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Abstract: The assessment of myocardial motion plays a promising role in the evaluation of cardiac 
function. This study aims to propose a novel framework of global estimation of the myocardial motion 
using radio-frequency (RF) data. The framework consists of B-mode image reconstruction, displacement 
estimation, myocardium extraction, and image fusion. The RF data of murine heart in parasternal 
long-axis (PLAX) view were collected for B-mode image reconstruction and displacement estimation. 
The vectorized normalized cross-correlation (VNCC) approach was proposed to globally estimate the 
displacements of the RF frames, while a sum-table based normalized cross-correlation (STNCC) was 
performed as reference algorithm. The bimodal fusion images were obtained to visualize the motion and 
anatomical structure of myocardium by an improved fast mapping algorithm (IFMA). In comparison 
with STNCC, the computation time of displacement using VNCC reduced by approximate 10s. The 
myocardial motions of anterior wall and posterior wall during one cardiac cycle were similarly tracked by 
VNCC as that of STNCC. The averaged absolute error in displacement between the two methods ranges 
from 1 to 3μm. The obtained myocardial elastographic images using VNCC intuitively present the 
morphological and mechanical changes during the contraction period of left ventricle. The results 
demonstrate that the proposed framework is an efficient tool for the estimation of myocardial motion 
reflecting cardiac systolic function. This approach has potentials to provide visualized information of 
myocardium for diagnosis and prognosis of cardiovascular diseases (CVDs). 

Keywords: ultrasound elastography; myocardial motion; vectorized normalized cross-correlation; 
myocardium segmentation 
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1. Introduction 

Cardiovascular diseases (CVDs) threaten human's health and lives severely. The diagnostic and 
prognostic mechanical changes of myocardium caused by CVDs could be better investigated by 
assessing myocardial motion [1]. Mangner et al. reported that obese children had unfavorable 
alterations in myocardial geometry and function compared with nonobese children [2]. The 
assessment of myocardial shortening that occurs after end-systole (post-systolic shortening, PSS) is 
greatly useful for the diagnosis of acute cardiac ischaemia [3] and have a great potential in providing 
prognostic information in patients with acute coronary syndrome (ACS) following percutaneous 
coronary intervention [4]. Huang et al. discovered that different patterns of layer-specific strain 
distribution of myocardium in left ventricle (LV) might result from different etiologies of myocardial 
hypertrophy such as aortic stenosis (AS) and hypertrophic cardiomyopathy [5]. Shiino et al. 
suggested that multilayer global longitudinal strain (GLS) could be used to detect the early 
improvement in LV systolic function in patients with transcatheter aortic valve implantation [6]. 

In order to evaluate the cardiac mechanical changes caused by CVDs, many imaging techniques 
have developed. Echocardiogram is widely used in clinic to evaluate the myocardial function due to 
its real-time feedback, noninvasiveness and portability. This approach provides M-mode ultrasound 
image but focuses on the evaluation of systolic function of myocardial tissues at the targeted scan 
line. A color Doppler velocity imaging was developed by McDicken et al. to estimate the myocardial 
motion [7]. However, the Doppler-based methods mainly estimate the velocity in axial direction, 
which is parallel to the ultrasound beam. It is difficult to obtain accurate evaluation of myocardial 
motion. Based on the premises that malignant masses are stiffer than benign masses and normal 
tissue, ultrasound elastography was proposed to quantitatively evaluate the kinematic parameters of 
soft tissue in 1991 by Ophir et al. [8]. Elastography is a useful technique to obtain the response (i.e. 
deformation) of tissues to an external applied compression. Different from other static organs, heart 
is a muscular organ that contracts rhythmically. Therefore, myocardial elastography (ME) tracking 
the deformation of the myocardium was proposed by Konofagou et al. in 2002 [9]. The crucial step 
of ME is the estimation of motion or time-delay. 

