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Abstract: In this paper both deterministic and stochastic models are developed to explore the roles
that antibiotic exposure and environmental contamination play in the spread of antibiotic-resistant
bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), in hospitals. Uncolonized
patients without or with antibiotic exposure, colonized patients without or with antibiotic exposure,
uncontaminated or contaminated healthcare workers, and free-living bacteria are included in the
models. Under the assumption that there is no admission of the colonized patients, the basic
reproduction number R0 is calculated. It is shown that when R0 < 1, the infection-free equilibrium
is globally asymptotically stable; when R0 > 1, the infection is uniformly persistent. Numerical
simulations and sensitivity analysis show that environmental cleaning is a critical intervention, and
hospitals should use antibiotics properly and as little as possible. The rapid and efficient treatment of
colonized patients, especially those with antibiotic exposure, is key in controlling MRSA infections.
Screening and isolating colonized patients at admission, and improving compliance with hand hygiene
are also important control strategies.
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1. Introduction

Nosocomial infections caused by antibiotic-resistant bacteria are a major threat to global public
health today. According to the Centers for Disease Control and Prevention (CDC) [1]:“ Each year in the
United States, at least 2 million people become infected with bacteria that are resistant to antibiotics,
and at least 23,000 people die each year as a direct result of these infections.” Furthermore, CDC
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identifies methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive bacterium, as one of
the most common causes of hospital-acquired infections, especially in newborns and intensive-care
unit patients. MRSA infections are usually treated by antibiotics, however, due to overprescribing and
misprescribing, MRSA has been resistant to multiple commonly used antibiotics, which makes MRSA
infections harder to be treated and even causes life-threatening cases in intensive care units.

An observation that patients with MRSA are about 64% more possible to die than patients with a
non-resistant form of the infection in hospitals was revealed by a World Health Organization report in
April 2014 [2]. In fact, some studies have observed a clear association between antibiotic exposure
and MRSA isolation (Dancer [3], Tacconelli [4], Tacconelli et al. [5]). It has been shown that patients
with prior antibiotic exposure are vulnerable to skin infections and are more likely to be colonized by
MRSA. Furthermore, due to antibiotic exposure, patients may have a lower probability of successful
treatment, a lengthier stay in hospitals and extra costs of treatment. Hence, it is necessary to take
antibiotic exposure into account in modeling MRSA infections in hospitals. It is also found that under
certain circumstances MRSA is capable of surviving for days, weeks or even months on
environmental surfaces such as door handles, healthcare facilities, health-care workers’ gloves (Boyce
et al. [6], Dancer [7]). So environmental contamination is also a necessarily essential factor when we
study the transmission of MRSA in hospitals.

In order to understand the diverse factors contributing to infections of antibiotic-resistant bacteria
such as MRSA in hospitals, various models have been proposed and studied, see for example Austin
and Anderson [8], Austin et al. [9], Bergstrom et al. [10], Bonhoeffer et al. [11], Bootsma et al. [12],
Browne et al. [13], Browne and Webb [14], Chamchod and Ruan [15], Cooper et al. [16], D’Agata et
al. [17, 18], Hall et al. [19], Huang et al. [20, 21], Lipsitch et al. [22], Smith et al. [23], Wang et
al. [24], Wang and Ruan [25], Wang et al. [26, 27], Webb [28], Webb et al. [29]. We refer to survey
papers of Bonten et al. [30], Grundmann and Hellriegel [31], Temime et al. [32], van Kleef et al. [33]
and the references cited therein on modeling antimicrobial resistance. These studies showed
quantitatively how infection control measures such as hand washing, cohorting, and antibiotic
restriction affect nosocomial cross-transmission. It is observed that the direct transmission via the
hands of health-care workers (HCWs) is a crucial factor in the transmission of MRSA. In particular,
D’Agata et al. [34] developed models to investigate the impact of persistent gastrointestinal
colonization and antibiotic exposure on transmission dynamics of vancomycin resistant enterococci
(VRE). Chamchod and Ruan [15] proposed models to investigate the effect of antibiotic exposure on
the transmission of MRSA in hospitals. Mathematical models have also been developed to study the
effect of environmental contamination on the spread of antibiotic-resistant bacteria in hospitals
(Browne and Webb [14], McBryde and McElwain [35], Plipat et al. [36], Wang and Ruan [25], Wang
et al. [26, 27], Wolkewitz et al. [37]). Especially, Wang et al. [26, 27] used both deterministic and
stochastic models to focus on exploring the interaction between volunteers and their environment in
the hospital system with a special care pattern in China. However, to the best of our knowledge, the
combined effects of antibiotic exposure and environmental contamination have not been studied. This
is the motivation for the current study.

In our previous studies (Wang et al. [24] and Wang and Ruan [25]) on nosocomial infections of
MRSA in the emergency ward and respiratory intensive care unit in Beijing Tongren Hospital, Beijing,
China, data on HCW, volunteers, patients, and environmental contamination were obtained. Wang
et al. [24] constructed a mathematical model to determine the role of volunteers in the prevalence
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and persistence of MRSA in Beijing Tongren Hospital. Wang and Ruan [25] studied the effect of
environmental contamination on the transmission MRSA in Beijing Tongren Hospital. Based on the
data in [24, 25], in this article, we first develop a deterministic ordinary differential equations model
(ODE) to investigate the combined effects of antibiotic exposure and environmental contamination on
the transmission dynamics of MRSA in hospitals. When there is no admission of colonized patients,
we study the steady-states and estimate the basic reproduction number. Numerical simulations and
sensitivity analysis are also provided. However, in hospital subunits, where the population is usually
small, randomness may matter. Then we formulate a stochastic differential equations model (SDE)
to study the transmission dynamics of MRSA that are not well described by the deterministic ODE
model. Numerical simulations show that the average of multiple stochastic outputs aligns with the
ODE output.

2. Deterministic and stochastic models

2.1. The deterministic model

The patients, healthcare workers (HCWs), and free-living bacteria in the environment in hospitals
are divided into the following seven compartments (see Figure 1):

Figure 1. Flowchart of the model consisted of uncolonized patients without antibiotic
exposure Pu(t), uncolonized patients with antibiotic exposure PuA(t), colonized patients
without antibiotic exposure Pc(t), colonized patients with antibiotic exposure PcA(t),
uncontaminated healthcare workers Hu(t), contaminated healthcare workers (Hc(t)), and free-
living bacteria in the environment Be(t).
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Pu(t) – number of uncolonized patients without antibiotic exposure at time t;
PuA(t) – number of uncolonized patients with antibiotic exposure at time t;
Pc(t) – number of colonized patients without antibiotic exposure at time t;
PcA(t) – number of colonized patients with antibiotic exposure at time t;
Hu(t) – number of uncontaminated healthcare workers at time t;
Hc(t) – number of contaminated healthcare workers at time t;
Be(t) – density of the free-living bacteria in the environment at time t.

Table 1. Parameters and descriptions.

