Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Verifier-based anonymous password-authenticated key exchange protocol in the standard model

  • Anonymous password-authenticated key exchange (APAKE) allows a client to authenticate herself and to establish a secure session key with a remote server via only a low-entropy password, while keeping her actual identity anonymous to the third party as well as to the server. Since that APAKE protocol enjoys both the convenience of password authentication and the advantage of privacy protection, researchers have paid much attention to them. However, most of the existing APAKE protocols are designed in the symmetric setting which does not take into consideration the threat of password file leakage. To mitigate the damage of server compromise, we propose a verifier-based anonymous password-authenticated key exchange protocol, in which the server holds a verifier corresponding to each client instead of the clear password. The construction of our protocol is built on standard cryptographic primitives such public key encryption, smooth projective hash functions and password hashing schemes. The resulting protocol is proved secure in the standard model, i.e., without resorting to random oracles. Comparisons with other similar schemes show that our protocol guarantees stronger security while enjoys considerable efficiency in terms of computational cost.

    Citation: Qihui Zhang, Pradeep Chaudhary, Saru Kumari, Zhiyin Kong, Wenfen Liu. Verifier-based anonymous password-authenticated key exchange protocol in the standard model[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3623-3640. doi: 10.3934/mbe.2019180

    Related Papers:

    [1] Shumoua F. Alrzqi, Fatimah A. Alrawajeh, Hany N. Hassan . An efficient numerical technique for investigating the generalized Rosenau–KDV–RLW equation by using the Fourier spectral method. AIMS Mathematics, 2024, 9(4): 8661-8688. doi: 10.3934/math.2024420
    [2] Xiaoli Wang, Lizhen Wang . Traveling wave solutions of conformable time fractional Burgers type equations. AIMS Mathematics, 2021, 6(7): 7266-7284. doi: 10.3934/math.2021426
    [3] Zhengang Zhao, Yunying Zheng, Xianglin Zeng . Finite element approximation of fractional hyperbolic integro-differential equation. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841
    [4] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [5] Jian-Gen Liu, Jian Zhang . A new approximate method to the time fractional damped Burger equation. AIMS Mathematics, 2023, 8(6): 13317-13324. doi: 10.3934/math.2023674
    [6] Weiwen Wan, Rong An . Convergence analysis of Euler and BDF2 grad-div stabilization methods for the time-dependent penetrative convection model. AIMS Mathematics, 2024, 9(1): 453-480. doi: 10.3934/math.2024025
    [7] Shanhao Yuan, Yanqin Liu, Yibin Xu, Qiuping Li, Chao Guo, Yanfeng Shen . Gradient-enhanced fractional physics-informed neural networks for solving forward and inverse problems of the multiterm time-fractional Burger-type equation. AIMS Mathematics, 2024, 9(10): 27418-27437. doi: 10.3934/math.20241332
    [8] Xin Zhao, Xin Liu, Jian Li . Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem. AIMS Mathematics, 2020, 5(5): 5240-5260. doi: 10.3934/math.2020337
    [9] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [10] Muhammad Asim Khan, Norma Alias, Umair Ali . A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697
  • Anonymous password-authenticated key exchange (APAKE) allows a client to authenticate herself and to establish a secure session key with a remote server via only a low-entropy password, while keeping her actual identity anonymous to the third party as well as to the server. Since that APAKE protocol enjoys both the convenience of password authentication and the advantage of privacy protection, researchers have paid much attention to them. However, most of the existing APAKE protocols are designed in the symmetric setting which does not take into consideration the threat of password file leakage. To mitigate the damage of server compromise, we propose a verifier-based anonymous password-authenticated key exchange protocol, in which the server holds a verifier corresponding to each client instead of the clear password. The construction of our protocol is built on standard cryptographic primitives such public key encryption, smooth projective hash functions and password hashing schemes. The resulting protocol is proved secure in the standard model, i.e., without resorting to random oracles. Comparisons with other similar schemes show that our protocol guarantees stronger security while enjoys considerable efficiency in terms of computational cost.


    In this article, we consider the following time-fractional generalized Rosenau-RLW-Burgers equation:

    utC0Dαtuxx+C0Dβtuxxxx+uxuxx+f(u)x=g(x,t), (x,t)Ω×J, (1.1)

    with boundary conditions

    u(x,t)=uxx(x,t)=0, (x,t)Ω×ˉJ, (1.2)

    and initial condition

    u(x,0)=u0(x), xΩ, (1.3)

    where Ω=(a,b) is the spatial domain, J=(0,T] is the time interval with T(0,), and g(x,t) is a known source term function. The nonlinear term f(u) satisfies the assumption condition |f(u)|cf(u)|u|, where cf(u) is a positive constant on u. C0Dαtu and C0Dβtu are both Caputo fractional derivatives with 0<α,β<1. Since C0Dγtu=γ(uu0)tγ, all of the above Caputo fractional derivatives can be converted into the Riemann-Liouville fractional derivative, note that

    γutγ=1Γ(1γ)tt0u(x,s)(ts)γds,0<γ<1. (1.4)

    Specifically, when α=1, β=1, (1.1) degenerates into the generalized Rosenau-RLW-Burgers equation which can be seen as the combined system between the generalized Rosenau-RLW equation and the generalized Rosenau-Burgers equation.

    The RLW equation, the Rosenau equation, and their combined systems with other equations are significant mathematical and physical equations that effectively describe nonlinear wave behaviors. These equations have become interesting topics in the study of nonlinear dispersion dynamics. Since obtaining analytical solutions for these equations is challenging, studying their numerical methods is paramount. Over the years, there has been extensive research on numerical methods for solving this type of equation. In [1], Atouani and Omrani discussed the numerical solution of the Rosenau-RLW (RRLW) equation based on the Galerkin finite element method. In [2], He and Pan developed a three-level, linearly implicit finite difference method for solving the generalized Rosenau-Kawahara-RLW equation. In [3], Wongsaijai and Poochinapan developed a pseudo-compact finite difference scheme for solving the generalized Rosenau-RLW-Burgers equation. In [4], Mouktonglang et al. analyzed a generalized Rosenau-RLW-Burgers equation with periodic initial-boundary value. For more papers on related equations, please refer to [5,6,7,8]. It is worth noting that the literature on the fractional generalized Rosenau-RLW-Burgers equation is relatively scarce, and its analytical solution is difficult to obtain. Therefore, we have to consider effective numerical methods such as finite element methods [9,10,11,12], finite difference methods [13,14,15], finite volume methods [16], spectral methods [17,18,19], and mixed finite element methods [20,21,22]. In addition, the existence of time-fractional derivatives increases the difficulty of studying numerical methods. Therefore, it is crucial to choose an appropriate high-order approximation formula for the fractional derivative to establish a stable numerical scheme for (1.1).

    In 1986, Lubich [23] proposed the convolution quadrature (CQ) formula for Riemann Liouville fractional operators using the discrete convolution. In [24], Chen et al. developed an alternating direction implicit fractional trapezoidal rule type to solve a two-dimensional fractional evolution equation. In [25], Jin et al. proposed a corrected approximation formula for high-order BDFs through appropriate initial modifications to discretize fractional evolution equations. Based on the CQ formula, in [26], Liu et al. developed the shifted convolution quadrature (SCQ) theory, which extended the CQ formula at xnθ and discussed the constraints of parameter θ. In [27], Yin et al. studied the generalized BDF2-θ with the finite element method for solving the fractional mobile/immobile transport model, and also developed a correction scheme by adding the starting part to restore convergence order. For more related papers, please refer to [28,29,30,31,32,33].