Numerous approaches have been developed for motion estimation such as block matching [10–19], 
optical flow [20], nonrigid registration [21] and dynamic programming [22] methods. Block tracking 
methods are the dominant methods used to calculate the displacement. The main idea of block tracking 
algorithm is to calculate similarity metrics including sum of absolute (SAD) [10], sum of squared 
differences (SSD) [11,12], cross correlation (CC), and normalized cross correlation (NCC) [9,13–16]. 
NCC algorithm has been commonly regarded as the gold standard of motion estimation [11] and 
successfully used to estimate the mechanical property of the tissue such as breast [14], 
myocardium [9,13,15,16]. However, due to the overlap of the successive searching blocks and the 
exhaustive search algorithm, the computational complexity of the motion estimation remains a 
crucial drawback in the use of NCC. This problem becomes severer when the ultrasound 
radio-frequency (RF) signals are used as source data. RF frame data have more information 
including magnitude and phase of the signals in comparison with B-mode grey scale image. 
Therefore, the RF signal-based methods display higher accuracy in motion estimation. However, 
the large amount of RF signals increases the computational complexity of the motion estimation. 

Therefore, many methods have been developed to reduce the computational complexity of 
motion estimation using NCC. One strategy is the use of sum tables. According to the equation of 
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NCC, sum tables were constructed in the purpose of avoiding repeated calculation of NCC between 
each pair of matching and candidate blocks. The sum-table-based NCC could be a very useful and 
flexible real-time motion estimator [15]. A coarse-to-fine strategy was employed to develop a 
two-step approach for robust estimation of displacement in real-time strain imaging for freehand 
ultrasound elastography [18]. Another useful way to reduce the computational cost is to use a 
guide-search strategy in the calculation of NCC instead of exhaustive search [23]. However, that 
strategy tends to be more suitable to estimate the motion of static organs such as breast. As heart is a 
dynamic organ with intrinsic contractility, an exhaustive search is necessary due to myocardial 
activity. Therefore, a fast motion estimation is required for ME. The full-field motion map of the 
displacements should be obtained block by block using the NCC method. It means the similar 
displacement calculation procedure has to repeat for all the blocks. In order to reduce the 
computational cost, a non-NCC based global time-delay estimation algorithm called GLobal 
Ultrasound Elastography (GLUE) was established by optimizing a nonlinear cost function 
formulated by values of all samples of RF data, and was verified to be a novel technique for 
calculating both axial and lateral displacement fields between two frames of RF data [24]. However, 
GLUE was more suitable for the estimation of static soft tissues for example liver, while the 
feasibility and accuracy in evaluating the motion of inherently dynamic organs for example heart 
remains unverified. ME is proposed as a cross correlation based method to assess the local and 
global mechanical functions of myocardium [9]. NCC methods had been successfully used in many 
myocardial mechanical studies [9,13,15,16]. 

ME provides mechanical property of myocardium to district normal and pathological tissues. 
However, there is no anatomic structure of heart clearly shown in the estimated displacement map. 
An automatic tracking algorithm was proposed by Luo et al. to track the myocardial contour of the 
entire LV throughout a sequence images of heart during a full cardiac cycle [25]. Therefore, the 
pseudo-color coded displacement map of the target tissues fuses with B-mode ultrasound gray-scale 
image for a better visualization of ME imaging. 

This study proposes a novel framework of the motion estimation to evaluate the dynamic 
mechanical property of myocardium, including displacement estimation, myocardium extraction, and 
image fusion. First, a NCC based global motion estimator is proposed as vectorized normalized 
cross-correlation (VNCC) to estimate the displacement values of the myocardial tissue. Then, the 
myocardium is semi-automatically extracted in a sequence of ultrasonic images based on the 
displacement values. Finally, an improved fast mapping algorithm (IFMA) is developed to obtain the 
fusion image in which the anatomic structure and the mechanical information are displayed 
simultaneously. In this study, RF signals are acquired from murine heart in left ventricular 
parasternal long-axis (PLAX) view and used to verify the feasibility of the proposed framework. 

