Citation: Qimin Huang, Mary Ann Horn, Shigui Ruan. Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
[1] | Center for Disease Control and Prevention (CDC), Antibiotic / Antimicrobial Resistance (AR / AMR), 2018. Available from: https://www.cdc.gov/drugresistance/index.html. |
[2] | World Health Organization (WHO), Antimicrobial Resistance - Global Report on Surveillance 2014, WHO, 2014. |
[3] | S. J. Dancer, How antibiotics can make us sick: the less obvious adverse effects of antimicrobial chemotherapy, Lancet Infect. Dis., 4 (2004), 611–619. |
[4] | E. Tacconelli, Antimicrobial use: risk driver of multidrug resistant microorganisms in healthcare settings, Curr. Opin. Infect. Dis., 22 (2009), 352–358. |
[5] | E. Tacconelli, G. De Angelis, M. A. Cataldo, et al., Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? a systematic review and meta- analysis, J. Antimicrob. Chemother., 61 (2007), 26–38. |
[6] | J. M. Boyce, G. Potter-Bynoe, C. Chenevert, et al., Environmental contamination due to methicillin-resistant Staphylococcus aureus possible infection control implications, Infect. Control Hosp. Epidemiol., 18 (1997), 622–627. |
[7] | S. J. Dancer, Importance of the environment in methicillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning, Lancet Infect. Dis., 8 (2008), 101–113. |
[8] | D. J. Austin and R. M. Anderson, Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 354 (1999), 721–738. |
[9] | D. J. Austin, M. Kakehashi and R. M. Anderson, The transmission dynamics of antibiotic-resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 264 (1997), 1629–1638. |
[10] | C. T. Bergstrom, M. Lo and M. Lipsitch, Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals, Proc. Natl. Acad. Sci. USA, 101 (2004), 13285–13290. |
[11] | S. Bonhoeffer, M. Liptsitch and B. R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA, 94 (1997), 12106–12111. |
[12] | M. C. J. Bootsma, O. Diekmann and M. J. M. Bonten, Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing, Proc. Natl. Acad. Sci. USA, 103 (2006), 5620–5625. |
[13] | C. Browne, M. Wang and G. F. Webb, A stochastic model of nosocomial epidemics in hospital intensive care units, Electron. J. Qual. Theory Differ. Equ., 6 (2017), 1–12. |
[14] | C. Browne and G. F. Webb, A nosocomial epidemic model with infection of patients due to contaminated rooms, Discrete Contin. Dynam. Syst. Ser. B, 12 (2015), 761–787. |
[15] | F. Chamchod and S. Ruan, Modeling methicillin-resistant Staphylococcus aureus in hospitals: transmission dynamics, antibiotic usage and its history, Theor. Biol. Med. Model., 9 (2012), 25. |
[16] | B. S. Cooper, G. F. Medley, S. P. Stone, et al., Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes, Proc. Natl. Acad. Sci. USA, 101 (2004), 10223–10228. |
[17] | E. M. C. D'Agata, M. A. Horn, S. Ruan, et al., Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting, PLoS ONE, 7 (2012), e30170. |
[18] | E. M. C. D'Agata, P. Magal, D. Olivier, et al., Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487–499. |
[19] | I. M. Hall, I. Barrass, S. Leach, et al., Transmission dynamics of methicillin-resistant Staphylococcus aureus in a medical intensive care unit, J. Royal Soc. Interface, 9 (2012), 2639– 2652. |
[20] | Q. Huang, X, Huo, D. Miller, et al., Modeling the seasonality of methicillin-resistant Staphylococcus aureus infections in hospitals with environmental contamination, J. Biol. Dynam., (2018), 1–24. |
[21] | Q. Huang, X, Huo and S. Ruan, Optimal control of environmental cleaning and antibiotic prescription in an epidemiological model of methicillin-resistant Staphylococcus aureus infections in hospitals, Math. Biosci., 311 (2019), 13–30. |
[22] | M. Lipsitch, C. T. Bergstrom and B. R. Levin, The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions, Proc. Natl. Acad. Sci. USA, 97 (2000), 1938–1943. |
[23] | D. L. Smith, J. Dushoff, E. N. Perencevich, et al., Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem, Proc. Natl. Acad. Sci. USA, 101 (2004), 3709–3714. |
[24] | J. Wang, L. Wang, P. Magal, et al., Modelling the transmission dynamics of Meticillin-resistant Staphylococcus aureus in Beijing Tongren Hospital, J. Hosp. Infect., 79 (2011), 302–308. |
[25] | L. Wang and S. Ruan, Modeling nosocomial infections of methicillin-resistant Staphylococcus aureus with environment contamination, Sci. Rep., 7 (2017), 580. |
[26] | X.Wang, Y.Xiao, J.Wang, etal., Amathematicalmodelofeffectsofenvironmentalcontamination and presence of volunteers on hospital infections in China, J. Theor. Biol., 293 (2012), 161–173. |
[27] | X. Wang, Y. Xiao, J. Wang, et al., Stochastic disease dynamics of a hospital infection model, Math. Biosci., 241 (2013), 115–124. |
[28] | G. F. Webb, Individual based models and differential equations models of nosocomial epidemics in hospital intensive care units, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1145–1166. |