    In this article, we develop the generalized BDF2-θ in time combined with the mixed finite element method in space to solve (1.1). The focuses of this article are as follows:

    ● It is noted that the time-fractional generalized Rosenau-RLW-Burgers equation containing two time-fractional operators is studied.

    ● The stability of the time-fractional generalized Rosenau-RLW-Burgers equation (1.1) based on the mixed finite element method is given.

    ● Based on a comprehensive analysis of some numerical examples, the numerical method's feasibility and effectiveness have been extensively validated. Specifically, the issue of decreasing the convergence rate of nonsmooth solutions is solved by adding correction terms.

    The structure of this article is as follows: In Section 2, the generalized BDF2-θ is introduced, and the fully discrete mixed finite element scheme is provided. In Section 3, the existence and uniqueness theorem for the fully discrete mixed finite element scheme is given. In Section 4, the stability of the scheme is proved. In Section 5, some numerical examples with smooth and nonsmooth solutions based on the discrete scheme are presented. In Section 6, some conclusions are given.

    In this section, we present the fully discrete mixed finite element scheme for (1.1) in space, which combines the generalized BDF2-θ in time. The generalized BDF2-θ with the starting part is introduced in [27]. Further, we divide the time interval [0,T] into 0=t0<t1<<tN1<tN=T, and let tn=nτ(n=1,2,,N), where τ is time step length size and N is a positive integer.

    For the convenience of research, set ˆu:=uu0, and assume that ˆu has the following form:

    ˆu(x,t)=ˆu1(x,t)+ˆu2(x,t):=κj=1cjtσj+tσκ+1ϕ(x,t), (2.1)

    where cj=c(x), 1<σ1<σ2<<σκ<σκ+1 and ϕ(x,t) is sufficiently differentiable with respect to t.

    Using ˆu:=uu0, we can write (1.1)–(1.3) as

    ˆutαˆuxxtα+βˆuxxxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t),(x,t)Ω×J, (2.2)

    with boundary conditions

    ˆu(x,t)=ˆuxx(x,t)=0,(x,t)Ω×ˉJ, (2.3)

    and initial condition

    ˆu(x,0)=0,xΩ, (2.4)

    where ˆg(x,t)=g(x,t)+(u0)x(u0)xx.

    Now, we introduce an auxiliary variable q=ˆuxx to obtain the following coupled system:

    ˆutαˆuxxtα+βqxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t), (2.5)

    and

    q=ˆuxx. (2.6)

    Multiplying (2.5) and (2.6) by vH10 and wH10, respectively, integrating the result equations, and using integration by parts, we obtain the following weak form:

    (ˆut,v)+(αˆuxtα,vx)(βqxtβ,vx)(ˆu,vx)+(ˆux,vx)(f(ˆu),vx)=(ˆg,v),vH10, (2.7)

    and

    (q,w)+(ˆux,wx)=0,wH10. (2.8)

    To provide the fully discrete numerical scheme, we first introduce the relevant formulas and lemmas for the generalized BDF2-θ.

    For smooth functions ˆu and q in [0,T], we let ˆun=ˆu(,tn), qn=(,tn). The approximation formula for the Riemann-Liouville fractional derivative at time tnθ with the generalized BDF2-θ is

    γˆunθtγ=τγnj=0ω(γ)jˆunj+τγκj=1ω(γ)n,jˆuj+Rnθγ:=Ψγ,nτˆu+Sγ,nτ,κˆu+Rnθγ, (2.9)

    where |Rnθγ|Cτ2.

    The discrete convolution part is denoted as

    Ψγ,nτˆu:=τγnj=0ω(γ)jˆunj, (2.10)

    and the starting part is

    Sγ,nτ,κˆu:=τγκj=1ω(γ)n,jˆuj. (2.11)

    The convolution weights {ω(γ)j}j=0 in (2.10) are generated by the following generating function:

    ω(γ)(ξ)=(3γ2θ2γ2γ2θγξ+γ2θ2γξ2)γ. (2.12)

    Lemma 2.1. [27] We give the convolution weights {ω(γ)j}j=0 of the generalized BDF2-θ as follows:

    ω(γ)0=(3γ2θ2γ)γ,ω(γ)1=2(θγ)(2γ3γ2θ)1γ,ω(γ)j=2γj(3γ2θ)[2(γθ)(j1γ1)ω(γ)j1+(γ2θ)(1j22γ)ω(γ)j2],j2. (2.13)

    Lemma 2.2. [27] The starting weights {ω(γ)n,j}κj=1 of the generalized BDF2-θ are given as the following:

    κj=1ω(γ)n,jj=Γ(+1)Γ(γ+1)(nθ)γnj=1ω(γ)njj,=σ1,σ2,,σκ. (2.14)

    Lemma 2.3. [12,15] For ˆuC4[0,π], the following two approximate formulas at tnθ hold:

    g(tnθ)=gnθ+O(τ2),f(ˆu(tnθ))=f(ˆunθ)+O(τ2), (2.15)

    where gnθ:=(1θ)gn+θgn1 and f(ˆunθ):=(2θ)f(ˆun1)(1θ)f(ˆun2).

    Next, we have the following approximate formula:

    ˆu(tnθ)=ˆunθ+S0,nτ,κˆu+O(τ2):=(1θ)ˆun+θˆun1+S0,nτ,κˆu+O(τ2). (2.16)

    Without considering the starting part, we can obtain the weak form of (2.5) and (2.6) at tnθ:

    (Ψ1,nτˆu,v)+(Ψα,nτˆux,vx)(Ψβ,nτqx,vx)(ˆunθ,vx)+(ˆunθx,vx)=(f(ˆunθ),vx)+(ˆgnθ,v)(Rnθ1,v), (2.17)

    and

    (qnθ,w)+(ˆunθx,wx)=(Rnθ2,w), (2.18)

    where Rnθ1=O(τ2) and Rnθ2=O(τ2).

    To establish the fully discrete mixed finite element scheme, we introduce the following finite element space:

    Vh={vh|vhH10,vh|IiPk(Ii),IiTh,k1},

    where Th is a subdivision of ˉΩ=[a,b] into M subintervals Ii=[xi1,xi], with hi=xixi1, h=max1iMhi, and Pk(Ii) represent the polynomials with a degree less than or equal to k in Ii.

    Next, we provide linear basis functions {φi}Mi=1 of finite element space Vh as follows:

    φi(x)={1+xxihi,xIi,1xxihi+1,xIi+1,0,others, (2.19)
    φM(x)={1+xxMhM,xIM,0,others. (2.20)

    Based on the above finite element space, we find {Unθ,Qnθ}Vh×Vh satisfying

    (Ψ1,nτU,V)+(Ψα,nτUx,Vx)(Ψβ,nτQx,Vx)(Unθ,Vx)+(Unθx,Vx)=(f(Unθ),Vx)+(ˆgnθ,V),VVh, (2.21)

    and

    (Qnθ,W)+(Unθx,Wx)=0,WVh. (2.22)

    Theorem 3.1. The solution of the fully discrete mixed finite element scheme (2.21) and (2.22) is uniquely solvable.

    Proof. Taking basis functions {φi}Mi=1 of finite element space Vh, we have

    Un=Mi=1uniφi,Qn=Mi=1qniφi. (3.1)

    Taking V=φj and W=φj from (2.21) and (2.22), we have

    τ1ω(1)0AUn+ταω(α)0BUn+(1θ)BUn(1θ)CUnτβω(β)0BQn=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk, (3.2)

    and

    (1θ)BUn+(1θ)AQn=θBUnθAQn, (3.3)

    where

    A=[(φi,φj)]T1i,jM,B=[(φix,φjx)]T1i,jM,C=[(φi,φjx)]T1i,jM,Fnθ=[(f(Unθ),φ1x),,(f(Unθ),φMx)]T,Gnθ=[(gnθ,φ1),,(gnθ,φM)]T.