2. Materials and methods 

2.1. Data acquisition 

This study selected one nude mouse and five C-57 mice as experimental subjects for a 
feasibility study on dynamically global tracking of myocardial motion in ultrasound sequence images. 
The animal was first anesthetized with 40 mg/kg intraperitoneal injection of pentobarbital sodium 
(Solarbio Inc., Beijing, China), and then its limbs were fixed to a physiological monitoring platform 
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in supine position. The platform is part of the ultrasound imaging system (Vevo2100, Visual Sonics 
Inc., Canada), which can monitor electrocardiogram (ECG) and remain the body’s temperature when 
scanning. Hair at the mouse’s chest was removed using depilatory cream. A probe (MS-550S, Visual 
Sonics Inc., Canada) with a center frequency of 40 MHz, a geometric focus of 6mm and a bandwidth 
of 32–55 MHz was used to acquire the PLAX view of heart of nude mouse. A probe (MS-400, Visual 
Sonics Inc., Canada) with a lower center frequency of 30 MHz, a geometric focus of 7 mm and a 
bandwidth of 22–55 MHz was used to acquire the PLAX view of heart of C-57 mouse. All 
experiments were performed according to the Guidelines for the Care of Laboratory Animals of the 
National Institutes of Health. This study was approved by the Institutional Ethics Committee at 
Southern Medical University. 

In this study, 32 bit In-phase quadrature (IQ) data were exported for off-line data processing. There 
are 300 frames that were recorded at a sample rate of 128 MHz. Then, RF data were reconstructed from 
IQ data. For the RF frame acquired using MS-550S transducer, the size of one pixel in the axial and 
lateral direction is 0.02 and 0.055 mm, respectively. For the RF frame acquired using MS-400 transducer, 
the size of one pixel in the axial and lateral direction is 0.02 and 0.06 mm, respectively. 

 

Figure 1. Flowchart of the framework of myocardial motion estimation. The framework 
includes B-mode image reconstruction from RF data, displacement estimation of two 
successive RF frames, myocardium extraction, and image fusion. In B-mode ultrasound 
image, A = apex, C = cavity, AW = anterior wall, PW = posterior wall, AO = Aorta. 

2.2.  Data processing 

A total number of 39 frames recorded in a whole cardiac cycle were processed in this study. 
Figure 1 shows the framework of myocardial motion estimation in this study. The RF data as the 
source data were used to reconstruct gray-scale B-mode images using Hilbert transformation and log 
expression for myocardium extraction and image fusion procedures. A vectorized normalized 
cross-correlation (VNCC) method was proposed to calculate the displacement distribution between 
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each two adjacent RF frames. Then, the area of myocardium in the sequences of B-mode images 
were semi-automatically extracted. Finally, an improved fast mapping algorithm (IFMA) was 
proposed to obtain the fusion images, in which the anatomic structure and mechanical information of 
the myocardium can be dynamically displayed simultaneously. 

2.2.1. B-mode image reconstruction 

B-mode image was reconstructed from RF data. Hilbert transformation and log compression 
were performed on RF data (Eq (1)): 

 log( ( ) 0.01)temp hilbert= +Bmode RFdata  (1) 

where tempBmode  in fractional form represents amplitude values of RF signals. Then, tempBmode  
values were quantized to integers between 0 and 255 to be brightness values in gray-scale B-mode 
ultrasound image. 