Symbol Description Value Reference

ε0 Antibiotic prescription rate (day−1) 0.12 [39] [41]
ε1 Magnitude of change of antibiotic prescription rate (no dimension) 0.25 [56]

θu Proportion of Pu on admission (day−1) 0.617 [15] [39]
θuA Proportion of PuA on admission (day−1) 0.349 [15] [40]
θc Proportion of Pc on admission (day−1) 0.003 [15] [39]
θcA Proportion of PcA on admission (day−1) 0.031 [15] [40]

γu Discharge rate of Pu (day−1) 0.2 [15]
γuA Discharge rate of PuA (day−1) 0.2 [15]
γc Discharge rate of Pc (day−1) 0.06 [39]
γcA Discharge rate of PcA (day−1) 0.055 [15] [39]

γb Disinfection (cleaning) rate of environment (day−1) 0.7 [25]

αp Contact rate (day−1 person−1) 0.0435 [25]

βp Probability of colonization for Pu after a contact with Hc (no dimension) 0.42 [25]
βpA Probability of colonization for PuA after a contact with Hc (no dimension) 0.42*1.67 [39] [15]
βh Probability of contamination for HCW after a contact with Pc (no dimension) 0.2 [25] [15]
βhA Probability of contamination for HCW after a contact with PcA (no dimension) 0.25 [15]

η Hand hygiene compliance with HCWs (no dimension) 0.4 [25]

µc Decontamination rate of HCWs (day−1) 24 [25]

υp Shedding rate to environment from Pc (day−1 person−1 ACC/cm2 ) 235 [25]
υpA Shedding rate to environment from PcA (day−1 person−1 ACC/cm2) 470 [26] [39]
υh Contamination rate to environment by Hc (day−1 person−1 ACC/cm2) 235 [25]

κp Colonization rate from environment for Pu (day−1 (ACC/cm2)−1) 0.000004 [25]
κpA Colonization rate from environment for PuA (day−1 (ACC/cm2)−1) 0.000005 [15] [25]
κh Colonization rate from environment for Hu (day−1 (ACC/cm2)−1) 0.00001 [25]

Np Total number of patients 23 [25]
Nh Total number of HCWs 23 [25]

We define antibiotic exposure as having received antibiotics within one month on admission or
receiving any antibiotics treatment currently in hospital [38]. We also assume that there is no cross-
infection between patients, the hospital is always fully occupied, and the bacteria in the environment
are uniformly distributed. Patients are in four compartments according to their status: uncolonized
without or with antibiotic exposure (Pu and PuA, respectively), colonized without or with antibiotic
exposure (Pc and PcA, respectively). Patients are recruited at a total rate Ω(t) from any of these four
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compartments with the corresponding fractions θu, θuA, θc, and θcA, respectively, and can be discharged
from any of these four compartments at corresponding rates γu, γuA, γc, and γcA, respectively. We
calculate the discharge rate as the reciprocal of the length of stay specific for each compartment.

Based on the assumption that the hospital is always fully occupied, it is reasonable to see that the
inflow of patients is equivalent to the outflow of patients, that is
Ω(t) = γuPu + γcPc + γuAPuA + γcAPcA, which results in a constant population size of patients
Np = Pu + PuA + Pc + PcA. Note that the total number of HCWs is also a constant Nh = Hu + Hc.
Besides, patients without antibiotic exposure would move to patients with antibiotic exposure at an
antibiotic prescribing rate of ε per day [39]. Since we assume that there is no cross-infection between
patients, uncolonized patients without antibiotic exposure Pu can be colonized either by direct
contacting contaminated HCWs, αpβp(1 − η)PuHc, or indirect transmission via free-living bacteria in
the environment, κpPuBe. A similar process occurs as uncolonized patients with antibiotic exposure
move to colonized patients with antibiotic exposure, αpβpA(1 − η)PuAHc + κpAPuABe. αp is the contact
rate per day per person, βp (βpA) is the probability of colonization after a contact with contaminated
healthcare worker for Pu (PuA), η is the compliance rate with the hand hygiene, and κp (κpA) is the
colonization rate from the environment for Pu(PuA). Meanwhile, HCWs move from uncontaminated
state to contaminated state either by contacting colonized patients (without or with antibiotic
exposure), αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu, or by the indirect transmission via free-living
bacteria in the contaminated environment, κhHuBe, where κh is the contamination rate from the
environment for HCWs. Because of hygiene standard of HCWs in hospitals, contaminated HCWs can
move to uncontaminated HCWs, µcHc, in which µc is the decontamination rate for the HCWs. Even
though free-living bacteria in the environment can survive for months, they cannot reproduce
themselves in hospitals due to lack of enough reproduction conditions. Hence shedding bacteria into
the environment from colonized patients, υpPc + υpAPcA, serves as an important source of
transmission. As well contaminated HCWs contaminate the environment wherever they touch at the
rate of υhHc. Here υp, υpA, and υh are the corresponding contaminated rates to the environment from
Pc, PcA, and Hc. γb is the cleaning/disinfection rate of the environment.

Due to antibiotic exposure, patients may be more likely to have thrush, skin rashes, and
gastrointestinal symptoms, and they have a higher probability of colonization, a lower probability of
successful treatment, a lengthier stay, and a larger contamination rate to HCWs and the environment.
We therefore assume that βpA ≥ βp, it was estimated that uncolonized patients with antibiotic exposure
PuA is 1.67 times more likely to be colonized than uncolonized patients without antibiotic exposure
Pu [15,39]. We also assume that βhA ≥ βh (a higher contamination rate to HCWs), γcA ≤ γc ≤ γuA ≤ γu

(a lengthier stay or a lower discharge rate ), υpA ≥ υp (a higher contamination (shedding) rate to the
environment). Besides, of new admission, the fraction of patients having antibiotic exposure
(θuA + θcA) is assumed to be 0.38 [15, 40]. As this article is a continuation of our previous studies on
modeling the effect of antibiotic exposure [15] and impact of environmental contamination in Beijing
Tongren Hospitals [24, 25], we adapt most parameter values from these papers.

Detailed parameter values are listed in Table 1. From the flowchart shown in Figure 1, we formulate
an ordinary differential equations model describing the transition between compartments as follows:
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dPu

dt
= θu(γuPu + γcPc + γuAPuA + γcAPcA) − αpβp(1 − η)PuHc − κpPuBe − γuPu − εPu,

dPc

dt
= θc(γuPu + γcPc + γuAPuA + γcAPcA) + αpβp(1 − η)PuHc + κpPuBe − γcPc − εPc,

dPuA

dt
= θuA(γuPu + γcPc + γuAPuA + γcAPcA) − αpβpA(1 − η)PuAHc − κpAPuABe − γuAPuA + εPu,

dPcA

dt
= θcA(γuPu + γcPc + γuAPuA + γcAPcA) + αpβpA(1 − η)PuAHc + κpAPuABe − γcAPcA + εPc,

dHu

dt
= −αpβh(1 − η)PcHu − αpβhA(1 − η)PcAHu − κhHuBe + µcHc,

dHc

dt
= αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe − µcHc,

dBe

dt
= υpPc + υpAPcA + υhHc − γbBe

(2.1)

with initial conditions Pu(0) = P0
u, PuA(0) = P0

uA, Pc(0) = P0
c , PcA(0) = P0

cA, Hu(0) = H0
u , Hc(0) = H0

c ,
Be(0) = B0

e specified at time 0.

2.2. The stochastic model

We know that one disadvantage of deterministic models is that they cannot directly reflect
randomness in epidemic events. For nosocomial models in hospital subunits where randomness may
matter, there is a need to formulate randomness more precisely. The natural extensions of a
deterministic ordinary differential equations model are usually two types of stochastic setting,
continuous-time Markov chains (CTMCs) and stochastic differential equations (SDEs), where the
time variable is continuous, but the state variables are discrete or continuous, respectively. In the
formulation of CTMCs, forward Kolmogorov differential equations for the transition probability
density functions can be derived and they, in turn, lead directly to the SDEs. Even though it is difficult
to find analytical solutions for multivariate processes, SDEs are useful to numerically simulate
stochastic realizations (sample paths) of the process. It is believed that the SDEs are easier to solve
numerically than the Kolmogorov differential equations and faster than simulating sample paths of the
CTMCs model for multivariate processes [42]. Thus, we develop a CTMCs model, an SDE model
and its simulations in the following ( [25, 43]).