    Obviously, A and B are symmetric and positive definite. Further, processing the boundary and simplifying the right-hand term, we have

    (τ1ω(1)0˜A+ταω(α)0˜B+(1θ)˜B(1θ)˜C)Unτβω(β)0˜BQn=Hn1, (3.4)

    and

    (1θ)˜BUn+(1θ)˜AQn=Hn2, (3.5)

    where

    Hn1=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk,Hn2=θBUnθAQn.

    Multiplying (3.4) by τ˜A1, we have

    (ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C)Unτ1βω(β)0˜A1˜BQn=τ˜A1Hn1. (3.6)

    Further, rewrite (3.5) as

    Qn=Hn3, (3.7)

    where Hn3=(1θ)1˜A1Hn2˜A1˜BUn.

    Substitute (3.7) into (3.6) to obtain

    KUn=Hn4, (3.8)

    where

    K=ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C+τ1βω(β)0˜A1˜B˜A1˜B,
    Hn4=τ˜A1Hn1+τ1β(1θ)1ω(β)0˜A1˜B˜A1Hn2.

    It is easy to see that (3.7) and (3.8) are equivalent to (3.4) and (3.5). Due to τ being small enough and E being an identity matrix, the matrix K is invertible. Additionally, since Uk(k=0,1,,n1) is known, after multiple iterations, (3.7) and (3.8) have a unique solution.

    Remark 3.1. Since we introduce the auxiliary variable q=ˆuxx to transform (2.2) into a first-order system (2.5) and (2.6), according to [34,35], the mixed finite element scheme (2.21) and (2.22) do not need to satisfy the LBB condition. In [36], the LBB condition is a condition for the problem to be well posed. From this perspective, typically satisfying the LBB condition is to obtain the existence and uniqueness of a solution. Although the mixed finite element scheme in this article does not need to satisfy the LBB condition, it still satisfies the existence and uniqueness of a solution.

    Lemma 4.1. [12,14] For UmVh, satisfying Um=0(m<0), we have

    (Ψ1,mtU,Umθ)14τ(H[Um]H[Um1]), m1,

    where

    H[Um]=(32θ)

    and

    \mathbb{H}[U^m]\ge\frac{1}{1-\theta}\|U^m\|^2,\ m\ge1.

    Lemma 4.2. [27] } {For any vector (v^0, v^1, \cdots, v^{n-1})\in \mathbb{R}^n , defining \{\omega_k^{(\gamma)}\}_{k = 0}^{\infty}\; (0 < \gamma < 1) be a sequence of coefficients of the generating function \omega^{(\gamma)}(\xi) in (2.12) and 0\le\theta\le\min\{\gamma, \frac{1}{2}\} , we have

    \sum\limits_{m = 1}^{n-1}v^m\sum\limits_{k = 1}^{m}\omega_{m-k}^{(\gamma)} v^k\ge0,\ n\ge1.

    Theorem 4.1. Let u^n_h = U^n+\bar{u}_h^0 , where \bar{u}_h^0 is an approximation of u_0 , the following stability of the fully discrete scheme (2.21) and (2.22) holds:

    \begin{equation} \|u_h^L\|^2\ \le\ C\left(\|\bar{u}_h^0 \|^2+\tau\sum\limits_{n = 1}^{L}\|g^{n-\theta} \|^2\right),\ 1\le L \le N, \end{equation} (4.1)

    where C is a positive constant independent of h and \tau .

    Proof. Taking V = U^{n-\theta} , W = \Psi_{\tau}^{\beta, n}Q , (2.21) and (2.22) can be written as

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)-(\Psi_{\tau}^{\beta,n}Q_{x},U^{n-\theta}_x)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}), \end{split} \end{equation} (4.2)

    and

    \begin{equation} (Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+(U^{n-\theta}_{x},\Psi_{\tau}^{\beta,n}Q_x) = 0. \end{equation} (4.3)

    Adding (4.2) and (4.3), we have

    \begin{equation} \begin{split} &(\Psi_{\tau}^{1,n} U,U^{n-\theta})+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ = &(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.4)

    Using Lemma 4.1, we obtain

    \begin{equation} \begin{split} &\frac{1}{4\tau}(\mathbb{H}[U^n]-\mathbb{H}[U^{n-1}])+(\Psi_{\tau}^{\alpha,n} U_{x},U^{n-\theta}_x)+(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+\|U_{x}^{n-\theta }\|^2\\ \le&(U^{n-\theta},U^{n-\theta}_x)+(f(U^{n-\theta}),U^{n-\theta}_x)+(\hat{g}^{n-\theta},U^{n-\theta}). \end{split} \end{equation} (4.5)

    Multiply (4.5) by 4\tau and sum it with respect to n from 1 to L to get

    \begin{equation} \begin{split} &\mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)+ 4\tau\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2\\ \le&4\tau\left(\sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x)+\sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\right). \end{split} \end{equation} (4.6)

    By the Hölder inequality and Young inequality, the three terms on the right-hand side of (4.6) can be expanded to

    \begin{equation} \sum\limits_{n = 1}^{L}(U^{n-\theta},U^{n-\theta}_x)\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{equation} (4.7)
    \begin{equation} \begin{split} \sum\limits_{n = 1}^{L}(f(U^{n-\theta}),U^{n-\theta}_x) \le&\sum\limits_{n = 1}^{L}\|c_f(U^{n-\theta})\|_{\infty}\|U^{n-\theta}\|\|U^{n-\theta}_x\| \\ \le& C\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2+\frac{1}{2}\sum\limits_{n = 1}^{L}\|U_{x}^{n-\theta }\|^2, \end{split} \end{equation} (4.8)
    \begin{equation} \sum\limits_{n = 1}^{L}(\hat{g}^{n-\theta},U^{n-\theta})\le\frac{1}{2}\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2 +\frac{1}{2}\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2, \end{equation} (4.9)

    where we use the bounded condition \|c_f(U^{n-\theta})\|_{\infty}\leq C .

    Substituting (4.7)–(4.9) into (4.6), we arrive at

    \begin{equation} \begin{split} & \mathbb{H}[U^L]-\mathbb{H}[U^{0}]+ 4\tau\sum\limits_{n = 1}^{L}(\Psi_t^{\alpha,n} U_{x},U^{n-\theta}_x)+ 4\tau\sum\limits_{n = 1}^{L}(Q^{n-\theta},\Psi_{\tau}^{\beta,n}Q)\\ \le& C\tau \left(\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2+\sum\limits_{n = 1}^{L}\|U^{n-\theta}\|^2\right). \end{split} \end{equation} (4.10)

    In what follows, using Lemmas 4.1 and 4.2 and the Gronwall inequality, we have

    \begin{equation} \|U^L\|^2-\|U^0\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.11)

    Since U^0 = 0 , we obtain

    \begin{equation} \|U^L\|^2\le C\tau\sum\limits_{n = 1}^{L}\|\hat{g}^{n-\theta}\|^2. \end{equation} (4.12)

    Noting that U^L = u^L_h-\bar{u}_h^0 and using the triangle inequality, the conclusion of this theorem is derived.

    In this section, we present numerical simulation results for both smooth and nonsmooth solutions to verify the effectiveness of the numerical scheme. Next, we set the nonlinear term f(u) = u^2 , the spatial domain \Omega = (0, 1) , and the time interval J = (0, 1] .