2.2.2. Displacement estimation 

(1) Normalized Cross-Correlation (NCC) 

As shown in Figure 2, 1F  and 2F  represent two adjacent RF frames of PLAX view acquired 
from ultrasound scanning. Assume that the sizes of all RF frames are m n× . The NCC value 
between the matching block in 1F  and a candidate block in 2F  is commonly calculated according 
to Eq (2) [26]. 
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where u  and v  represent the location of sample of interest in 1F , 0 u n≤ ≤  and 0 v m≤ ≤ . xτ  
and yτ  are the shifts between the matching block and the candidate block, xa aτ− ≤ ≤  ( 0a ≥ ) and 

yb bτ− ≤ ≤  ( 0b ≥ ). a  and b  define the search range for candidate blocks in 2F  in axial 
direction and lateral direction, respectively. The positive value of xτ  represents a downwards 
movement, while the negative value means an upwards movement. The positive value of yτ  
represents a rightwards movement, while the negative value means a leftwards movement. The size 
of all the blocks is defined as ( 1) ( 1)x yB B+ × + . xyf  and xyg  are the average values of the samples 
in the region of matching and candidate block, respectively. ( , )x y1F  and 2 ( , )x yF  represent the 
value of RF sample located at thx  row and thy  column in 1F  and 2F , respectively. 

In the process of calculating displacements of one matching block in 1F , NCC values are 
calculated between matching block and candidate blocks in a search range in 2F . The candidate 
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block with the maximum NCC value is regarded to have the highest similarity to the matching block. 
The shifts xτ  and yτ  between these two blocks represent the axial and lateral displacement, 
respectively (Figure 2). Then, the matching block shifts in 1F , this process of displacement 
estimation repeats until the displacement distribution map of the entire frame 1F  is obtained. 

 

Figure 2. Diagram of displacement estimation using NCC. Yellow block in 1F  is 
matching block. NCC values are calculated between matching block and candidate 
blocks (gray areas) in a search range (green area) defined in 2F . The shifting values xτ  
and yτ  of candidate block with maximum NCC are the axial and lateral displacement of 
the matching block, respectively. 

(2) Vectorized Normalized Cross-Correlation (VNCC) 

VNCC proposed in this study is improved from NCC to simplify the calculation of NCC and 
then to speed up the procedure of motion estimation using NCC. Rather than one NCC calculation of 
each block using traditional NCC approach, the NCC values of all samples/blocks in 1F  could be 
calculated simultaneously using VNCC. 

(3) Vectorized Sum-Table (VST) for NCC Calculation 

Firstly, Eq (2) of NCC is transformed to avoid calculation of xyf  and xyg . The denominator 
of Eq (2) is rewritten as two terms (Eqs (3) and (4)). The numerator of Eq (2) is calculated by Eq (5). 
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Then, the NCC value between the matching block in 1F  and each candidate block in 2F  can 
be calculated only by five terms of summation, that is (1) the sum of matching block in 
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2F , and (5) the Cross-Correlation (CC) 

calculation between the two blocks: 2 2
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For further reduction of the computational complexity, NCC values between all the matching 
blocks in 1F  and its corresponding candidate blocks in 2F  are calculated simultaneously by 
proposing Vectorized Sum-Table (VST) for the five terms (Eq (6)): 
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where u , v , xτ  and yτ  are defined as same as in Eq (2). ( , )x y2
1F  represents the squared value 

of RF sample located at thx  row and thy  column in 1F , while ( , )x yx y+ +2
2F τ τ  represents the 

squared value of RF sample located at ( )th
xx +τ  row and ( )th

yy +τ  column in 2F . ( , )u v
1FVST  

and ( , )u v2
1F

VST  represent summation of values and squared values of samples in matching block 

with a center point located at thu  row and thv  column in 1F  respectively, ( , )u v
2FVST  and 

( , )u v2
2F

VST  represent summation of values and squared values of samples in candidate block with a 

center point located at ( )th
xu +τ  row and ( )th

yv +τ  column in 2F  respectively, ( , )u v
1 2F ,FVST  

represents the sum of Hadamard product of matching and candidate block described previously. 
Finally, from Eq (6), the VNCC values of the entire RF frame are formulated as Eq (7), 

where ∗  represents the Hadamard product of two matrices. 
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(4) Displacement Calculation Using VNCC 

