Citation: Christophe Minetti, Carlo S. Iorio, Hatim Machrafi. High-frequency temperature pulse-response behavior through a porous nanocomposite scaffold for measuring the uptake of biological fluids[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4873-4884. doi: 10.3934/mbe.2019245
[1] | H. Machrafi and G. Lebon, Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix, Phys. Lett. A, 379 (2015), 968–973. |
[2] | V. Jean, S. Fumeron, K. Termentzidis, et al., Monte Carlo simulations of phonon transport in nanoporous silicon and germanium, J. Appl. Phys., 115 (2014), 024304. |
[3] | H. Machrafi, C. Minetti, V. Miskovic, et al., Self-assembly of carbon nanotube-based composites by means of evaporation-assisted depositions: Importance of drop-by-drop self-assembly on material properties, Mat. Chem. Phys., 218 (2018), 1–9. |
[4] | L. J. Ke, G. Z. Gao, Y. Shen, et al., Encapsulation of aconitine in self-assembled licorice protein nanoparticles reduces the toxicity in vivo, Nanosc. Res. Lett., 10 (2015), 449. |
[5] | C. C. B. Bufon, J. D. C. González, D. J. Thurmer, et al., Self-assembled ultra-compact energy storage elements based on hybrid nanomembranes, Nano Lett., 10 (2010), 2506–2510. |
[6] | G. W. Hsieh, P. Beecher, F. M. Li, et al., Formation of composite organic thin film transistors with nanotubes and nanowires, Physica E, 40 (2008), 2406–2413. |
[7] | J. Ding, X. Li, X. Wang, et al., Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon, 68 (2014), 670–677. |
[8] | K. K. Rangharajan, K. J. Kwak, A. T. Conlisk, et al., Effect of surface modification on interfacial nanobubble morphology and contact line tension, Soft Mat., 11 (2015), 5214–5223. |
[9] | B. G. Prevo, D. M. Kuncicky and O. D. Velev, Engineered deposition of coatings from nano- and microparticles: A brief review of convective assembly at high volume fraction, Coll. Surf. A: Physicochem. Eng. Asp., 311 (2007), 2–10. |
[10] | R. Zhang, T. A. Elkhooly, Q. Huang, et al., A dual-layer macro/mesoporous structured TiO2 surface improves the initial adhesion of osteoblast-like cells, Mat. Sci. Eng. C, 78 (2017), 443–451. |
[11] | D. Wang, S. Liu, B. J. Trummer, et al., Carbohydrate microarrays for the recognition of cross reactive molecular markers of microbes and host cells, Nat. Biotech., 20 (2002), 275–281. |
[12] | I. I. Smalyukh, O. V. Zribi, J. C. Butler, et al., Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA, Phys. Rev. Lett., 96 (2006), 177801. |
[13] | H. Machrafi and G. Lebon, General constitutive equations of heat transport at small length scales and high frequencies with extension to mass and electrical charge transport, Appl. Math. Lett., 52 (2016), 30–37. |
[14] | H. Machrafi, An extended thermodynamic model for size-dependent thermoelectric properties at nanometric scales: Application to nanofilms, nanocomposites and thin nanocomposite films, Appl. Math. Mod., 40 (2016), 2143–2160. |
[15] | S. Sinha, S. Barjami, G. Iannacchione, et al., Off-axis thermal properties of carbon nanotube films, J. Nanopart. Res., 7 (2005), 651–657. |
[16] | J. Hone, Phonons and thermal properties of carbon nanotubes, Carbon Nanotubes. Topics in Applied Physics (eds M.S. Dresselhaus, G. Dresselhaus and P. Avouris), 80 (2001), 273–286. |
[17] | Z. Y. Ong and E. Pop, Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B, 81 (2010), 155408. |
[18] | C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Mod., 3 (1948), 83–101. |