    Example 5.1 The exact solution is u(x, t) = t^{2}\sin(2\pi x) satisfying u(x, 0) = 0 , and the known source function g(x, t) is given by

    \begin{equation} g(x,t) = \sin(2\pi x)\left(2t+\frac{8\pi ^2t^{2-\alpha}}{\Gamma(3-\alpha)}+\frac{32\pi^4t^{2-\beta}}{\Gamma(3-\beta)}+4\pi^2t^2\right)+2\pi t^2\cos(2\pi x)+2\pi t^4\sin(4\pi x ). \end{equation} (5.1)

    In Table 1, fixing \tau = 1/1000 and choosing h = 1/10, 1/20, 1/40, 1/80 , we provide the L^2 -errors and the spatial convergence rates for u and q with different parameters \alpha , \beta , and \theta , where \theta\le\min\{\alpha, \beta, \frac{1}{2}\} . Similarly, in Table 2, taking h = 1/1000 , we calculate the L^2 -errors and the time convergence rates with \tau = 1/10, 1/20, 1/40, 1/80 . From Tables 1 and 2, one can see that the convergence rates in both space and time are close to 2 when the exact solution is smooth. In Table 3, if \theta > \min\{\alpha, \beta, \frac{1}{2}\} , the convergence accuracy will be unstable, which verifies the range of \theta values from a numerical perspective. To observe the effect of numerical simulation more clearly, we provide the comparison images between numerical solutions and exact solutions. In Figure 1, we show distinct comparison images of the numerical solutions of u_h and q_h and the exact solutions of u and q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , and \theta = 0.2 .

    Table 1.  Spatial convergence results with \tau = 1/1000 .
    \alpha \beta \theta h \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.2165E-02 - 2.6449E-02 -
    0.2 1/20 5.6375E-03 1.9752 6.1401E-03 2.1069
    1/40 1.4151E-03 1.9941 1.5121E-03 2.0217
    1/80 3.5399E-04 1.9992 3.8250E-04 1.9830
    1/10 2.2165E-02 - 2.6470E-02 -
    0.2 0.8 -0.5 1/20 5.6369E-03 1.9753 6.1607E-03 2.1032
    1/40 1.4146E-03 1.9945 1.5327E-03 2.0070
    1/80 3.5346E-04 2.0008 4.0308E-04 1.9269
    1/10 2.2164E-02 - 2.6490E-02 -
    -1 1/20 5.6364E-03 1.9754 6.1810E-03 2.0996
    1/40 1.4141E-03 1.9949 1.5530E-03 1.9928
    1/80 3.5293E-04 2.0024 4.2346E-04 1.8747
    1/10 2.1828E-02 - 4.0463E-02 -
    0.5 1/20 5.5499E-03 1.9756 9.6844E-03 2.0629
    1/40 1.3932E-03 1.9941 2.3964E-03 2.0148
    1/80 3.4861E-04 1.9987 5.9910E-04 2.0000
    1/10 2.1828E-02 - 4.0465E-02 -
    0.5 0.5 0.2 1/20 5.5499E-03 1.9757 9.6868E-03 2.0626
    1/40 1.3931E-03 1.9941 2.3988E-03 2.0137
    1/80 3.4854E-04 1.9989 6.0151E-04 1.9956
    1/10 2.1826E-02 - 4.0523E-02 -
    -1 1/20 5.5484E-03 1.9759 9.7445E-03 2.0561
    1/40 1.3916E-03 1.9953 2.4564E-03 1.9880
    1/80 3.4706E-04 2.0035 6.5921E-04 1.8977
    1/10 2.1399E-02 - 5.8275E-02 -
    0.2 1/20 5.4386E-03 1.9763 1.4195E-02 2.0375
    1/40 1.3651E-03 1.9943 3.5279E-03 2.0085
    1/80 3.4156E-04 1.9988 8.8248E-04 1.9992
    1/10 2.1399E-02 - 5.8276E-02 -
    0.8 0.2 0 1/20 5.4386E-03 1.9763 1.4196E-02 2.0374
    1/40 1.3650E-03 1.9943 3.5290E-03 2.0082
    1/80 3.4153E-04 1.9989 8.8360E-04 1.9978
    1/10 2.1396E-02 - 5.8410E-02 -
    -1 1/20 5.4352E-03 1.9769 1.4329E-02 2.0272
    1/40 1.3616E-03 1.9970 3.6619E-03 1.9683
    1/80 3.3812E-04 2.0097 1.0167E-03 1.8487

     | Show Table
    DownLoad: CSV
    Table 2.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 1.9614E-03 - 7.7510E-02 -
    0.2 1/20 5.0017E-04 1.9714 1.9814E-02 1.9679
    1/40 1.2703E-04 1.9773 5.0533E-03 1.9712
    1/80 3.2128E-05 1.9832 1.2867E-03 1.9736
    1/10 7.2565E-03 - 2.8650E-01 -
    0.2 0.8 -0.5 1/20 1.8309E-03 1.9867 7.2335E-02 1.9858
    1/40 4.6032E-04 1.9919 1.8206E-02 1.9903
    1/80 1.1551E-04 1.9946 4.5778E-03 1.9917
    1/10 1.2197E-02 - 4.8151E-01 -
    -1 1/20 3.1215E-03 1.9662 1.2329E-01 1.9655
    1/40 7.8542E-04 1.9907 3.1091E-02 1.9875
    1/80 1.9579E-04 2.0042 7.8135E-03 1.9924
    1/10 5.3041E-04 - 2.1042E-02 -
    0.5 1/20 1.3386E-04 1.9863 5.3622E-03 1.9724
    1/40 3.3676E-05 1.9910 1.3637E-03 1.9753
    1/80 8.4582E-06 1.9933 3.4761E-04 1.9720
    1/10 1.1457E-03 - 4.5326E-02 -
    0.5 0.5 0.2 1/20 2.8884E-04 1.9879 1.1461E-02 1.9836
    1/40 7.2679E-05 1.9907 2.8911E-03 1.9871
    1/80 1.8260E-05 1.9929 7.2972E-04 1.9862
    1/10 1.5622E-02 - 6.1668E-01 -
    -1 1/20 4.0111E-03 1.9615 1.5838E-01 1.9611
    1/40 1.0095E-03 1.9904 3.9868E-02 1.9901
    1/80 2.5362E-04 1.9929 1.0017E-02 1.9928
    1/10 5.2861E-04 - 2.0885E-02 -
    0.5 1/20 1.3465E-04 1.9730 5.3245E-03 1.9717
    1/40 3.4107E-05 1.9811 1.3530E-03 1.9765
    1/80 8.5857E-06 1.9901 3.4270E-04 1.9812
    1/10 2.2763E-03 - 8.9851E-02 -
    0.8 0.5 0 1/20 5.7402E-04 1.9875 2.2660E-02 1.9874
    1/40 1.4460E-04 1.9890 5.7086E-03 1.9889
    1/80 3.6405E-05 1.9899 1.4372E-03 1.9898
    1/10 1.5534E-02 - 6.1313E-01 -
    -1 1/20 3.9902E-03 1.9609 1.5749E-01 1.9609
    1/40 1.0033E-03 1.9917 3.9605E-02 1.9916
    1/80 2.5177E-04 1.9946 9.9391E-03 1.9945