The displacement distribution in 1F  could be obtained by Eqs (6) and (7), Initially x a= −τ  
and y b= −τ . With increasing xτ  and yτ  by 1 to their upper bound ( a  and b , respectively), the 
current matrix m n×VNCC  was obtained and compared with the previously obtained element by 
element. The m n×VNCC  element values and the values of xτ  and yτ  were updated with the larger 
current m n×VNCC  values and its corresponding values of xτ  and yτ , respectively. After m n×VNCC  
was calculated in the whole search range, displacement matrices could be obtained. A median filter 
was employed to reduce the noise in displacement map. This study only focus on the axial 
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displacement due to the lower accuracy of lateral displacement.  
To validate the proposed algorithm, a sum-table based normalized cross-correlation (STNCC) 

calculation method [15] is employed as reference algorithm in this study. Using VNCC and STNCC, 
the computation time of displacement calculation and the global tracking of myocardial motion of 
anterior wall (AW) and posterior wall (PW) during one cardiac cycle are calculated and compared.  

2.2.3. Myocardium extraction 

In this study, the region of interest (ROI), i.e. the myocardial tissue, was manually extracted 
in the first frame of the B-mode image sequence. The ROI in the next frame was updated 
according to the corresponding axial displacement values. A mask image was created by 
assigning 1 and 0 to the ROI and background area, respectively. The mask image was processed 
by image dilation and erosion to reduce the noise caused by myocardial movement or 
myocardium thickening/thinning. Then the aforementioned process was repeated for all the 
images in the sequence. The myocardial tissues were automatically extracted for displaying 
myocardial motion in the ultrasound sequence images. 

2.2.4. Image fusion 

To clearly display both anatomic and mechanical properties of myocardium, a weight factor p  
(0 1)p< <  was introduced to make the pseudo-color-coded ROI ( I , obtained by a image fusion 
method of FMA [27]) transparently overlapped on the gray-scale B-mode image ( BMODEI ). The final 
fusion image finalI  was obtained by Eq (8). 

 Final BMODEp= +I I I  (8) 

In the process of displacement calculation, the block size was set to 27 9×  samples and the 
search range was 40±  samples in axial direction and 4±  RF lines in lateral direction. To 
compare the global tracking of myocardial motion in ultrasound sequence images using VNCC 
with STNCC, Matlab (version 9.0, R2016b, Mathworks Inc., Natick, MA) was used to program all 
the codes of image reconstruction, displacement estimation, myocardium extraction, and image 
fusion on a PC workstation (Intel Core i5-6500 CPU, 3.2 GHz, 8GB RAM). 

3. Results 

3.1. Validation results 

The deformation of myocardium during one cardiac cycle was similarly tracked by VNCC as 
that of STNCC. The positive and negative values of displacement indicate myocardium moving 
downwards and upwards, respectively. As shown in Figure 3, myocardial motion of AW and PW 
could be tracked using both VNCC and STNCC. Compared with AW, the motion of PW was clearly 
shown in an opposite direction. The averaged absolute error in displacement between the two 
methods ranges from 1 to 3 μm. 

Meanwhile, in comparison with STNCC, the computation time reduced approximate 10s 
using VNCC (Table 1). However, more efforts are needed for the application of VNCC in 
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real-time myocardial elastography. It was noticed that the computation time of displacement 
estimation for the nude mouse heart is longer than that of C-57 mice using both VNCC and 
STNCC. This is because of the larger size of RF frame of the nude mouse heart scanned by a 
higher frequency ultrasound transducer. 

 

Figure 3. The average displacements of AW and PW calculated in one cardiac cycle 
using VNCC and STNCC. (a,b) results of nude mouse heart; (c,d) typical results of one 
C-57 mouse heart. ∆ represents the averaged absolute error in displacement values 
between the two methods.  

Table 1. Computational time (s) of VNCC and STNCC. 