By the assumption Pu + PuA + Pc + PcA = Np,Hu + Hc = Nh,∀t ≥ 0, we have the process
(Pc, PuA, PcA,Hc, Be) in R5 with Pu(t) = Np − PuA − Pc − PcA and Hu(t) = Nh − Hc. These five variables
have a joint probability denoted by

p(s, j,k,m,n)(t) = Pr(Pc(t) = s, PuA(t) = j, PcA(t) = k,Hc(t) = m, Be(t) = n)

with s ≥ 0, j ≥ 0, k ≥ 0, 0 ≤ s + j + k ≤ Np, 0 ≤ m ≤ Nh and n ≥ 0. Assume that 4t > 0 is sufficiently
small, the transition probabilities associated with the stochastic process are defined for a small period
of time 4t > 0 as follows:

p(s+i1, j+i2,k+i3,m+i4,n+i5);(s, j,k,m,n)(4t)
= Pr[(Pc(t + 4t), PuA(t + 4t), PcA(t + 4t),Hc(t + 4t), Be(t + 4t))
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= (s + i1, j + i2, k + i3,m + i4, n + i5)|(Pc(t), PuA(t), PcA(t),Hc(t), Be(t)) = (s, j, k,m, n)],

where i1, i2, i3, i4, i5 ∈ {−1, 0, 1}, Hence the transition probability is as follow:

p(s+i1, j+i2,k+i3,m+i4,n+i5);(s, j,k,m,n)(4t)

=



{θc(γu(Np − s − j − k) + γc s + γuA j + γcAk)
+αpβp(1 − η)(Np − s − j − k)m + κp(Np − s − j − k)n}4t (i1, i2, i3, i4, i5) = (1, 0, 0, 0, 0)
γc s4t (i1, i2, i3, i4, i5) = (−1, 0, 0, 0, 0)
εs4t (i1, i2, i3, i4, i5) = (−1, 0, 1, 0, 0)
{θuA(γu(Np − s − j − k) + γc s + γuA j + γcAk) + ε(Np − s − j − k)}4t (i1, i2, i3, i4, i5) = (0, 1, 0, 0, 0)
(κpA jn + γuA j)4t (i1, i2, i3, i4, i5) = (0,−1, 0, 0, 0)
αpβpA(1 − η) jm4t (i1, i2, i3, i4, i5) = (0,−1, 1, 0, 0)
{θcA(γu(Np − s − j − k) + γc s + γuA j + γcAk) + κp jn}4t (i1, i2, i3, i4, i5) = (0, 0, 1, 0, 0)
γcAk4t (i1, i2, i3, i4, i5) = (0, 0,−1, 0, 0)
{αpβh(1 − η)s(Nh − m) + αpβhA(1 − η)k(Nh − m) + κh(Nh − m)n}4t (i1, i2, i3, i4, i5) = (0, 0, 0, 1, 0)
µcm4t (i1, i2, i3, i4, i5) = (0, 0, 0,−1, 0)
(υp s + υpAk + υhm)4t (i1, i2, i3, i4, i5) = (0, 0, 0, 0, 1)
γbn4t (i1, i2, i3, i4, i5) = (0, 0, 0, 0,−1)
0 otherwise.

(2.2)

We must choose the time step 4t sufficiently small. In our case it is too complicated to express the
transition matrix. Instead, we still are able to express the probabilities p(s, j,k,m,n)(t + 4t) by using the
Markov property:

p(s, j,k,m,n)(t + 4t)

= p(s−1, j,k,m,n)(t)[θc(γu(Np − s + 1 − j − k) + γcs + γuA j + γcAk) + αpβp(1 − η)(Np − s + 1 − j − k)m

+ κp(Np − s + 1 − j − k)n]4t

+ p(s+1, j,k,m,n)(t)γc(s + 1)4t

+ p(s+1, j,k−1,m,n)(t)ε(s + 1)4t

+ p(s, j−1,k,m,n)(t)[θuA(γu(Np − s − j + 1 − k) + γcs + γuA j + γcAk) + ε(Np − s − j + 1 − k))]4t

+ p(s, j+1,k,m,n)(t)[κpA( j + 1)n + γuA( j + 1)]4t

+ p(s, j+1,k−1,m,n)(t)αpβpA(1 − η)( j + 1)m

+ p(s, j,k−1,m,n)(t)[θc(γu(Np − s − j − k + 1) + γcs + γuA j + γcA(k + 1)) + κp jn]4t

+ p(s, j,k+1,m,n)(t)γcA(k + 1)4t

+ p(s, j,k,m−1,n)(t)[αpβh(1 − η)s(Nh − m + 1) + αpβhA(1 − η)k(Nh − m + 1) + κh(Nh − m + 1)n]4t

+ p(s, j,k,m+1,n)(t)µc(m + 1)

+ p(s, j,k,m,n−1)(t)(υps + υpAk + υhm)4t

+ p(s, j,k,m,n+1)(t)γb(n + 1)4t + ◦(4t).

Naturally, a system of forward Kolmogorov differential equations can be derived:

dps, j,k,m,n

dt
= p(s−1, j,k,m,n)[θc(γu(Np − s + 1 − j − k) + γcs + γuA j + γcAk) + αpβp(1 − η)(Np − s + 1 − j − k)m

+ κp(Np − s + 1 − j − k)n]

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3641–3673.



3648

+ p(s+1, j,k,m,n)(t)γc(s + 1)

+ p(s+1, j,k−1,m,n)(t)ε(s + 1)

+ p(s, j−1,k,m,n)(t)[θuA(γu(Np − s − j + 1 − k) + γcs + γuA j + γcAk) + ε(Np − s − j + 1 − k))]

+ p(s, j+1,k,m,n)(t)[κpA( j + 1)n + γuA( j + 1)]4t

+ p(s, j+1,k−1,m,n)(t)αpβpA(1 − η)( j + 1)m

+ p(s, j,k−1,m,n)(t)[θc(γu(Np − s − j − k + 1) + γcs + γuA j + γcA(k + 1)) + κp jn]

+ p(s, j,k+1,m,n)(t)γcA(k + 1)

+ p(s, j,k,m−1,n)(t)[αpβh(1 − η)s(Nh − m + 1) + αpβhA(1 − η)k(Nh − m + 1) + κh(Nh − m + 1)n]

+ p(s, j,k,m+1,n)(t)µc(m + 1)

+ p(s, j,k,m,n−1)(t)(υps + υpAk + υhm)

+ p(s, j,k,m,n+1)(t)γb(n + 1).

We now try to develop a stochastic differential equations model (SDE) from the deterministic
epidemic model (2.1). The system has five variables with a joint probability defined by:

p(s, j,k,m,n)(t) = Pr{Pc(t) = s, PuA(t) = j, PcA(t) = k,Hc(t) = m, Be(t) = n}

with s, j, k = 0, ...,Np,m = 0...Nh, and n ≥ 0, with transition probabilities given in (2.2). Let X(t) =

(Pc(t), PuA(t), PcA(t),Hc(t), Be(t))T with infinitesimal

4X(t) = (4Pc(t),4PuA(t),4PcA(t),4Hc(t),4Be(t))T .

We express the infinitesimal mean matrix f (X(t), t) as follows:

E(4X(t)|X(t) =


ec

euA

ecA

eh

eb


4t = f (X(t), t)4t,

where
ec = θc(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβp(1 − η)(Nh − Pc − PuA − PcA)Hc + κpPuBe − γcPc − εPc,

euA = θuA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) − αpβpA(1 − η)PuAHc − κpAPuABe − γuAPuA

+ ε(Nh − Pc − PuA − PcA),

ecA = θcA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβpA(1 − η)PuAHc + κpAPuABe − γcAPcA + εPc,

eh = αpβh(1 − η)Pc(Nh − Hc) + αpβhA(1 − η)PcA(Nh − Hc) + κh(Nh − Hc)Be − µcHc,

eb = υpPc + υpAPcA + υhHc − γbBe.

and also the infinitesimal variance matrix Σ(X(t)t):

E(4X(t)(4X(t))T |X(t)) =


δc 0 −εPc 0 0
0 δuA −αpβpA(1 − η)PuAHc 0 0
−εPc −αpβpA(1 − η)PuAHc δcA 0 0

0 0 0 δh 0
0 0 0 0 δb


4t
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= Σ(X(t), t)4t,

where
δc = θc(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβp(1 − η)(Nh − Pc − PuA − PcA)Hc + κpPuBe + γcPc + εPc,

δuA = θuA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβpA(1 − η)PuAHc + κpAPuABe + γuAPuA

+ ε(Nh − Pc − PuA − PcA),

δcA = θcA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβpA(1 − η)PuAHc + κpAPuABe + γcAPcA + εPc,

δh = αpβh(1 − η)Pc(Nh − Hc) + αpβhA(1 − η)PcA(Nh − Hc) + κh(Nh − Hc)Be + µcHc,

δb = υpPc + υpAPcA + υhHc + γbBe.