[29] | G. F. Webb, E. M. C. D'Agata, P. Magal, et al., A model of antibiotic resistant bacterial epidemics in hospitals, Proc. Natl. Acad. Sci. USA, 102 (2005), 13343–13348. |
[30] | M. J. M. Bonten, D. J. Austin and M. Lipsitch, Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control, Clinic Infect. Dis., 33 (2001), 1739–1746. |
[31] | H. Grundmann and B. Hellriegel, Mathematical modelling: a tool for hospital infection control, Lancet Infect. Dis., 6 (2006), 39–45. |
[32] | L. Temime, G. Hejblum, M. Setbon, et al., The rising impact of mathematical modeling in epidemiology: antibiotic resistance research as a case study, Epidemiol. Infect., 136 (2008), 289–298. |
[33] | E. van Kleef, J. V Robotham, M. Jit, et al., Modelling the transmission of healthcare associated infections: a systematic review, BMC Infect. Dis., 13 (2013), 294. |
[34] | E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of Vancomycin-resistant Enterococci, J. Infect. Disease., 192 (2005), 2004–2011. |
[35] | E. S. McBryde and D. L. S. McElwain, A mathematical model investigating the impact of an environmental reservoir on the prevalence and control of Vancomycin-resistant enterococci, J. Infect. Dis., 193 (2006), 1473–1474. |
[36] | N. Plipat, I. H. Spicknall, J. S. Koopman, et al., The dynamics of methicillin-resistant Staphylococcus aureus exposure in a hospital model and the potential for environmental intervention, BMC Infect. Dis., 13 (2013): 595. |
[37] | M. Wolkewitz, M. Dettenkofer, H. Bertz, et al., Environmental contamination as an important route for the transmission of the hospital pathogen VRE: modeling and prediction of classical interventions, Infect. Dis.: Res. Treat., 1 (2008), 3–11. |
[38] | N.Patel, L.A.McNuttandT.P.Lodise, Relationshipbetweenvariousdefinitionsofpriorantibiotic exposure and Piperacillin-tazobactam resistance among patients with respiratory tract infections caused by Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 52 (2008), 2933–2936. |
[39] | T. N. Doan, D. C. M. Kong, C. Marshall, et al., Modeling the impact of interventions against Acinetobacter baumannii transmission in intensive care units, Virulence, 7 (2016), 141–152. |
[40] | J. T. Fishbain, J. C. Lee, H. D. Nguyen, et al., Nosocomial transmission of methicillin-resistant Staphylococcus aureus: a blinded study to establish baseline acquisition rates, Infect. Control Hosp. Epidemiol., 24 (2003), 415–421. |
[41] | R. E. Polk, C. Fox, A. Mahoney, et al., Measurement of adult antibacterial drug use in 130 US hospitals: comparison of defined daily dose and days of therapy, Clin. Infect. Dis., 44 (2007), 664–670. |
[42] | L. J. S. Allen, A primer on stochastic epidemic models: formulation, numerical simulation, and analysis, Infect. Dis. Model., 2 (2017), 128–142. |
[43] | L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology, 2nd edition, CRC Press, Boca Raton, FL, 2010.!!!!!!!!!!! |
[44] | O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. Royal Soc. Interface, 7 (2010), 873–885. |
[45] | P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
[46] | W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112. |
[47] | X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003. |
[48] | A. Bogusz, M. Stewart, J. Hunter, et al., How quickly do hospital surfaces become contaminated after detergent cleaning? Healthcare Infect., 18 (2013), 3–9. |
[49] | S. Marino, I. B. Hogue, C. J. Ray, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. |
[50] | A. Saltelli, K. Chan and E. M. Scott, Sensitivity Analysis, Willey, New York, 2000. |
[51] | M. L. Forrester, A. N. Pettitt and G. J. Gibson, Bayesian inference of hospital-acquired infectious diseases and control measures given imperfect surveillance data, Biostatistics, 8 (2007), 383–401. |
[52] | S. Pei, F. Morone, F. Liljeros, H. Makse, et al., Inference and control of the nosocomial transmission of methicillin-resistant Staphylococcus aureus, eLIFE, 7 (2018): e40977. |
[53] | A. Thomas, K. Khader, A. Redd, et al., Extended models for nosocomial infection: parameter estimation and model selection, Math. Med. Biol., 35 (2018), i29–i49. |
[54] | C. M. Macal, M. J. North, N. Collier, et al., Modeling the transmission of community-associated methicillin-resistant Staphylococcus aureus: a dynamic agent-based simulation, J. Transl. Med., 12 (2014), 124. |
[55] | R. Assab, N. Nekkab, P. Crepey, et al., Mathematical models of infection transmission in healthcare settings: recent advances from the use of network structured data, Curr. Opin. Infect. Dis., 30 (2017), 410–418. |
[56] | L. Sun, E. Y. Klein and R. Laxminarayan, Seasonality and temporal correlation between community antibiotic use and resistance in the United States, Clin. Infect. Dis., 55 (2012), 687–694. |
[57] | X. Wang, S. Panchanathan and G. Chowell, A data-driven mathematical model of CA-MRSA transmission among age groups: evaluating the effect of control interventions, PLOS Comput. Biol., 9 (2013), e1003328. |