 VNCC STNCC 

nude mouse 73.26 ± 1.34 85.17 ± 0.78 
C-57 mice 55.73 ± 1.52 64.88 ± 1.64 

3.2. Improvements in ME imaging 

In this study, the myocardial tissue could be dynamically extracted with high quality. It was 
noticed that the myocardium could not be extracted smoothly if the ROI of the myocardial tissue was 
updated only based on the corresponding axial displacement values. As shown in Figure 4a, some 
speckles are found in the resulted myocardium area indicating that the myocardial tissues in those 
regions are not extracted properly. The results of myocardium extraction improved greatly with process 
of image dilation and erosion (Figure 4b). The myocardial tissues in the sequence images were 
automatically extracted. These results provided a good base for motion estimation of myocardium. 
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Figure 4. The resulted mask images of myocardial extraction with (b) and without (a) 
image dilation and erosion. Red arrows in (a) indicate the myocardial tissues that are 
not extracted. 

The quality of the fused images improved greatly with the application of IFMA (Figure 5). The 
pseudo-color-coded ROI transparently overlapped on the gray-scale B-mode image with introduction 
of the weight factor. This resulted in clear visualization of both anatomic and mechanical properties 
of myocardium, which will benefit the analysis of the abnormal motion of myocardium. 

 

Figure 5. The fused images using fast mapping algorithm (FMA) (a) and improved fast 
mapping algorithm (IFMA) (b). 

3.3. Estimation of myocardial motion 

With VNCC, the displacement map of myocardium was obtained from tracking the shift 
between two adjacent RF frames of PLAX view. 

In this study, the frames were chosen according to the ventricular systolic phase of ECG. The 
displacement map could clearly show the amplitude and direction of myocardial movement during 
contraction period. As shown in Figure 6, the AW moves downwards while the PW moves upwards 
showing that the heart was contracting. Furthermore, the motion of the myocardium near 
endocardium was larger than that of the myocardium near epicardium. The similar results were 
obtained for C-57 mice. 

This study dynamically estimated the movement of myocardium during cardiac cycle. Figure 7 
shows three ME images at begin, middle and end of the ventricular systolic phases of nude mouse. 
The myocardial motion was visualized in the sequence ultrasound images. It was found that the 
myocardium grown thicker with the contraction of left ventricle. Additionally, the area of 
myocardium with the largest movement propagated from apex to base of the posterior wall, and a 
reversed trend (from base to apex) was found in anterior wall. The obtained ME images visualized 
the morphological and mechanical changes during the contraction period of left ventricle, which 
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could estimate the contraction function of the myocardium in the systolic phase. The similar results 
were obtained for C-57 mice. 

 

Figure 6. The axial displacement map at one moment in ventricular systolic phases (red 
spot labelled on ECG signal) of nude mouse. Positive (red) and negative (blue) values 
indicate myocardium moving downwards and upwards, respectively. The color bar shows 
the amplitude of displacement. A, C, AW, PW and AO represent as same anatomic sites 
of left ventricle as those in Figure 1. 

 

Figure 7. Axial displacement maps obtained by the proposed VNCC algorithm at begin 
(a), middle (b) and end (c) of the ventricular systolic phases of nude mouse heart. 
Positive (red) and negative (blue) values in color bar represent moving upwards and 
downwards, respectively. 

4. Discussion 

This study introduced a novel framework for global tracking of myocardial motion in 
ultrasound sequence images, which consists of four parts: B-mode image reconstruction from RF 
data, global displacement estimation, myocardium extraction and image fusion. The algorithm of 
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global displacement estimation plays an important role in myocardial motion tracking.  
An exhaustive search and high overlap between blocks were essential to maintain the 

high-quality motion estimation of myocardium. Under this condition, the proposed VNCC reduced 
computational time by simultaneously calculating the displacements of all samples in a RF frame. A 
previous study proposed sum-table-based NCC approach to reduce the computational complexity of 
NCC, and had been verified by calculating the displacements of a human abdominal aorta and a 
human left-ventricle in a parasternal long-axis view, but this approach is still unable to calculate all 
samples simultaneously [15]. Dynamic programming (DP) approaches [28] were also proposed and 
had been verified in static soft tissues. However, the accuracy of myocardial motion estimation using 
DP still needs to be verified. 