It is easy to check that δc, δuA, δcA, δh, δb are all nonnegative. Hence we have a matrix G satisfying
GGT = Σ, where G is a 5×12 matrix to order 4t,

G =



√
a1 −

√
a2 −

√
a3 0 0 0 0 0 0 0 0 0

0 0 0
√

a4 −
√

a5 −
√

a6 0 0 0 0 0 0
0 0

√
a3 0 0

√
a6

√
a7 −

√
a8 0 0 0 0

0 0 0 0 0 0 0 0
√

a9 −
√

a10 0 0
0 0 0 0 0 0 0 0 0 0

√
a11 −

√
a12


,

where
a1 = θc(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + αpβp(1 − η)(Nh − Pc − PuA − PcA)Hc + κpPuBe,
a2 = γcPc,
a3 = εPc,
a4 = θuA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA) + ε(Nh − Pc − PuA − PcA),
a5 = κpAPuABe + γuAPuA,
a6 = αpβpA(1 − η)PuAHc,
a7 = θcA(γu(Nh − Pc − PuA − PcA) + γcPc + γuAPuA + γcAPcA) + κpAPuABe,
a8 = γcAPcA,
a9 = αpβh(1 − η)Pc(Nh − Hc) + αpβhA(1 − η)PcA(Nh − Hc) + κh(Nh − Hc)Be,
a10 = µcHc,
a11 = υpPc + υpAPcA + υhHc,
a12 = γbBe.

Then the stochastic differential equations have the following form:

dX(t) = f (X(t), t)dt + G(X(t), t)dW(t).

More precisely, 

dPc(t) = ecdt +
√

a1dW1 −
√

a2dW2 −
√

a3dW3,

dPuA(t) = euAdt +
√

a4dW4 −
√

a5dW5 −
√

a6dW6,

dPcA(t) = ecAdt +
√

a3dW3 +
√

a6dW6 +
√

a7dW7 −
√

a8dW8,

dHct = ehdt +
√

a9dW9 −
√

a10dW10,

dBe(t) = ebdt +
√

a11dW11 −
√

a12dW12.

(2.3)
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where W1, · · · ,W12 are twelve independent Wiener processes. Next we are able to run stochastic
simulations.

3. Mathematical analysis of the deterministic model

In this section we provide detailed analysis of the deterministic ODE model (2.1).

3.1. Positivity and invariance of solutions

Based on the biological background of model (2.1), we only consider solutions of model (2.1)
starting at t = 0 with nonnegative initial values:

P0
u ≥ 0, P0

uA ≥ 0, P0
c ≥ 0, P0

cA ≥ 0,H0
u ≥ 0,H0

c ≥ 0, B0
e ≥ 0.

Lemma 1. If P0
u, P

0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e ≥ 0, then (Pu(t), PuA(t), Pc(t), PcA(t),Hu(t),Hc(t), Be(t)) the

solutions of model (2.1) are nonnegative for all t ≥ 0 and ultimately bounded. In particular, if
P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e > 0, then the solutions (Pu(t), PuA(t), Pc(t), PcA(t),Hu(t),Hc(t), Be(t)) are

also positive for all t ≥ 0.

Proof. Firstly, by the continuous dependence of solutions with respect to initial values, we only need
to prove that when P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e > 0, (Pu(t), PuA(t), Pc(t), PcA(t),Hu(t),Hc(t), Be(t)) the

solutions are also positive for all t ≥ 0. That is, the solutions remain in the positive cone if the initial
conditions are in the positive cone of R7. Set

m(t) = min{Pu(t), PuA(t), Pc(t), PcA(t),Hu(t),Hc(t), Be(t)},∀t > 0.

Clearly, m(0) > 0. Assuming that there exists a t1 > 0 such that m(t1) = 0 and m(t) > 0 for all
t ∈ [ 0, t1).

If m(t1) = Pu(t1), from the first equation of model (2.1) it follows that dPu
dt ≥ −(αpβp(1 − η)Hc(t) +

κpBe(t) + γu + ε)Pu for all t ∈ [ 0, t1). Since Hc(t) > 0, Be(t) > 0 for all t ∈ [ 0, t1), we have

0 = Pu(t1) ≥ P0
u exp(−

∫ t1

0
(αpβp(1 − η)Hc(s) + κpBe(s) + γu + ε)ds) > 0,

which leads to a contradiction. Similar contradictions can be deduced in the cases of
m(t1) = PuA(t1),m(t1) = Pc(t1),m(t1) = PcA(t1),m(t1) = Hu(t1),m(t1) = Hc(t1),m(t1) = Be(t1). Hence,
the solutions remain in the positive cone if the initial conditions are in the positive cone R7.

Secondly, let T (t) = Pu(t) + PuA(t) + Pc(t) + PcA(t) + Hu(t) + Hc(t) + Be(t). Then

dT (t)
dt

=
dBe(t)

dt
= υpPc + υpAPcA + υhHc − γbBe

≤ υpNp + υpANp + υhNh − γbBe(t),

where Np = Pu(t) + PuA(t) + Pc(t) + PcA(t) and Nh = Hu(t) + Hc(t), which implies that

Be(t) ≤
(υpNp + υpANp + υhNh)

γb
(1 − e−γbt) + B0

ee−γbt.
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So Be(t) is bounded by a fixed number

M =
(υpNp + υpANp + υhNh)

γb
+ B0

e .

Let N = Np + Nh + M, we have

T (t) = Pu(t) + PuA(t) + Pc(t) + PcA(t) + Hu(t) + Hc(t) + Be(t) ≤ N.

Thus, the solutions remain bounded in a positive cone of R7, and the system induces a global semiflow
in the positively invariant set of R7. This completes the proof. �

Remark 2. Denote set G as follows

G := {(Pu, PuA, Pc, PcA,Hu,Hc, Be) ∈ R7
+ : Pu + PuA + Pc + PcA + Hu + Hc + Be ≤ N)}.

Then Lemma 1 implies that G is a positively invariant set with respect to model (2.1).

3.2. Basic reproduction number

When θc=0, θcA=0, that is, there are no colonized patients admitted into hospitals, model (2.1) has
a unique infection-free equilibrium (IFE) which is defined by

E0 = (Pu, Pc, PuA, PcA,Hu,Hc, Be) = (N∗, 0,Np − N∗, 0,Nh, 0, 0), N∗ =
θuγuANp

θuAγu + θuγuA + ε
.

We derive the basic reproduction number R0 for model (2.1) by using the techniques in Diekmann et
al. [44] and van den Driessche and Watmough [45], which involves linearizing the original nonlinear
ordinary differential equations at the infection-free equilibrium. Re-order the components of E0 as

E0 = (Pc, PcA,Hc, Be, Pu, PuA,Hu) = (0, 0, 0, 0,N∗,Np − N∗,Nh)

and set

F =



αpβp(1 − η)PuHc + κpPuBe

αpβpA(1 − η)PuAHc + κpAPuABe

αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe

0
0
0
0


,

V =



γcPc + εPc − θcΩ

γcAPcA − [εPc + θcAΩ]
µcHc

γbBe − (υpPc + υpAPcA + υhHc)
αpβp(1 − η)PuHc + κpPuBe + γuPu + εPu − θuΩ

αpβpA(1 − η)PuAHc + κpAPuABe + γuAPuA − [εPu + θuAΩ]
αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe − µcHc


,
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where Ω = (γuPu + γcPc + γuAPuA + γcAPcA),

V− =



γcPc + εPc

γcAPcA

µcHc

γbBe
αpβp(1 − η)PuHc + κpPuBe + γuPu + εPu

αpβpA(1 − η)PuAHc + κpAPuABe + γuAPuA

αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe


, V+ =



θcΩ

εPc + θcAΩ

0
υpPc + υpAPcA + υhHc

θuΩ

εPu + θuAΩ

µcHc


.