     | Show Table
    DownLoad: CSV
    Table 3.  Time convergence results with h = 1/1000 .
    \alpha \beta \theta \tau \|u_h-u\| Rate \|q_h-q\| Rate
    1/10 2.4519E-03 - 9.6803E-02 -
    0.1 0.9 0.11 1/20 6.2095E-04 1.9813 2.4519E-02 1.9811
    1/40 5.2080E-04 0.2538 2.0647E-02 0.2480
    1/80 4.0699E+02 -19.5758 1.6068E+04 -19.5699
    1/10 1.8093E-03 - 7.1425E-02 -
    0.5 0.5 0.51 1/20 4.5109E-04 2.0039 1.7808E-02 2.0039
    1/40 2.0018E-04 1.1721 7.8154E-03 1.1881
    1/80 5.1099E-04 -1.3520 2.0090E-02 -1.3621
    1/10 4.8552E-04 - 1.9119E-02 -
    0.8 0.2 0.21 1/20 1.2438E-04 1.9647 4.8398E-03 1.9820
    1/40 5.8298E-05 1.0933 2.2123E-03 1.1294
    1/80 2.3759E-02 -8.6708 9.3790E-01 -8.7277

     | Show Table
    DownLoad: CSV
    Figure 1.  u_h , q_h and u , q with \tau = 1/1000 , h = 1/80 , \alpha = 0.2 , \beta = 0.8 , \theta = 0.2 .

    Example 5.2 In this example, we consider the case where the nonsmooth solution is taken as u = (t^{\alpha+\beta}+t^3) \sin(2\pi x) , and the known source term g(x, t) is

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(\alpha+\beta)t^{\alpha+\beta-1}+3t^2+4\pi^2\left(\frac{t^{\beta}\Gamma(\alpha+\beta+1)}{\Gamma(\beta+1)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{\alpha}\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+1)}+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{\alpha+\beta}+t^3)\right]\\ &+2\pi (t^{\alpha+\beta}+t^3)\cos(2\pi x)+2\pi(t^{\alpha+\beta} +t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.2)

    Table 4 presents the L^2 -errors and the spatial convergence rates of u and q before and after adding the starting parts with h = 1/10, 1/20, 1/40, 1/80 , \tau = 1/2000 , where Erroro denotes the error before adding the starting parts and Errorc denotes the error after adding the starting parts.

    Table 4.  Spatial convergence results with \alpha = 0.9 , \beta = 0.2 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.2694E-02 - 4.2693E-02 - 1.2162E-01 - 1.2163E-01 -
    0.2 1/20 1.0850E-02 1.9763 1.0850E-02 1.9763 2.9675E-02 2.0351 2.9679E-02 2.0349
    1/40 2.7235E-03 1.9942 2.7234E-03 1.9942 7.3708E-03 2.0094 7.3746E-03 2.0088
    1/80 6.8165E-04 1.9984 6.8155E-04 1.9985 1.8361E-03 2.0051 1.8400E-03 2.0029
    1/10 4.2693E-02 - 4.2692E-02 - 1.2165E-01 - 1.2168E-01 -
    -0.5 1/20 1.0849E-02 1.9764 1.0849E-02 1.9764 2.9706E-02 2.0340 2.9728E-02 2.0331
    1/40 2.7227E-03 1.9945 2.7221E-03 1.9947 7.4017E-03 2.0048 7.4237E-03 2.0016
    1/80 6.8085E-04 1.9996 6.8028E-04 2.0005 1.8671E-03 1.9871 1.8891E-03 1.9744
    1/10 4.2691E-02 - 4.2690E-02 - 1.2172E-01 - 1.2177E-01 -
    -1 1/20 1.0848E-02 1.9766 1.0846E-02 1.9767 2.9776E-02 2.0314 2.9822E-02 2.0297
    1/40 2.7209E-03 1.9952 2.7197E-03 1.9957 7.4714E-03 1.9947 7.5178E-03 1.9880
    1/80 6.7905E-04 2.0025 6.7786E-04 2.0044 1.9368E-03 1.9477 1.9833E-03 1.9224

     | Show Table
    DownLoad: CSV

    The spatial convergence rate is almost unaffected before and after correction, based on a comparison of the data in Table 5. In Tables 6 and 7, we present the L^2 -errors and the time convergence rates of u and q before and after adding the starting parts. Without the addition of the starting parts, the time convergence rates are unstable and cannot reach the second-order convergence results computed by the generalized BDF2- \theta . After adding the starting parts, the time convergence rates keep around 2 , indicating that the starting part plays a major role in correcting the time convergence rates.

    Table 5.  Spatial convergence results with \alpha = 0.5 , \beta = 0.7 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3949E-02 - 4.3948E-02 - 6.8838E-02 - 6.8891E-02 -
    0.5 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6266E-02 2.0814 1.6318E-02 2.0778
    1/40 2.8070E-03 1.9934 2.8057E-03 1.9940 3.9696E-03 2.0348 4.0219E-03 2.0205
    1/80 7.0358E-04 1.9963 7.0222E-04 1.9984 9.4708E-04 2.0674 9.9935E-04 2.0088
    1/10 4.3949E-02 - 4.3948E-02 - 6.8842E-02 - 6.8897E-02 -
    0.2 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6270E-02 2.0811 1.6324E-02 2.0774
    1/40 2.8069E-03 1.9935 2.8055E-03 1.9940 3.9739E-03 2.0336 4.0279E-03 2.0189
    1/80 7.0346E-04 1.9964 7.0206E-04 1.9986 9.5140E-04 2.0624 1.0054E-03 2.0023
    1/10 4.3948E-02 - 4.3946E-02 - 6.8877E-02 - 6.8974E-02 -
    -1 1/20 1.1176E-02 1.9754 1.1174E-02 1.9756 1.6304E-02 2.0788 1.6401E-02 2.0722
    1/40 2.8061E-03 1.9938 2.8035E-03 1.9948 4.0077E-03 2.0244 4.1049E-03 1.9984
    1/80 7.0259E-04 1.9978 7.0007E-04 2.0017 9.8520E-04 2.0243 1.0824E-03 1.9231

     | Show Table
    DownLoad: CSV
    Table 6.  Time convergence results with \alpha = 0.9 , \beta = 0.2 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 2.1916E-03 - 4.2694E-02 - 8.6515E-02 - 1.2162E-01 -
    0.2 1/20 1.6194E-03 0.4365 1.0850E-02 1.9763 6.3929E-02 0.4365 2.9675E-02 2.0351
    1/40 1.0890E-03 0.5725 2.7235E-03 1.9942 4.2990E-02 0.5725 7.3710E-03 2.0093
    1/80 6.8790E-04 0.6627 6.8165E-04 1.9984 2.7157E-02 0.6627 1.8364E-03 2.0050
    1/10 2.5540E-03 - 4.2693E-02 - 1.0123E-01 - 1.2164E-01 -
    0 1/20 1.1111E-03 1.2007 1.0850E-02 1.9763 4.3864E-02 1.2065 2.9692E-02 2.0345
    1/40 7.7616E-04 0.5176 2.7231E-03 1.9944 3.0641E-02 0.5176 7.3878E-03 2.0069
    1/80 5.0234E-04 0.6277 6.8122E-04 1.9990 1.9831E-02 0.6277 1.8531E-03 1.9952
    1/10 2.4652E-02 - 4.2689E-02 - 9.7312E-01 - 1.2182E-01 -
    -0.5 1/20 7.1878E-03 1.7781 1.0845E-02 1.9768 2.8376E-01 1.7779 2.9872E-02 2.0279
    1/40 1.9420E-03 1.8880 2.7184E-03 1.9962 7.6702E-02 1.8874 7.5673E-03 1.9809
    1/80 5.5906E-04 1.7965 6.7658E-04 2.0064 2.2071E-02 1.7971 2.0329E-03 1.8962