The extraction of myocardium from background tissue was necessary for the better visualization 
and interpretation of myocardial motion. This study proposed a semi-supervised automatic extraction 
method, which is automatic extraction in the sequence images based on the manual segmentation of 
the ROI in the first frame. Similar methods had been proposed in other study [25], but they focused 
to extract the contours of ROI instead of the region of ROI and interpolation was employed to 
overcome the discontinuity of the traced contours. Similarly, in our method, the speckles 
(discontinuity) were found in the extracted myocardial tissue, which probably were caused by 
myocardial movement or myocardium thickening/thinning. We applied image dilation and erosion to 
obtain the intact target tissue. 

The effective tracking of myocardial motion in the ultrasound sequence images could be 
useful to evaluate the systolic function of myocardium. As shown in Figure 5, the motion of the 
myocardium close to endocardium is larger than that at epicardium. This phenomenon is 
consistent with previous study on transmural heterogeneity of myocardium [29]. Furthermore, 
previous study reported that the mechanical activation sequence of heart was physiologically 
along the direction of apex-to-base [30]. In this study, cardiac contractility was dynamically 
visualized in Figure 6, showing a similar propagation of contractility of myocardium at posterior 
wall. This finding was confirmed by the results reported in a recent study [31]. However, a 
base-to-apex propagation was also found in anterior wall in this study. The possible reason might 
be the complexity of heart movements, including myocardial rotation, systole, and diastole. The 
robustness of VNCC was demonstrated by the effective myocardial motion tracking of different 
mouse species with different transducers. 

The proposed VNCC method in this study achieved a high processing speed at expense of 
memory space consumption. 2-D matrixes i.e. vectorized sum-tables were established to 
calculate the NCC values. This method resulted in the decrease of computational complexity. The 
large memory space consumption appears to be acceptable due to advanced equipment of large 
computer workstation. 

Although this study could efficiently and globally calculate the myocardial displacement using 
VNCC and informatively present the mechanical property and anatomical structure of myocardium, 
there are also limitations of this study. First, the sub-sample displacement of each sample was not 
estimated. In order to compensate this weakness, a median filter was simply employed in this study. 
A novel method for sub-sample displacement evaluation should be emphasized in the future work to 
improve precision [32] and continuity of the myocardial motion. Secondly, this study only verified 
the feasibility of the proposed framework using RF data of murine heart. The mechanical difference 
between healthy and pathological myocardium will be quantitatively evaluated in future animal 



491 

Mathematical Biosciences and Engineering  Volume 17, Issue 1, 478–493. 

experiments. Thirdly, myocardial motion was only estimated in two dimensional plane in this study. 
However, the movement of the heart is three dimensional. It can lead to artifacts in ME images due 
to the out-of-plane motion like elevational tissue strains [33]. The development of three dimensional 
(3D) ultrasound technique [34,35] lays a solid foundation in the performance of 3D myocardial 
elastography including the estimation of out-of-plane motion. 3D motion estimation of the heart will 
be conducted in future work. 

5. Conclusion 

In this study, a novel framework of global tracking of myocardial motion was proposed to 
visualize contractility of myocardium in ultrasound sequence images in ventricular systole. To speed 
up the processing speed, a VNCC approach was proposed to globally estimate the displacements. An 
improved fast mapping algorithm (IFMA) was used to display the bimodal fusion images. The 
results demonstrate that the proposed framework is an efficient tool for the estimation of myocardial 
motion reflecting systolic function of murine heart. The visualization of myocardial motion is useful 
to evaluate cardiac function and will benefit diagnosis and prognosis of CVDs. 
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