Since θc=0, θcA=0, then we can derive that

F =


0 0 αpβp(1 − η)N∗ κpN∗

0 0 αpβpA(1 − η)(Np − N∗) κpA(Np − N∗)
αpβh(1 − η)Nh αpβhA(1 − η)Nh 0 κhNh

0 0 0 0

 ,

V =


γc + ε 0 0 0
−ε γcA 0 0
0 0 µc 0
−υp −υpA −υh γb

 .
Therefore, let ω1 =

υpγcA+υpAε

γbγcA(γc+ε) , ω2 =
υpA

γbγcA
, ω3 = υh

γbµc
, we have

FV−1 =


ω1κpN∗ ω2κpN∗ ω3κpN∗ +

αpβp(1−η)N∗

µc

κpN∗

γb

ω1κpA(Np − N∗) ω2κpA(Np − N∗) ω3κpA(Np − N∗) +
αpβpA(1−η)(Np−N∗)

µc

κpA(Np−N∗)
γb

ω1κhNh +
βhγcA+βhAε

γcA(γc+ε) αp(1 − η)Nh ω2κhNh +
αpβhA(1−η)Nh

γcA
ω3κhNh

κhNh
γb

0 0 0 0


and the basic reproductive number is defined as the spectral radius of FV−1:

R0 = sp(FV−1) =
α3

α1
+ α1 + α2 (3.1)

where
α1 = (

√
( α3

6

27µ3
cγ

3
cA

+ α5 + α4)2 − α3
3 +

α3
6

27µ3
cγ

3
cA

+ α5 + α4)
1
3 ,

α2 =
α6

3µcγcA
, α3 = α7

3µcγcA
+

α2
6

9µ2
cγ

2
cA
, α4 =

α6α7

6µ2
cγ

2
cA
,

α5 =
(βpκpA−βpAκp)N∗(Np−N∗)Nhα

2
p(1−η)2[ ω1βhA(γc+ε)−ω2(βhγcA+βhAε)]

2µcγcA(γc+ε)
,

α6 = µcγcA(ω1κpN∗ + ω2κpA(Np − N∗) + ω3κhNh),

α7 = Nhα
2
p(1 − η)2[βhAβpA(Np − N∗) +

βhγcA+βhAε
γc+ε

βpN∗] + (Np − N∗)Nhαp(1 − η)[ω2κhβpAγcA + ω3κpAβhAµc]

+N∗Nhαp(1 − η)[ω1βpκhγcA + ω3κpµc
βhγcA+βhAε

γc+ε
].

By Theorem 2 in van den Driessche and Watmough [45], we have the following theorem:
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Theorem 3. If R0 < 1, then the infection-free equilibrium E0 is locally asymptotically stable; If R0 > 1,
then E0 is unstable.

Moreover, from the proof of Theorem 2 in van den Driesshce and Watmough [45] or the proof of
Lemma 2.1 in Wang and Zhao [46], we have the following observation: Denote

J1 = F − V =


−γc − ε 0 αpβp(1 − η)N∗ κpN∗

ε −γcA αpβpA(1 − η)(Np − N∗) κpA(Np − N∗)
αpβh(1 − η)Nh αpβhA(1 − η)Nh −µc κhNh

υp υpA υh −γb

 .
Let s(J1) be the maximum real part of the eigenvalues of J1. Since J1 is irreducible and has non-
negative off-diagonal elements, s(J1) is a simple eigenvalue of J1 with a positive eigenvector. Then we
have the following corollary:

Corollary 4. There hold two equivalences:

R0 < 1 ⇐⇒ s(J1) < 0; R0 > 1 ⇐⇒ s(J1) > 0.

3.3. Vanishing of infection

The existence and stability of the infection-free equilibrium E0 indicates that the MRSA infection
is vanishing.

Theorem 5. If R0 < 1, then the infection-free equilibrium E0 is globally asymptotically stable.

Proof. From Theorem 3 we know that E0 is locally asymptotically stable. Now we prove the global
attractivity of the infection-free equilibrium E0.

By the first equation of model (2.1), non-negativity of the solutions and previous assumptions, we
get

dPu

dt
≤ θu[γuPu + γuA(Np − Pu)] − γuPu − εPu.

Since γuA = max{γuA, γc, γcA}, it implies that

dPu

dt
≤ θuγuANp − (−θuγu + θuγuA + γu + ε)Pu = θuγuANp − (θuAγu + θuγuA + ε)Pu.

So ∀δ > 0, there exists t1 > 0, such that Pu ≤ N∗ + δ, for all t ≥ t1.
Similarly, by the third equation of model (2.1), non-negativity of the solutions and previous

assumptions, we get

dPuA

dt
≤ (1 − θu)[γu(Np − PuA) + γuAPuA] − γuAPuA + ε(Np − PuA),

that is,
dPuA

dt
≤ (θuAγu + ε)Np − (θuAγu + θuγuA + ε)PuA.

Then ∀δ > 0, there exists t2 > 0, such that PuA ≤ Np − N∗ + δ, for all t ≥ t2.
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Let T = max{t1, t2}. If t > T , since θc = θcA = 0, then
P
′

c(t) ≤ αpβp(1 − η)(N∗ + δ)Hc + κp(N∗ + δ)Be − γcPc − εPc,

P
′

cA(t) ≤ αpβpA(Np − N∗ + δ)Hc + κpA(Np − N∗ + δ)Be − γcAPcA + εPc,

H
′

c(t) ≤ αpβh(1 − η)NhPc + αpβhA(1 − η)NhPcA + κhNhBe − µcHc,

B
′

e(t) ≤ υpPc + υpAPcA + υhHc − γbBe.

(3.2)

Considering the following auxiliary system:
P̃′c(t) = αpβp(1 − η)(N∗ + δ)H̃c + κp(N∗ + δ)B̃e − γcP̃c − εP̃c,

P̃′cA(t) = αpβpA(Np − N∗ + δ)H̃c + κpA(Np − N∗ + δ)B̃e − γcAP̃cA + εP̃c,

H̃′

c(t) = αpβh(1 − η)NhP̃c + αpβhA(1 − η)NhP̃cA + κhNhB̃e − µcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e.

(3.3)

Define

J1(δ) =


−γc − ε 0 αpβp(1 − η)(N∗ + δ) κp(N ∗ +δ)

ε −γcA αpβpA(1 − η)(Np − N∗ + δ) κpA(Np − N∗ + δ)
αpβh(1 − η)Nh αpβhA(1 − η)Nh −µc κhNh

υp υpA υh −γb

 .
It follows from Corollary 4 that if R0 < 1, then s(J1(0)) < 0. Since s(J1(δ)) is continuous for small δ,
so there exists δ small enough such that s(J1(δ)) < 0. Thus there is a negative eigenvalue of s(J1(δ))
with a positive eigenvector. Obviously if t → ∞, then P̃c, P̃cA, H̃c, B̃e → 0. Then by the comparison
principle we get

lim
t→∞

Pc = 0, lim
t→∞

PcA = 0, lim
t→∞

Hc = 0, lim
t→∞

Be = 0.

Therefore, E0 is globally attractive when R0 < 1. This completes the proof. �

3.4. Uniform persistence

Uniform persistence of system (2.1) demonstrates that all components of the dynamical model have
positive lower bounds which in turn indicates that MRSA infection persists in the hospital.

Theorem 6. If R0 > 1, then model (2.1) is uniformly persistent.

Proof. We first define

X = {(Pu, Pc, PuA, PcA,Hu,Hc, Be) : Pu ≥ 0, Pc ≥ 0, PuA ≥ 0, PcA ≥ 0,Hu ≥ 0,Hc ≥ 0, Be ≥ 0},

X0 = {(Pu, Pc, PuA, PcA,Hu,Hc, Be) ∈ X : Pc > 0, PcA > 0,Hc > 0, Be > 0}, ∂X0 = X\X0.

