Citation: Ching-Chun Chang, Chang-Tsun Li. Algebraic secret sharing using privacy homomorphisms for IoT-basedhealthcare systems[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3367-3381. doi: 10.3934/mbe.2019168
[1] | S. Sharma, K. Chen and A. Sheth, Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems, IEEE Int. Comput., 22 (2018), 42–51. |
[2] | M. Elhoseny, G. Ram´ ırez-González, O. M. Abu-Elnasr, et al., Secure medical data transmission model for IoT-based healthcare systems, IEEE Access, 6 (2018), 20596–20608. |
[3] | T. Wu, F. Wu, J. M. Redouté, et al., An autonomous wireless body area network implementation towards IoT connected healthcare applications, IEEE Access, 5 (2017), 11413–11422. |
[4] | F. Sebbak and F. Benhammadi, Majority-consensus fusion approach for elderly IoT-based health- care applications, Ann. Telecommun., 72 (2017), 157–171. |
[5] | U. Satija, B. Ramkumar and M. S. Manikandan, Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring, IEEE Internet Things J., 4 (2017), 815–823. |
[6] | G. R. Blakley, Safeguarding cryptographic keys, in Proc. AFIPS Nat. Comput. Conf. (NCC), New York, NY, USA, (1979), 313–317. |
[7] | A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613. |
[8] | M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access structure, in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Tokyo, Japan, (1987), 99–102. |
[9] | J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions, in Proc. Conf. Theory and Appl. of Cryptography (CRYPTO), Santa Barbara, CA, USA, (1988), 27–35. |
[10] | E. F. Brickell, Some ideal secret sharing schemes, in Proc. Workshop Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Houthalen, Belgium, (1989), 468–475. |
[11] | E. F. Brickell and D. M. Davenport, On the classification of ideal secret sharing schemes, J. Cryptology, 4 (1991), 123–134. |
[12] | A. Beimel and B. Chor., Universally ideal secret-sharing schemes, IEEE Trans. Inf. Theory, 40 (1994), 786–794. |
[13] | B. Chor, S. Goldwasser and S. Micali, et al., Verifiable secret sharing and achieving simultaneity in the presence of faults, in Proc. Ann. Symp. Found. Comput. Sci. (SFCS), Portland, OR, USA, (1985), 383–395. |
[14] | P. Feldman, A Practical scheme for non-interactive verifiable secret sharing, in Proc. Ann. Symp. Found. Comput. Sci. (SFCS), Los Angeles, CA, USA, (1987), 427–438. |
[15] | T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest majority, in Proc. Ann. ACM Symp. Theory of Comput. (STOC), Seattle, WA, USA, (1989), 73–85. |
[16] | M. Tompa and H. Woll, How to share a secret with cheaters, J. Cryptol., 1 (1989), 133–138. |
[17] | T. P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in Proc. Annl. Int. Cryptology Cof. (CRYPTO), Santa Barbara, CA, USA, (1991), 129–140. |
[18] | M. Stadler, Publicly verifiable secret sharing, in Proc. Int. Conf. Theory and Appl. of Crypto- graphic Techn. (EUROCRYPT), Saragossa, Spain, (1996), 190–199. |
[19] | R. Cramer, I. Damgård and U. Maurer, General secure multi-party computation from any linear secret-sharing scheme, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EURO- CRYPT), Bruges, Belgium, (2000), 316–334. |
[20] | M. Naor and A. Shamir, Visual cryptography, in Proc. Workshop Theory and Appl. of Crypto- graphic Techn. (EUROCRYPT), Perugia, Italy, (1994), 1–12. |
[21] | C. Blundo, A. D. Santis and M. Naor, Visual cryptography for grey level images, Inf. Process. Lett., 75 (2000), 255–259. |
[22] | Y. C. Hou, Visual cryptography for color images, Pattern Recognit., 36 (2003), 1619–1629. 23. Z. Zhou, G. R. Arce and G. D. Crescenzo, Halftone visual cryptography, IEEE Trans. Image Process, 15 (2006), 2441–2453. |
[23] | 24. I. Ingemarsson and G. J. Simmons, A protocol to set up shared secret schemes without the assistance of a mutually trusted party, in Proc. Workshop Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Aarhus, Denmark, (1994), 266–282. |
[24] | 25. W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory, 22 (1976), 644–654. |
[25] | 26. N. Koblitz, Elliptic curve cryptosystems, Math. Comput., 48 (1987), 203–209. |
[26] | 27. R. L. Rivest, L. Adleman and M. L. Dertouzos, On data banks and privacy homomorphisms, in Foundations of Secure Computation (eds. R. J. Lipton, D. P. Dobkin, and A. K. Jones), Academic Press, (1978), 169–180. |
[27] | 28. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120–126. |
[28] | 29. T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory, 4 (1985), 469–472. |
[29] | 30. T. Okamoto and S. Uchiyama, A new public-key cryptosystem as secure as factoring, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Espoo, Finland, (1998), 308–318. |
[30] | 31. I. Damgård and M. Jurik, A generalisation, a simplication and some applications of Paillier's probabilistic public-key system, in Proc. Int. Workshop Practice and Theory in Public Key Cryp- tography (PKC), Cheju Island, Korea, (2001), 119–136. |
[31] | 32. P. Paillier, Public-key cryptosystems based on composite degree residuosity slasses, in Proc. Int. Conf. Theory and Appl. of Cryptographic Techn. (EUROCRYPT), Prague, Czech Republic, (1999), 223–238. |
[32] | 33. C. C. Chang and C. T. Li, Secure secret sharing in the cloud, in Proc. IEEE Int. Symp. Multimedia (ISM), Taichung, Taiwan, (2017), 358–361. |
[33] | 34. L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), 618–623. |
[34] | 35. V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, 13 (1969), 354–356. |
[35] | 36. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9 (1990), 251–280. |
[36] | 37. F. Le Gall, Powers of tensors and fast matrix multiplication, in Proc. Int. Symp. Symbolic and Algebraic Comput. (ISSAC), Kobe, Japan, (2014), 296–303. |