     | Show Table
    DownLoad: CSV
    Table 7.  Time convergence results with \alpha = 0.5 , \beta = 0.7 , h = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.1456E-02 - 4.3948E-02 - 4.5228E-01 - 6.8880E-02 -
    0.5 1/20 5.0680E-03 1.1767 1.1176E-02 1.9754 2.0008E-01 1.1767 1.6307E-02 2.0786
    1/40 2.2184E-03 1.1919 2.8060E-03 1.9939 8.7577E-02 1.1919 4.0110E-03 2.0235
    1/80 9.6796E-04 1.1965 7.0250E-04 1.9979 3.8213E-02 1.1965 9.8850E-04 2.0207
    1/10 5.4375E-03 - 4.3948E-02 - 2.1466E-01 - 6.8904E-02 -
    0.2 1/20 2.5220E-03 1.1084 1.1176E-02 1.9754 9.9562E-02 1.1084 1.6332E-02 2.0769
    1/40 1.1387E-03 1.1472 2.8053E-03 1.9941 4.4952E-02 1.1472 4.0351E-03 2.0170
    1/80 5.0160E-04 1.1828 7.0188E-04 1.9989 1.9802E-02 1.1827 1.0126E-03 1.9946
    1/10 2.8636E-02 - 4.3948E-02 - 1.1304E+00 - 6.8904E-02 -
    -1 1/20 7.7097E-03 1.8931 1.1176E-02 1.9754 3.0439E-01 1.8929 1.6332E-02 2.0769
    1/40 1.9098E-03 2.0133 2.8053E-03 1.9941 7.5437E-02 2.0126 4.0351E-03 2.0170
    1/80 6.3574E-04 1.5869 7.0188E-04 1.9989 2.5098E-02 1.5877 1.0126E-03 1.9946

     | Show Table
    DownLoad: CSV

    In Figure 2, we obtain the comparison images between the numerical solution and the exact solution with \tau = 1/1000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , and \theta = 0.2 . In Figures 3 and 4, we present the space and time convergence rate images of u_h and q_h under different parameters \alpha , \beta , and \theta . From Figure 4, one can see that the corrected scheme with the starting parts can effectively restore the second-order convergence rate for the nonsmooth problem.

    Figure 2.  u_h , q_h and u , q with \tau = 1/2000 , h = 1/80 , \alpha = 0.9 , \beta = 0.2 , \theta = 0.2 .
    Figure 3.  The spatial convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .
    Figure 4.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    Example 5.3. To better investigate the effect of changes of two fractional parameters \alpha and \beta on the convergence rates, we introduce the numerical example with two nonsmooth terms. Here, we take the nonsmooth solution u with

    u = (t^{1+\alpha}+t^{1+\beta}+t^3) \sin(2\pi x),

    and the known source term

    \begin{equation} \begin{split} g(x,t) = &\sin(2\pi x)\left[(1+\alpha)t^\alpha+(1+\beta)t^\beta+3t^2+4\pi^2\left(t\Gamma(2+\alpha)+\frac{t^{1+\beta-\alpha}\Gamma(2+\beta)}{\Gamma(2+\beta-\alpha)}+\frac{6t^{3-\alpha}}{\Gamma(4-\alpha)}\right)\right]\\ &+\sin(2\pi x)\left[16\pi^4\left(\frac{t^{1+\alpha-\beta}\Gamma(2+\alpha)}{\Gamma(2+\alpha-\beta)}+t\Gamma(2+\beta)+\frac{6t^{3-\beta}}{\Gamma(4-\beta)}\right)+4\pi^2(t^{1+\alpha}+t^{1+\beta}+t^3)\right]\\ &+2\pi (t^{1+\alpha}+t^{1+\beta}+t^3)\cos(2\pi x)+2\pi(t^{1+\alpha}+t^{1+\beta}+t^3)^2\sin(4\pi x ). \end{split} \end{equation} (5.3)

    In Table 8, we provide the errors of \|u_h-u\| and \|q_h-q\| and the spatial convergence rates under different parameters, which indicate that the corrected term hardly affects the spatial convergence rate.

    Table 8.  Spatial convergence results with \alpha = 0.5 , \beta = 0.6 , \tau = 1/2000 .
    \|u_h-u\| \|q_h-q\|
    \theta h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 6.5710E-02 - 6.5710E-02 - 1.1335E-01 - 1.1335E-01 -
    0.5 1/20 1.6709E-02 1.9755 1.6709E-02 1.9755 2.7037E-02 2.0678 2.7037E-02 2.0678
    1/40 4.1946E-03 1.9940 4.1946E-03 1.9940 6.6773E-03 2.0176 6.6775E-03 2.0175
    1/80 1.0498E-03 1.9984 1.0498E-03 1.9984 1.6615E-03 2.0068 1.6617E-03 2.0066
    1/10 6.5710E-02 - 6.5710E-02 - 1.1336E-01 - 1.1336E-01 -
    0.2 1/20 1.6708E-02 1.9755 1.6708E-02 1.9755 2.7042E-02 2.0676 2.7042E-02 2.0676
    1/40 4.1944E-03 1.9940 4.1944E-03 1.9940 6.6826E-03 2.0167 6.6825E-03 2.0167
    1/80 1.0497E-03 1.9986 1.0497E-03 1.9985 1.6668E-03 2.0033 1.6667E-03 2.0034
    1/10 6.5709E-02 - 6.5709E-02 - 1.1339E-01 - 1.1339E-01 -
    -0.5 1/20 1.6708E-02 1.9756 1.6708E-02 1.9756 2.7078E-02 2.0661 2.7077E-02 2.0662
    1/40 4.1935E-03 1.9943 4.1935E-03 1.9943 6.7188E-03 2.0109 6.7178E-03 2.0110
    1/80 1.0487E-03 1.9995 1.0487E-03 1.9995 1.7031E-03 1.9801 1.7020E-03 1.9808

     | Show Table
    DownLoad: CSV

    In Tables 911, fixing \tau = 1/4000 , choosing h = 1/10, 1/20, 1/40, 1/80 , and changing parameters \alpha , \beta , and \theta , we provide the L^2 -errors and the time convergence rates for u and q based on the corrected scheme and uncorrected scheme. The impact of different fractional parameters on the time convergence rates of nonsmooth problems is evident from Tables 911. Furthermore, one can see that the corrected scheme with the starting part can effectively restore the second-order convergence rate.