It can be seen that both X and X0 are positively invariant with respect to model (2.1). Clearly, ∂X0 is
relatively closed in X. Lemma 1 implies that model (2.1) is point dissipative, which implies that the
solutions of model (2.1) admit a global attractor. Then we define

M∂ = {(Pu(0), Pc(0), PuA(0), PcA(0),Hu(0),Hc(0), Be(0)) :
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(Pu(t), Pc(t), PuA(t), PcA(t),Hu(t),Hc(t), Be(t)) ∈ ∂X0,∀t ≥ 0}.

Now we prove that

M∂ = {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0,Hu = Nh}.

For any point ϕ0 = (Pu(0), Pc(0), PuA(0), PcA(0),Hu(0),Hc(0), Be(0)) in M∂, we suppose that one of
Pc(0), PcA(0),Hc(0), Be(0) is not zero, that is to say, ϕ0 < {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0, PuA ≥

0,Hu = Nh}. Without loss of generality, we suppose that Pc(0) = 0, PcA(0) = 0,Hc(0) = 0, Be(0) > 0.
By the second, fourth, and sixth equations, we have

dPc(0)
dt

≥ κpPu(0)Be(0) > 0;
dPcA(0)

dt
≥ κpAPuA(0)Be(0) > 0;

dHc(0)
dt

≥ κhHu(0)Be(0) > 0.

Thus, there exists δ0 > 0, if 0 < t < δ0 then Pc(t) > 0, PcA(t) > 0,Hc(t) > 0, Be(t) > 0, which imply
that ϕ0 < ∂X0. we will get the similar result for other cases (Pc(0) > 0, or PcA(0) > 0, or Hc(0) > 0).
Thus ϕ0 < M∂. This gives us a contradiction. Hence ϕ0 ∈ {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0, PuA ≥

0,Hu = Nh}. So M∂ ⊆ {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0,Hu = Nh}. Obviously we have
{(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0, PuA ≥ 0,Hu = Nh} ⊆ M∂, therefore, M∂ = {(Pu, 0, PuA, 0,Hu, 0, 0) :
Pu ≥ 0, PuA ≥ 0,Hu = Nh}. Let ϕ0 be an initial value. Clearly there is only one equilibrium E0 =

(N∗, 0,Np − N∗, 0,Nh, 0, 0) in M∂, so ∪ϕ0∈M∂
ω(ϕ0) = E0. Therefore, {E0} is a compact and isolated

invariant set in ∂X0.
Next we claim that there exists a positive constant ` such that for any solution of model (2.1),

Ψt(ϕ0), ϕ0 ∈ X0, we have
lim sup

t→∞
d(Ψt(ϕ0), E0) ≥ `,

where d is a distant function in X0. We construct by contradiction so that we suppose the claim is not
true. Then lim supt→∞ d(Ψt(ϕ0), E0) ≤ ` for any ` > 0, namely, there exists a positive constant T , such
that N∗ − ` ≤ Pu(t) ≤ N∗ + `, Pc(t) ≤ `, Np − N∗ − ` ≤ PuA(t) ≤ Np − N∗ + `, PcA(t) ≤ `, Nh − ` ≤

Hu(t) ≤ Nh + `, Hc(t) ≤ `, Be(t) ≤ `, for any t > T . While t > T , we have,
P
′

c(t) ≥ αpβp(1 − η)(N∗ − `)Hc + κp(N∗ − `)Be − γcPc − εPc,

P
′

cA(t) ≥ αpβpA(Np − N∗ − `)Hc + κpA(Np − N∗ − `)Be − γcAPcA + εPc,

H
′

c(t) ≥ αpβh(1 − η)(Nh − `)Pc + αpβhA(1 − η)(Nh − `)PcA + κh(Nh − `)Be − µcHc,

B
′

e(t) ≥ υpPc + υpAPcA + υhHc − γbBe.

(3.4)

Consider the following auxiliary system:
P̃′c(t) = αpβp(1 − η)(N∗ − `)H̃c + κp(N∗ − `)B̃e − γcP̃c − εP̃c,

P̃′cA(t) = αpβpA(Np − N∗ − `)H̃c + κpA(Np − N∗ − `)B̃e − γcAP̃cA + εP̃c,

H̃′

c(t) = αpβh(1 − η)(Nh − `)P̃c + αpβhA(1 − η)(Nh − `)P̃cA + κh(Nh − `)B̃e − µcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e.

(3.5)

we define

J1(`) =


−γc − ε 0 αpβp(1 − η)(N∗ − `) κp(N ∗ −`)

ε −γcA αpβpA(1 − η)(Np − N∗ − `) κpA(Np − N∗ − `)
αpβh(1 − η)(Nh − `) αpβhA(1 − η)(Nh − `) −µc κh(Nh − `)

υp υpA υh −γb

 .
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For R0 > 1, by Corollary 4, we have s(J1(0)) > 0. Since s(J1(`)) is continuous for small `, so there
exists a positive constant ` small enough such that s(J1(`)) > 0. Thus, there is a positive eigenvalue of
s(J1(δ)) with a positive eigenvector. It is easy to see if t → ∞, then P̃c, P̃cA, H̃c, B̃e → ∞. Then by the
comparison principle we get

lim
t→∞

Pc = ∞, lim
t→∞

PcA = ∞, lim
t→∞

Hc = ∞, lim
t→∞

Be = ∞.

This contradicts our assumption and completes the proof of the claim.
The claim implies that {E0} is an isolated invariant set in X and W s(E0)∩X0 = ∅. Therefore, system

(2.1) is uniformly persistent if R0 > 1 by Theorem 1.3.1 in [47]. This completes the proof. �

4. Numerical simulations of the deterministic model

In this section we present numerical simulations on the deterministic model and sensitivity analysis
of the basic reproduction number in terms of model parameters.

Our deterministic model is simulated for 365 days. Data [24] collected in Beijing Tongren
Hospital, where a total of 23 beds were in the emergency ward and were always fully occupied, are
used to estimate the initial values of patients and healthcare workers. We assume an initial bacteria
density being 1000 ACC/cm2 as comparable to the measurement scale obtained by Bogusz et al. [48].
With the initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000) and parameter values

shown in Table 1, we simulate the following outcomes: numerical solutions of the deterministic
model (2.1), prevalences of colonized patients without or with antibiotic exposure, and the basic
reproduction number R0. Simulations are also performed to evaluate the effect of various interventions
on changing the prevalence of colonized patients and R0.
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Figure 2. Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA(t))
and colonized patients without or with antibiotic exposure (Pc(t), PcA(t)) of deterministic
model (2.1) with initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000), and

θu = 0.617, θuA = 0.349, θc = 0.003, θcA = 0.031 on admission. All parameter values are
given in Table 1.
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Figure 3. (a) Prevalence of colonized patients with or without antibiotic exposure; (b) density
of bacteria (ACC/cm2) in the environment of deterministic model (2.1) with initial values
(P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000) and θu = 0.617, θuA = 0.349, θc =

0.003, θcA = 0.031 on admission.

Figure 4. Model behaviors with various colonization ratios upon admission. (a) Prevalence
of colonized patients without antibiotic exposure; (b) prevalence of colonized patients with
antibiotic exposure (c) density of bacteria (ACC/cm2) in the environment of deterministic
model (2.1) with initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000).
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4.1. Behavior of the model

Using the baseline parameters in Table 1, Figures 2 and 3 give the behaviors of solutions to the
deterministic model (2.1), which imply that 36% of patients are colonized with MRSA with antibiotic
exposure, and 4% are colonized without antibiotic exposure; Figure 4 shows that, while with no
admission of MRSA-positive patients (θc = θcA = 0), 21% of patients are colonized with MRSA with
antibiotic exposure and 3% are colonized without antibiotic exposure; while with no admission of
patients with history of antibiotic exposure (θuA = θcA = 0), 27% of patients are colonized with MRSA
with antibiotic exposure, and 7.5% are colonized without antibiotic exposure; while with no
admission of patients with history of antibiotic exposure and MRSA-positive (θuA = θc = θcA = 0),
14% of patients are colonized with MRSA with antibiotic exposure, and 3.5% are colonized without
antibiotic exposure. Hence, to control hospital infections, we may need to reduce the proportion of
colonized patients (θc and θcA) at admission by increasing the detection and isolation of the admitted
MRSA patients and also reduce the proportion of uncolonized patients with antibiotic exposure (θuA)
by strengthening the public education about how to use antibiotics properly in the community.

