography-a feasibility study in vivo, Ultrasound Med. Biol., 28 (2002), 475-482. |
[10] | M. Lu, Y. Tang, R. Sun, et al., A real time displacement estimation algorithm for ultrasound elastography, Comput. Ind., 69 (2015), 61-71. |
[11] | F. Viola and W. F. Walker, A comparison of the performance of time-delay estimators in medical ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50 (2003), 392-401. |
[12] | S. Langeland, J. D'Hooge, H. Torp, et al., Comparison of time-domain displacement estimators for two-dimensional RF tracking, Ultrasound Med. Biol., 29 (2003), 1177-1186. |
[13] | W. N. Lee, J. Provost, K. Fujikura, et al., In vivo study of myocardial elastography under graded ischemia conditions, Phys. Med. Biol., 56 (2011), 1155-1172. |
[14] | E. Brusseau, V. Detti, A. Coulon, et al., In Vivo response to compression of 35 breast lesions observed with a two-dimensional locally regularized strain estimation method, Ultrasound Med. Biol., 40 (2014), 300-312. |
[15] | J. Luo and E. Konofagou, A fast normalized cross-correlation calculation method for motion estimation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 (2010), 1347-1357. |
[16] | J. Luo, K. Fujikura, S. Homma, et al., Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts, Ultrasound Med. Biol., 33 (2007), 1206-1223. |
[17] | Q. He, L. Tong, L. Huang, et al., Performance optimization of lateral displacement estimation with spatial angular compounding, Ultrasonics, 73 (2017), 9-21. |
[18] | S. Rezajoo and A. R. Sharafat, Robust estimation of displacement in real-time freehand ultrasound strainimaging, IEEE Trans. Med. Imaging, 37 (2018), 1664-1677. |
[19] | L. Gong, D. Li, J. Chen, et al., Assessment of myocardial viability in patients with acute myocardial infarction by two-dimensional speckle tracking echocardiography combined with low-dose dobutamine stress echocardiography, Int. J. Cardiovasc. Imaging, 29 (2013), 1017-1028. |
[20] | T. Zakaria, Z. Qin and R. L. Maurice, Optical-flow-based B-mode elastography: Application in the hypertensive rat carotid, IEEE Trans. Med. Imaging, 29 (2010), 570-578. |
[21] | M. S. Richards and M. M. Doyley, Non-rigid image registration based strain estimator for intravascular ultrasound elastography, Ultrasound Med. Biol., 39 (2013), 515-533. |
[22] | H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager, Ultrasound elastography: A dynamic programming approach, IEEE Trans. Med. Imaging, 27 (2008), 1373-1377. |
[23] | L. Chen, G. M. Treece, J. E. Lindop, et al., A quality-guided displacement tracking algorithm for ultrasonic elasticity imaging, Med. Image Anal., 13 (2009), 286-296. |
[24] | H. S. Hashemi and H. Rivaz, Global time-delay estimation in ultrasound elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64 (2017), 1625-1636. |
[25] | J. Luo and E. E. Konofagou, High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (2008), 240-248. |
[26] | J. P. Lewis, Fast normalized cross-correlation,1995, Vision Interface, 2010 (2010), 120-123. |
[27] | Y. N. Wang, X. F. Song, Z. J. Huang, et al., Myocardial elastogram using a fast mapping algorithm, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, 3236-3239. |
[28] | H. Rivaz, E. M. Boctor, M. A. Choti, et al., Real-time regularized ultrasound elastography programming approach, IEEE Trans. Med. Imaging, 30 (2011), 928-945. |
[29] | Y. Kuwada and K. Takenaka, Transmural heterogeneity of the left ventricular wall: Subendocardial layer and subepicardial layer, J. Cardiol., 35 (2000), 205-218. |
[30] | P. P. Sengupta, J. Korinek, M. Belohlavek, et al., Left ventricular structure and function: Basic science for cardiac imaging, J. Am. Coll. Cardiol., 48 (2006), 1988-2001. |
[31] | J. Grondin, A. Costet, E. Bunting, et al., Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm, Heart Rhythm, 13 (2016), 2221-2227. doi: 10.1016/j.hrthm.2016.08.010 |
[32] | I. Cespedes, Y. Huang, J. Ophir, et al., Methods for estimation of subsample time delays of digitized echo signals, Ultrason. Imaging, 17 (1995), 142-171. |
[33] | F. Kallel and J. Ophir, Three-dimensional tissue motion and its effect on image noise in elastography, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44 (1997), 1286-1296. |
[34] | Q. Huang, J. Lan and X. Li, Robotic Arm Based Automatic Ultrasound Scanning for Three-Dimensional Imaging, IEEE Trans. Ind. Inf., 15 (2019), 1173-1182. |
[35] | Q. Huang and J. Lan, Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging, Biomed. Signal Process. Control, 54 (2019), 101606. |