    Table 9.  Time convergence results with \alpha = 0.1 , \beta = 0.9 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 8.9204E-03 - 6.2820E-03 - 3.5216E-01 - 2.4809E-01 -
    0.1 1/20 5.2261E-03 0.7714 1.8535E-03 1.7609 2.0632E-01 0.7714 7.3209E-02 1.7608
    1/40 2.6562E-03 0.9764 4.9663E-04 1.9001 1.0486E-01 0.9764 1.9628E-02 1.8992
    1/80 1.2855E-03 1.0470 1.2782E-04 1.9580 5.0749E-02 1.0470 5.0645E-03 1.9544
    1/10 1.1291E-02 - 9.1163E-03 - 4.4575E-01 - 3.5998E-01
    0 1/20 6.8182E-03 0.7277 2.7085E-03 1.7510 2.6917E-01 0.7277 1.0696E-01 1.7509
    1/40 3.4949E-03 0.9641 7.2773E-04 1.8960 1.3797E-01 0.9641 2.8751E-02 1.8954
    1/80 1.6987E-03 1.0408 1.8766E-04 1.9553 6.7062E-02 1.0408 7.4268E-03 1.9528
    1/10 2.1457E-02 - 2.6030E-02 - 1.1105E+00 - 1.7696E+00 -
    -0.5 1/20 1.4552E-02 0.5603 8.3150E-03 1.6464 8.5207E-01 0.3822 6.2053E-01 1.5118
    1/40 7.7887E-03 0.9017 2.2980E-03 1.8554 4.7736E-01 0.8359 1.7762E-01 1.8047
    1/80 3.8350E-03 1.0222 6.0067E-04 1.9357 2.3888E-01 0.9988 4.7205E-02 1.9118

     | Show Table
    DownLoad: CSV
    Table 10.  Time convergence results with \alpha = 0.5 , \beta = 0.6 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3621E-03 - 3.6704E-03 - 1.7226E-01 - 1.4498E-01 -
    0.5 1/20 1.0876E-03 2.0039 9.5152E-04 1.9476 4.2941E-02 2.0042 3.7576E-02 1.9480
    1/40 3.3133E-04 1.7148 2.4178E-04 1.9765 1.3080E-02 1.7150 9.5356E-03 1.9784
    1/80 1.1132E-04 1.5735 6.1138E-05 1.9835 4.3948E-03 1.5735 2.3985E-03 1.9912
    1/10 1.4643E-03 - 1.0614E-03 - 5.8318E-02 - 4.2803E-02 -
    0.2 1/20 4.8956E-04 1.5806 3.0032E-04 1.8214 1.9326E-02 1.5934 1.2126E-02 1.8197
    1/40 1.6670E-04 1.5542 7.8625E-05 1.9335 6.5811E-03 1.5541 3.1895E-03 1.9267
    1/80 5.7051E-05 1.5470 1.9768E-05 1.9918 2.2523E-03 1.5470 8.1546E-04 1.9676
    1/10 8.7609E-03 - 6.8360E-03 - 3.4601E-01 - 2.7011E-01 -
    0 1/20 2.2404E-03 1.9673 1.9129E-03 1.8374 8.8510E-02 1.9669 7.5599E-02 1.8371
    1/40 5.6418E-04 1.9895 5.0061E-04 1.9340 2.2304E-02 1.9886 1.9798E-02 1.9330
    1/80 1.5985E-04 1.8194 1.2738E-04 1.9746 6.3107E-03 1.8214 5.0505E-03 1.9709

     | Show Table
    DownLoad: CSV
    Table 11.  Time convergence results with \alpha = 0.9 , \beta = 0.1 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.2779E-03 - 4.4043E-04 - 5.0452E-02 - 2.5629E-02 -
    0.1 1/20 1.0267E-03 0.3157 1.1804E-04 1.8996 4.0534E-02 0.3158 7.0942E-03 1.8531
    1/40 7.5884E-04 0.4362 3.0793E-05 1.9386 2.9957E-02 0.4362 1.8662E-03 1.9265
    1/80 5.0089E-04 0.5993 8.1141E-06 1.9241 1.9774E-02 0.5993 4.7828E-04 1.9642
    1/10 4.3621E-03 - 1.4545E-03 - 7.7482E-02 - 6.1261E-02 -
    0 1/20 1.8873E-03 0.6822 3.9496E-04 1.8807 4.6434E-02 0.7387 1.6763E-02 1.8697
    1/40 9.2034E-04 0.3539 1.0228E-04 1.9492 3.6333E-02 0.3539 4.3730E-03 1.9386
    1/80 6.1337E-04 0.5854 2.5740E-05 1.9904 2.4215E-02 0.5854 1.1169E-03 1.9692
    1/10 9.0746E-03 - 6.1035E-03 - 3.5896E-01 - 2.4209E-01 -
    -0.1 1/20 2.3761E-03 1.9332 1.7550E-03 1.7982 9.4044E-02 1.9324 6.9621E-02 1.7980
    1/40 7.1647E-04 1.7296 4.6664E-04 1.9111 2.8284E-02 1.7333 1.8526E-02 1.9100
    1/80 5.9682E-04 0.2636 1.1984E-04 1.9612 2.3561E-02 0.2636 4.7711E-03 1.9572

     | Show Table
    DownLoad: CSV

    To further validate the performance of the parameter \theta in numerical simulations with nonsmooth solutions, we provide the computing data in Table 12, from which one can see that the parameter \theta still needs to satisfy \theta\le \min\{\alpha, \beta, \frac{1}{2}\} , whether before or after correction. Notably, when \theta is negative, as long as it is not much less than 0, we can still obtain second-order convergence accuracy.

    Table 12.  Time convergence results with \alpha = 0.7 , \beta = 0.3 , h = 1/4000 .
    \|u_h-u\| \|q_h-q\|
    \theta \tau Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 3.3675E-03 - 2.0604E-03 - 1.3333E-01 - 8.2027E-02 -
    0.31 1/20 1.2977E-03 1.3757 5.3018E-04 1.9584 5.1287E-02 1.3783 2.1127E-02 1.9570
    1/40 1.9442E-03 -0.5833 1.4145E-04 1.9062 7.6738E-02 -0.5813 5.6232E-03 1.9096
    1/80 6.1733E-02 -4.9888 1.3510E-04 0.0663 2.4372E+00 -4.9892 5.3212E-03 0.0797
    1/10 4.5472E-02 - 3.0346E-02 - 1.7952E+00 - 1.1983E+00 -
    -0.5 1/20 1.2127E-02 1.9067 9.1861E-03 1.7240 4.7880E-01 1.9066 3.6273E-01 1.7240
    1/40 3.1344E-03 1.9520 2.4851E-03 1.8861 1.2376E-01 1.9518 9.8141E-02 1.8859
    1/80 7.9608E-04 1.9772 6.4304E-04 1.9504 3.1447E-02 1.9766 2.5407E-02 1.9496
    1/10 1.1762E+00 - 3.4223E-01 - 4.6430E+01 - 1.3512E+01 -
    -5 1/20 3.9521E-01 1.5734 1.9704E-01 0.7964 1.5601E+01 1.5734 7.7788E+00 0.7966
    1/40 1.2069E-01 1.7113 7.7857E-02 1.3396 4.7643E+00 1.7113 3.0736E+00 1.3396
    1/80 3.3458E-02 1.8509 2.4673E-02 1.6579 1.3208E+00 1.8509 9.7402E-01 1.6579

     | Show Table
    DownLoad: CSV

    The time convergence rates of u and q are compared before and after correction with different parameters \alpha , \beta , and \theta in Figure 5, where the slope of the line segment indicates the convergence rate. The slope of each line segment in the corrected images is the same regardless of the parameters chosen, indicating that the introduction of the starting part has a significant effect on the time convergence rates for the case with nonsmooth solutions.

    Figure 5.  The time convergence rates in L^2 -errors with different parameters \alpha , \beta , and \theta .

    In this article, the spatial mixed finite element method with the generalized BDF2- \theta for solving the time-fractional generalized Rosenau-RLW-Burgers equation was presented. Detailed proofs of stability were shown. The numerical scheme's effectiveness and feasibility were verified by conducting numerical examples that included both smooth and nonsmooth solutions. The numerical examples with good regularity indicated that our algorithm with changed parameters \alpha , \beta , and \theta can maintain second-order convergence in time. Especially, the nonsmooth examples demonstrated that adding the correction term could effectively solve the problem of reduced order caused by weak singularity.

    N. Yang: Writing–original draft, Formal analysis, Software; Y. Liu: Methodology, Validation, Formal analysis, Funding acquisition, Supervision, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (12061053), Young Innovative Talents Project of Grassland Talents Project and Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413).