4.2. Basic reproduction number

In the case where colonized patients are admitted into hospitals, the infections will always persist.
When θc = 0, θcA = 0, that is no colonized patients are admitted into hospital, the infection-free
equilibrium (IFE) is defined to be E0 = (Pu, Pc, PuA, PcA,Hu,Hc, Be) = (N∗, 0,Np − N∗, 0,Nh, 0, 0)
where N∗= θuγuANp

θuAγu+θuγuA+ε
. By parameters listed in Table 1, the basic reproduction number is estimated

to be 1.2860, which means that the infections are persistent. We want to reduce R0 to below unity
by some interventions. Here we perform some simulations to evaluate the effect of the following
interventions in reducing the prevalence of colonized patients with or without antibiotic exposure,
and R0: (1) Prescription rate of antibiotics ε; (2) Hand hygiene compliance of HCWS η; (3) The
discharge rate for colonized patients with or without antibiotic exposure γc and γcA, respectively; (4)
Environmental cleaning rate γb; and (5) Decontamination rate of HCWs µc.

The predicted effects of individual interventions on reducing the prevalence of MRSA and the
reproduction number R0 are shown in Figure 5. Figure 5A shows that increasing the compliance rate
of hand hygiene for HCWs, η, from 0.4 (baseline) to 1, just reduces R0 from 1.2860 to 1.2197, and
reduces the prevalence of colonized patients with or without antibiotic exposure by 4.51% (from
20.56% to 16.04%) and 0.54% (from 2.45% to 1.91%), respectively. When antibiotic prescribing rate
is reduced from 0.12 (baseline) to 0 (no antibiotic use), we get a result in around 19% reduction in the
prevalence of colonized patients with antibiotic exposure, while a little increase and then decrease in
the prevalence of colonized patients without antibiotic exposure, and a change from 1.2860 to 0.9251
in R0 in Figure 5B. We investigate the discharge rate (i.e., the reciprocal of the length of stay) of
colonized patients without antibiotic exposure γc, and with antibiotic exposure γcA, respectively, in
Figures 5C-5D. When the discharge rate of Pc is increased from the baseline value 0.06 to 0.2 (i.e.,
the length of stay of Pc is decreased from 16.6 days to 5 days), R0 reduces to 1.1308, and the
prevalence of PcA and Pc reduces by 9.58% (from 21.08% to 11.50%) and 1.72% (from 2.57% to
0.85%), respectively. Especially, we notice that if we decrease the discharge rate of PcA a little bit
from the baseline value 0.055, there are dramatic increases in both R0 and the prevalence of PcA.
However, many studies show that colonized patients with antibiotic exposure PcA usually lead to a
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Figure 5. Effects of individual interventions on the prevalence of colonized patient without
antibiotic exposure (dashed lines), colonized patients with antibiotic exposure (dashed-dot
lines) and the basic reproduction number R0 (solid lines). The following interventions
are investigated: (A) compliance with hand hygiene; (B) antibiotic prescribing rate; (C)
discharge rate of colonized patients without antibiotic exposure Pc; (D) discharge rate of
colonized patients with antibiotic exposure PcA; (E) environmental cleaning rate; and (F)
decontamination rate of HCWs.
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lengthier stay [15], which in turns makes the situation worse. Hence, the rapid and efficient treatment
of colonized patients, especially those with antibiotic exposure, is key in controlling MRSA
infections. Furthermore, we find that improving environmental cleaning rate γb is the most effective
intervention from Figure 5E. When the environmental cleaning rate is increased from 0.7 (baseline) to
1, we are able to decrease the prevalence of PcA and Pc from 20.56% to 1.99% and from 2.45% to
0.21%, respectively, and successfully reduce R0 to below unity. Figure 5F shows that decontamination
rate of HCWs has little effect.
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Figure 6. Model behaviors with different values of R0. (a) Prevalence of colonized patients
with or without antibiotic for an arbitrary choice of R0 < 1; (b) prevalence of colonized
patients with or without antibiotic for an arbitrary choice of R0 > 1.

Furthermore, Figure 6 presents a direct simulation of the stability transition at R0 = 1 to support our
above conclusion that when R0 < 1 the infection-free equilibrium is globally asymptotically stable and
when R0 > 1 the infection is uniformly persistent.

Observing that individual invention is hard to reduce R0 to below unity, we examine the effects of
combined interventions (Figure 7). When we decrease antibiotic use and in the meanwhile increase the
discharge rate of PcA, we reduce R0 to below unity efficiently (Figure 7(b)). Similar result occurs when
combining the increased environmental cleaning rate and decreased discharge rate of PcA (Figure 7(f)).

4.3. Sensitivity analysis

Latin hypercube sampling (LHS) method is used to engage a sensitivity analysis [49, 50]. Partial
rank correlation coefficients (PRCCs) are calculated for the following nine parameters against the
prevalence of colonized patients and R0 over time: discharge rate for colonized patients with
antibiotic exposure γcA, environmental cleaning rate γb, probability of colonization for PuA after a
contact with a contaminated HCW βpA, probability of contamination for HCW after a contact with a
colonized patient with antibiotic exposure βhA, hand hygiene compliance rate η, decontamination rate
of HCWs µc, shedding rate to the environment by colonized patients with antibiotic exposure υpA,
antibiotic prescribing rate ε, contamination rate from environment for uncolonized patients with
antibiotic exposure κpA. We also test for significant PRCCs for the above parameters to evaluate
which parameters are essential to our model. Since we find that the PRCC values vary little after
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Figure 7. Effects of two interventions on the basic reproduction number R0.
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Figure 8. (a)–(c) PRCCs of the nine parameters for Pc, PcA, Be when t=100 day; (d) PRCCs
for R0 when θc = θcA = 0. All the parameters come from Latin Hypercube sampling.
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about 100 days, it is reasonable and efficient for us to just study the PRCC values on this specific day
100 (Figure 8). Figure 8(d) implies that the first four parameters have the most impact on the outcome
of R0, which are the environmental cleaning rate γb, shedding rate to the environment by colonized
patients with antibiotic exposure υpA, contamination rate from the environment for uncolonized
patients with antibiotic exposure κpA, and antibiotic prescribing rate ε. From Figures 8(a)-8(c), we
illustrate the PRCC values of the nine examined parameters and corresponding p-values for different
outcome parameters for Pc, PcA, and Be. All simulations are done by MATLAB and input parameters
are assumed to be normally distributed, due to the lack of present data concerning distribution
functions, as shown in Table 2.

Table 2. Variables evaluated in the sensitivity analysis.

Symbol Distribution reference
γcA N(0.055, 0.005) estimated by [26]
γb N(0.7, 0.2) estimated by [26]
βpA N(0.43, 0.1) estimated by [26]
βhA N(0.2, 0.05) estimated by [26]
η N(0.4, 0.1) estimated by [26]
µc N(24, 5) estimated by [26]
υpA N(470, 150) estimated by [26]
ε N(0.12, 0.02) estimated by [26]
κpA N(0.000005, 0.0000006) estimated by [26]

5. Stochastic simulations

Finally we run some numerical simulations of the stochastic model. Using the baseline parameters
in Table 1 and initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000), we run 100

stochastic simulations of the SDE model (2.3). In Figure 9, the blue curves, red curves, and shaded
regions represent the averages of 100 runs, outputs of the deterministic model (2.1), and 90% bound
of 100 runs, respectively. It is shown that the average of stochastic runs is consistent with the outcome
of the deterministic model; however, randomness does make a difference in a single stochastic case.
Also, we study the effect of environmental cleaning rate γb and antibiotic prescribing rate ε on the
number of colonized patients in Figures 10 and 11, respectively. Compared with Figure 9, we increase
environmental cleaning rate, γb = 1, in Figure 10, which shows that increasing environmental
cleaning rate can reduce the average number of colonized patients in the SDE model. Similarly,
compared with Figure 9, we reduce the antibiotic use to an extreme case, ε = 0, in Figure 11, which
reduces the average number of colonized patients greatly in the SDE model.

Next, we consider the case with no admission of MRSA-positive patients, i.e., θc = θcA = 0, so R0

can be calculated. We have proved that when R0 < 1, MRSA infections will go to extinction in the
deterministic model (2.1). By choosing different parameter values to make R0 < 1 in both Figures 12
and 13, it is shown that MRSA infections do go to extinction in the deterministic model. However, the
average number of colonized patients in the SDEs model persists, even though it is small, in Figures 12
and 13. In the above simulations, the number of colonized patients was treated as a real number rather
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Figure 9. One hundred runs of the SDE model (2.3) with parameter values shown in Table
1 and initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000). The blue curves

represent the averages of 100 runs in each compartment, the red curves are the outputs of
deterministic model (2.1), and the shaded regions represent 90% bound of 100 SDE model
simulations.

Figure 10. One hundred runs of the SDE model (2.3) with γb=1, other parameter values
shown in Table 1 and initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000).

The blue curves represent the averages of 100 runs in each compartment, the red curves are
the outputs of deterministic model (2.1), and the shaded regions represent 90% bound of 100
SDE model simulations.
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Figure 11. One hundred runs of the SDE model (2.3) with ε=0, other parameter values
shown in Table 1, and initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000).

The blue curves represent the averages of 100 runs in each compartment, the red curves are
the outputs of deterministic model (2.1), and the shaded regions represent 90% bound of 100
SDE model simulations.

Figure 12. One hundred runs of the SDE model (2.3) with R0 < 1 ( γb=1, θc = θcA = 0),
other parameter values shown in Table 1, and initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) =

(4, 6, 7, 6, 17, 6, 1000). The blue curves represent the averages of 100 runs in each
compartment, the red curves are the outputs of deterministic model (2.1), and the shaded
regions represent 90% bound of 100 SDE model simulations.
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Figure 13. One hundred runs of the SDE model (2.3) with R0 < 1 (ε=0, θc = θcA = 0, γb = 2),
other parameter values shown in Table 1, and initial values (P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) =

(4, 6, 7, 6, 17, 6, 1000). The blue curves represent the averages of 100 runs in each
compartment, the red curves are the outputs of deterministic model (2.1), and the shaded
regions represent 90% bound of 100 SDE model simulations.
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Figure 14. Behavior of the SDE model (2.3) (simulation at one time) with R0 < 1
(θc = θcA = 0, γb = 1.5), other parameter values shown in Table 1, and initial values
(P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000). The black curves are the outcomes

of the deterministic model (2.1).
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Figure 15. One hundred runs of the SDE model (2.3) with initial values
(P0

u, P
0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (34, 16, 17, 16, 17, 6, 1000) and parameter values shown in

Table 1. The blue curves represent the averages of 100 runs in each compartment, the red
curves are the outputs of deterministic model (2.1), and the shaded regions represent 90%
bound of 100 SDE model simulations.

than an integer. In order to intuitively see a difference between deterministic and stochastic models for
a small population, in Figure 14, we round the real number to the nearest integer. This shows that with
no admission of colonized patients, there are still reinfections after the number of colonized patients
drops to zero, which indicates that the free-living bacteria may persist in the environment and later be
transmitted back to the patients. That is to say, the free-living bacteria in the environment may be able
to cause a later outbreak even though the infections have been died out from patients. Hence, hospitals
should pay attention to environmental cleaning strategies to prevent MRSA infections.

Furthermore, in a relatively large population, where we consider initial values

(P0
u, P

0
uA, P

0
c , P

0
cA,H

0
u ,H

0
c , B

0
e) = (34, 16, 17, 16, 17, 6, 1000),

Figure 15 shows that the average of multiple stochastic runs is consistent with the deterministic
outcome.

6. Discussion and conclusions

We developed a comprehensive study of MRSA infections in hospitals, which includes crucial
factors such as antibiotic exposure and environmental contamination. Both deterministic and
stochastic mathematical models were developed to study the transmission dynamics of MRSA
infections in hospitals, including uncolonized patients without and with antibiotic exposure, colonized
patients without and with antibiotic exposure, uncontaminated and contaminated health-care workers,
and free-living MRSA. Under the assumption that there is no admission of the colonized patients, the
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basic reproduction number R0 was calculated. It was shown that when R0 < 1 the infection-free
equilibrium is globally asymptotically stable, and when R0 > 1 the infection is uniformly persistent.

For the deterministic model, numerical simulations were performed to demonstrate the behavior of
the solutions, the effect of several interventions on reducing the prevalence of colonized patients and
the basic reproduction number, and the dependence and sensitivity of the basic reproduction number
of various parameters. Until recently, control strategies focus on the direct transmission between
HCWs and patients, however, our results strongly supported that the environmental cleaning is the
most effective intervention. When we increased the environmental cleaning rate, we could decrease
the prevalence of colonized patients greatly and successfully reduce R0 to below unity in Figure 5.
Sensitively analysis in Figure 8 also showed that the environmental cleaning rate γb, shedding rate to
the environment by colonized patients with antibiotic exposure υpA, contamination rate from the
environment for uncolonized patients with antibiotic exposure κpA, and antibiotic prescribing rate ε
had remarkable impacts on the number of colonized patients and R0. Even though it is difficult to
quantify the environmental cleaning, we suggest that hospitals should try to use more effective
cleaning products, improve monitoring strategies such as providing feedback to cleaning teams, and
even use new technology (cleaning robots) to supplement the manual cleanings. Besides, it was
shown that a higher discharge rate is associated with a lower prevalence of MRSA. The rapid and
efficient treatment of colonized patients, especially those with antibiotic exposure, is key in
controlling MRSA infections. However, the discharge rate depends on the time required for treatment
and cannot be arbitrarily modified at will, which makes the control of MRSA infections challenge. In
the cases of outbreaks, hospitals should try proper isolation of those colonized patients. Also,
screening and isolating colonized patients at admission are important control strategies. Our study
also emphasized the importance of effective antimicrobial stewardship programs in reducing
antibiotic usage both in hospitals and communities.

For the stochastic model, numerical simulations were also carried out to study the behavior of the
stochastic model and the effect of antibiotic prescribing rate ε, and environmental cleaning rate γb,
on the number of colonized patients, respectively. Moreover, we chose different parameter values to
make R0 < 1 and found that MRSA infections go to extinction in the deterministic model; however,
the average number of colonized patients in multiple stochastic runs persisted in Figures 12 and 13. In
order to intuitively see a difference between deterministic and stochastic models for a small population,
in Figure 14, we rounded the real number to the nearest integer. This shows that the free-living bacteria
in the environment may be able to cause a later outbreak even though the infections have been died out
from patients. Hence, hospitals should pay attention to environmental cleaning strategies to prevent
MRSA infections.

In the proposed model, the heterogeneity in infection risk among different types of wards was
omitted and free-living bacteria were assumed to be uniformly distributed for the sake of simplicity;
however, heterogeneity should be taken into account in the future work for a more realistic
consideration [12, 14]. Also, model parameters were regarded as a constant, however, it is not
necessarily true in the real world. In applications, parameters in the model need to be inferred from
noisy data. Recent works have developed several methods to infer parameters in models with complex
and flexible structures [51–53], which should be potentially considered in future works. In addition,
in current model the complex contact pattern was simplified to a full mixing, however, it may be
useful to take into account the contact network structure in future works to represent heterogeneity in
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population behavior, locations and contact patterns [54, 55]. In current model setting, patients were
assumed to be hospitalized and under antibiotic treatments because of other diseases, then for those
patients with antibiotic treatment, they were just more likely to be colonized by MRSA, and then had
a lower probability of successful treatment, a lengthier stay in hospitals and extra costs of treatment.
That is to say, we ignored the difference between colonized patients and infected patients since
treatment should be needed for infected patients. A more comprehensive work may be done in the
future [15]. Furthermore, an extension should be specifically compared with this proposed model and
its conclusions and applied to actual MRSA infection data in hospitals ( [25, 57]).
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