    The authors declare that they have no conflicts of interest.



    [1] D. Wang, H. Cheng, P. Wang, et al., Zipf's law in passwords. IEEE T. Inf. Foren. Sec., 12 (2017), 2776–2791.
    [2] S. M. Bellovin and M. Merritt, Encrypted key exchange: Password-based protocols secure against dictionary attacks, in Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, IEEE, (1992), 72–84.
    [3] E. Bresson, O. Chevassut and D. Pointcheval, Security proofs for an efficient password-based key exchange, in Proceedings of ACM CCS 2003, ACM Press, (2003), 241–250.
    [4] M. Abdalla and D. Pointcheval, Simple password-based encrypted key exchange protocols, in Proceedings of CT-RSA 2005, Springer, (2005), 191–208.
    [5] J. Katz, R. Ostrovsky and M. Yung, Efficient password-authenticated key exchange using human- memorable passwords, in Proceedings of EUROCRYPT 2001, Springer, (2001), 475–494.
    [6] F. Benhamouda, O. Blazy, C. Chevalier, et al., New techniques for SPHFs and efficient one-round PAKE protocols, in Proceedings of CRYPTO 2013, Springer, (2013), 449–475.
    [7] X. Yi, F. Y. Rao, Z. Tari, et al., ID2S password-authenticated key exchange protocols, IEEE T. Comput., 65 (2016), 3687–3701.
    [8] Y. Zhang, Y. Xiang, W. Wu, et al., A variant of password authenticated key exchange protocol, Future Gener. Comput. Sy., 78 (2018), 699–711.
    [9] Z. Li and D. Wang, Two-round PAKE protocol over lattices without NIZK, in Proceedings of ICISC 2018, Springer, (2018), 138–159.
    [10] M. Abdalla, P. A. Fouque and D. Pointcheval, Password-based authenticated key exchange in the three-party setting, in Proceedings of PKC 2005, Springer, (2005), 65–84.
    [11] F. Wei, N. Kumar, D. He, et al., A general compiler for password-authenticated group key exchange protocol in the standard model, Discrete Appl. Math., 241 (2018), 78–86.
    [12] M. Bellare, D. Pointcheval and P. Rogaway, Authenticated key exchange secure against dictionary attacks, in Proceedings of EUROCRYPT 2000, Springer, (2000), 139–155.
    [13] R. Canetti, S. Halevi, J. Katz, et al., Universally composable password-based key exchange, in Proceedings of EUROCRYPT 2005, Springer, (2005), 404–421.
    [14] D. Q. Viet, A. Yamamura and H. Tanaka, Anonymous password-based authenticated key exchange, in Proceedings of INDOCRYPT 2005, Springer, (2005), 244–257.
    [15] J. Yang and Z. Zhang, A new anonymous password-based authenticated key exchange protocol, in Proceedings of INDOCRYPT 2008, Springer, (2008), 200–212.
    [16] S. H. Shin, K. Kobar and H. Imai, Very-efficient anonymous password-authenticated key exchange and its extensions, in Proceedings of AAECC 2009, Springer, (2009), 149–158.
    [17] X. Hu, J. Zhan, Z. Zhang, et al., Anonymous Password Authenticated Key Exchange Protocol in the Standard Model, Wirel. Pers. Commun., 96 (2017), 1451–1474.
    [18] Y. Yang, J. Zhou, J. Weng, et al., A new approach for anonymous password authentication, in Proceedings of ACSAC 09, IEEE, (2009), 199–208.
    [19] S. H. Shin and K. Kobara, Simple anonymous password-based authenticated key exchange (SAPAKE), reconsidered, IEICE T. Fundam. Electron. Commun. Comput. Sci., 100 (2017), 639–652.
    [20] Z. Zhang, K. Yang, X. Hu, et al., Practical anonymous password authentication and TLS with anonymous client authentication, in Proceedings of ACM CCS 2016, ACM Press, (2016), 1179–1191.
    [21] Information technology-Security techniques-Anonymous entity authentication-Part 4: Mechanisms based on weak secrets, ISO/IEC standard 20009-4, 2017. Available from: https:// www. iso. org/ standard/64288.html.
    [22] K. Thomas, F. Li, A. Zand, et al., Data breaches, phishing, or malware? Understanding the risks of stolen credentials, in Proceedings of ACM CCS 2017, ACM Press, (2017), 1421–1434.
    [23] J. Li, L. Stecker, E. Zeigler, et al., Scramble the password before you type it, in Proceedings of World Conference on Information Systems and Technologies, Springer, (2018), 1097–1107.
    [24] Facebook Security Breach Exposes Accounts of 50 Million Users, 2018. Available from: https://www.nytimes.com/ 2018/09/28/ technology/facebook-hack-data-breach.html.
    [25] F. Benhamouda and D. Pointcheval, Verifier-based password-authenticated key exchange: new models and constructions. IACR Crypt. ePrint Archive, 2013: 833.
    [26] D. Pointcheval and G. Wang, VTBPEKE: verifier-based two-basis password exponential key exchange, in Proceedings of Asia CCS 2017, ACM Press, (2017), 301–312.v 27. X. Yang, H. Jiang, Q. Xu, et al., A provably-secure and efficient verifier-based anonymous password-authenticated key exchange protocol, in Proceedings of Trustcom/BigDataSE/ISPA, 2016, IEEE, (2016), 670–677.
    [27] 28. C. M. Chen, G. J. Wang, W. C. Fang, et al., A new verifier-based anonymous password- authenticated key exchange protocol, J. Info. Hiding Multimedia Signal Process., 9 (2018), 1595–1602.
    [28] 29. D. Wang and P. Wang, Two birds with one stone: Two-factor authentication with security beyond conventional bound, IEEE T. Depend. Secure Comput., 15 (2018), 708–722.
    [29] 30. F. Wei, P. Vijayakumar, Q. Jiang, et al., A mobile intelligent terminal based anonymous authenticated key exchange protocol for roaming service in global mobility networks, IEEE T. Sustain. Comput., 2018.
    [30] 31. M. Abdalla, F. Benhamouda and D. Pointcheval, Public-key encryption indistinguishable under plaintext-checkable attacks, in Proceedings of PKC 2015, Springer, (2015), 332–352.
    [31] 32. R. Cramer and V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption, in Proceedings of EUROCRYPT 2002, Springer, (2002), 45–64.
    [32] 33. R. Gennaro and Y. Lindell, A framework for password-based authenticated key exchange, in Proceedings of EUROCRYPT 2003, Springer, (2003), 524–543.
    [33] 34. J. Katz and V. Vaikuntanatha, Round-optimal password-based authenticated key exchange, in Proceedings of TCC 2011, Springer, (2011), 293–310.
    [34] 35. M. Abdalla, F. Benhamouda and D. Pointcheval, Disjunctions for hash proof systems: New constructions and applications, in Proceedings of EUROCRYPT 2015, Springer, (2015), 69–100.
    [35] 36. S. Even, O. Goldreich and S. Mical, On-line/off-line digital signatures, in Proceedings of CRYPTO 89, Springer, (1989), 263–275.
    [36] 37. F. Kiefer and M. Manulis, Zero-knowledge password policy checks and verifier-based PAKE, in Proceedings of ESORICS 2014, Springer, (2014), 295–312.
    [37] 38. A. Groce and J. Katz, A new framework for efficient password-based authenticated key exchange, in Proceedings of ACM CCS 2010, ACM Press, (2010), 516–525.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4663) PDF downloads(560) Cited by(4)

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog