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Abstract: Healthcare industry is one of the promising fields adopting the Internet of Things (IoT)
solutions. In this paper, we study secret sharing mechanisms towards resolving privacy and security
issues in IoT-based healthcare applications. In particular, we show how multiple sources are possible
to share their data amongst a group of participants without revealing their own data to one another
as well as the dealer. Only an authorised subset of participants is able to reconstruct the data. A
collusion of fewer participants has no better chance of guessing the private data than a non-participant
who has no shares at all. To realise this system, we introduce a novel research upon secret sharing
in the encrypted domain. In modern healthcare industry, a patient’s health record often contains data
acquired from various sensor nodes. In order to protect information privacy, the data from sensor nodes
is encrypted at once and shared among a number of cloud servers of medical institutions via a gateway
device. The complete health record will be retrieved for diagnosis only if the number of presented
shares meets the access policy. The retrieval procedure does not involve decryption and therefore the
scheme is favourable in some time-sensitive circumstances such as a surgical emergency. We analyse
the pros and cons of several possible solutions and develop practical secret sharing schemes for IoT-
based healthcare systems.
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1. Introduction

Internet of Things (IoT) is an emerging technology that utilises cloud connected devices to col-
lect data for analysis. Healthcare industry is one of the most promising fields that have adopted
IoT solutions since its early stage. The development of wearable technology, wireless body area net-
work and cloud computing has established a new way for medical practitioners to acquire health data
from patients. It greatly benefits health monitoring, epidemiological studies, and pharmaceutical re-

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019168


3368

Cloud

GatewayHeart Rate Blood Pressure

Glucose LevelBrain Wave

Figure 1. An IoT-based healthcare architecture. The health data acquired from the sensor
nodes (e.g. heart rate, blood pressure, brain wave, and glucose level) is aggregated at the
gateway and store in the cloud.

search [1–5]. A common IoT-based architecture for healthcare applications is illustrated in Figure 1,
which consists of a gateway device, a cloud server and several sensor nodes. Each sensor node can be
viewed as a wearable equipment used for monitoring the health status of an individual, such as heart
rate, blood pressure, brain wave, glucose level, etc. Under the given framework, the sensor nodes send
the medical data to a local gateway device via wireless communication such as Wi-Fi or Bluetooth,
whereas the gateway device aggregates the data and store it in the cloud server for further analysis.
However, there are risks of information leakage during data transmission and storage. For example, an
adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even ac-
cess to the cloud server. Therefore, it is advisable to encrypt the data at each sensor node immediately
after it is produced and incorporate secret sharing schemes to realise access control. In more details,
each sensor node transmits the encrypted data to the gateway device by which data is integrated and
encoded into shares of information. Due to security concerns, these shares are stored in separate cloud
servers and the data retrieval must conform with the access policy. To realise this system, we present a
novel research upon secret sharing in the encrypted domain.

Secret sharing is a study in cryptography originated independently by Blakley [6] and Shamir [7]
in 1979. A secure (t, n)-threshold scheme is defined as splitting a secret message into n pieces of
information in such a way that any fewer than t ≤ n pieces reveal no information about the secret.
Only in the presence of t or more pieces will the secret be determined. Each piece of information is
generally called a ‘share’ (as Sharmir’s terminology) or a ‘shadow’ (as Blakley’s terminology). An
intuitive way of splitting a secret message, say, ‘password’ is to split it literally into shares: ‘pa------’,
‘--ss----’, ‘----wo--’, and ‘------rd’. This naı̈ve approach is, however, insecure in the sense that every
share leaks a part of the secret. Shamir proposed an elegant solution to share the secret in a secure
manner. Suppose that a dealer wants to share a secret to n participants in such a way that only more
than t participants pool their shares together will the secret be reconstructed. Let the secret be denoted
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by s and we generate t−1 random numbers denoted by r1, r2, ..., and rt−1. Then, we form a polynomial

f (x) ≡ s + r1x + r2x2 + · · · + rt−1xt−1 (mod P), (1.1)

where P is a randomly chosen prime number. Let us draw any n points from the polynomial, for ex-
ample, (1, f (1)), (2, f (2)), ..., and (n, f (n)), and distribute them to n participants respectively as shares.
It is observed that there are t unknown variables in the polynomial and thus with t different points one
is able to solve for the variables including the secret (i.e. the constant term). In other words, the re-
construction process is to simply use Lagrange interpolation to solve a set of t simultaneous equations.
Shamir’s scheme is algebraic in nature in contrast to Blakley’s scheme based on geometric structures.
As a toy example of Blakley’s construction, consider the secret as a point in a three-dimensional space
and the shadows as hyperplanes whose common intersection is the secret point. Any three of the planes
suffice to identify the point. As each successive shadow is exposed, however, the range of possible val-
ues of the secret narrows. Since the introduction of secret sharing, numerous extended problems have
appeared. The study towards a general access structure was considered by Ito, Saito, and Nishizeki [8]
and had become a principal study since then [9–12]. To manage various malicious behaviour by dis-
honest parties, the notion of verifiable secret sharing was introduced by Chor et al. [13] and had been
studied extensively thereafter [14–19]. Another closely related branch is visual cryptography origi-
nated by Naor and Shamir [20] for the secrecy of visual information, including greyscale, colour, and
halftone images [21–23].

Over the past decades, secret sharing schemes have found various applications. One of the possible
applications in the healthcare industry is to protect the privacy of patients’ health records against cy-
bersecurity threats while allowing efficient access for a group of authorised physicians and surgeons.
In IoT-based healthcare applications, a patient’s health record often contains medical data acquired
from different sensor nodes. A full measure of privacy protection ought to even prevent data revela-
tion between sensor nodes. More generally, we consider the problem of sharing multiple secrets (i.e.
health data) generated from t different sources (i.e. sensor nodes) amongst a society of n participants
(i.e. cloud servers of medical institutions). Every secret is prohibited from being revealed to another
source as well as the dealer (i.e. gateway device). We remark that this statement can also be applied to
other mutually distrustful situations, especially in the case of commercial applications. This problem,
though different, is similar to that studied by Iirgemarsson and Simmons [24]. In their study, they
noted that the problem of sharing the secret in the absence of a trusted dealer has been largely ignored
by researchers in this area. In response to this, they introduced a two-level control protocol to share a
secret determined by a democratic consent scheme without mutually trusted parties. Each participant
equally contributes a private input to the determination of the secret and distributes the contribution
among other participants through an autocratic sharing scheme.

In the following, let us consider two naı̈ve solutions to our research problem and analyse their pros
and cons. Among a variety of privacy protection mechanisms, encryption has a high level of reliability
and universality. Naturally, the secrets are encrypted once they have been produced from the sources.
The problem is therefore reduced to the sharing of encrypted data. Consider a key server who has
a pair of public and private keys. The public key is used for encryption, whereas the private key is
employed for decryption. The first solution is to create shares of the private key by arranging the key
as the constant term in Eq. (1.1). The encrypted files, instead of being encoded as shares, are stored
in a database. At the time when the number of collaborative participants are as many as required, the
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private key will be reconstructed and then the files in the database can be deciphered. On the one hand,
this solution is simple and the computational load of the sharing procedure is light. On the other hand,
however, to access the secret files, one must perform one reconstruction algorithm for the key plus one
decryption algorithm for the files. In addition to this, this scheme requires different pairs of public and
private keys for different sets of secret files (e.g. different patients’ health records); otherwise, once the
participants reconstruct the private key, they will be able to decipher all the files stored in the database.
Furthermore, storing all the important files in a central database may be vulnerable to a number of
cyber attacks. Thus, it is reasonable to share the files to authorised participants to reduce the risk of
cyber threats.

The second solution is that suppose there are t encrypted secrets denoted by E(s0), E(s1), ..., and
E(st−1). We form a polynomial by arranging t encrypted secrets as t coefficients in Eq. (1.1). More
generally, we can assume that there are k encrypted secrets, where k ≤ t, and choose t − k random
numbers as the rest of the coefficients to complete the polynomial. Either way, we can draw n points
as the shares for individual participants. In the presence of t shares or more, the encrypted data will be
reconstructed. With the decryption key, the data will eventually be revealed. In practice, this scheme
has a non-trivial issue of key distribution amongst the participants. It may be addressed by one of the
following approaches. First, use a secure channel to transmit the key to individual participants. Second,
let the pair of encryption and decryption keys be generated by a key agreement protocol (e.g. Diffie–
Hellman key exchange protocol [25]) amongst the group of participants, instead of being generated by
the key server. Third, encrypt the key with each participant’s public key and send it to the correspond-
ing one as an instance of asymmetrical cryptography (e.g. elliptic curve cryptosystems [26]). Aside
from the issue of key distribution, this scheme still requires extra efforts of participants, namely, one
reconstruction step for the encrypted data plus one decryption step for the original data. It may be trou-
blesome in particular situations. For instance, when there is a surgical emergency, the time delay for
accessing health records becomes problematic. Hence, we conclude that these naı̈ve solutions, though
feasible, are deficient in several aspects, which motivate us towards finer constructions.

In this paper, we study how multiple sources are possible to share their secrets amongst a group of n
participants without revealing their own secrets to one another. We analyse the pros and cons of several
possible solutions and develop practical schemes: a simple (2, 2)-threshold scheme, an extended (n, n)-
threshold scheme, and a generalised (t, n)-threshold scheme. The developed schemes follow Sharmir’s
construction in which a collusion of fewer than t participants has no better chance of guessing the
secret than a non-participant who has no privileged information at all. The remainder of this paper is
organised as follows. Section 2 gives the preliminaries of privacy homomorphisms. Section 3 reviews
a naı̈ve (2, 2)-threshold scheme. Section 4 discusses an extended (n, n)-threshold scheme. Section 5
studies a generalised (t, n)-threshold scheme. The paper is concluded in Section 6 with directions for
future research.

2. Privacy homomorphisms

The term ‘privacy homomorphisms’ was coined by Rivest et al. to describe special encryption func-
tions which permit encrypted data to be operated on [27]. These special algebraic mappings between
the paintext and ciphertext spaces allow the result of operations on the ciphertexts, when deciphered,
to match the result of operations on the plaintexts. Let us see a well-understood example of privacy

Mathematical Biosciences and Engineering Volume 16, Issue 5, 3367–3381



3371

homomorphisms. Let p and q be two large primes and the modulus N = p ·q. Let e and d be the public
and private keys of the RSA cryptosystem, respectively. Note that e and d satisfy the condition that

e · d ≡ 1 (mod φ(N)), (2.1)

where φ is Euler’s phi function, i.e. φ(N) = (p − 1)(q − 1). The RSA cryptosystem has an encryption
function

c ≡ me (mod N), (2.2)

and a decryption function
m ≡ cd (mod N), (2.3)

where m denotes the message and c denotes the ciphertext. Suppose that we wish to generate the
encrypted result which, when decrypted, matches the product of two messages m1 and m2 through the
operations on the ciphertexts c1 and c2. This is achieved by

(m1
e) · (m2

e) ≡ (m1 · m2)e (mod N). (2.4)

For more information about the RSA cryptosystem, the reader is referred to [28].
Since the introduction of privacy homomorphisms, there has been a surge of interests in the de-

sign of homomorphic cryptosystems (e.g. ElGamal [29], Okamoto–Uchiyama [30], and Damgård–
Jurik [31] cryptosystems). One of the well-studied homomorphic cryptosystems is the Paillier cryp-
tosystem [32]. Let m1 and m2 be two arbitrary messages, N be the product of two large primes, E(·)
be the encryption function, and D(·) be the decryption function. The Paillier cryptosystem permits
homomorphic addition:

D(E(m1) · E(m2) mod N2) ≡ m1 + m2 (mod N), (2.5)

and homomorphic multiplication:

D(E(m1)m2 mod N2) ≡ m1 · m2 (mod N). (2.6)

More details of the Paillier cryptosystem are described as follows. This consists of three phases: key
generation phase, encryption phase, and decryption phase. In the key generation phase, we choose two
large primes p and q. Then, we compute N = pq and λ = lcm(p − 1, q − 1), where ‘lcm’ stands for
least common multiple. Afterwards, we select a random integer g ∈ Z/N2Z∗ and calculate

µ ≡ (L(gλ (mod N2)))−1 (mod N), (2.7)

where

L(x) =
x − 1

N
. (2.8)

As a result, the public key is (n, g) and the private key is (λ, µ). In the encryption phase, let m be a
message to be encrypted and r be a randomly selected integer, where m, r ∈ Z/NZ. The ciphertext is
then computed as

c ≡ gm · rN (mod N2). (2.9)
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This scheme has a ciphertext expansion phenomenon as the message space is M = Z/NZ and the
ciphertext spac is C = Z/N2Z∗. In the decryption phase, the plaintext message is deciphered by

m ≡ L(cλ (mod N2)) · µ (mod N). (2.10)

It is observed that the decryption process involves a modular exponentiation, which is computation-
ally expensive, with the addition of other operations of minor cost. Therefore, as aforementioned, in
some time-sensitive applications, one would wish not to involve decryption in the secret reconstruc-
tion process. In the remainder of this paper, we assume all the homomorphisms applied are those of
the Paillier cryptosystem unless otherwise specified. Nevertheless, the applicable homomorphisms are
included but by no means limited to the homomorphisms of this particular cryptosystem.

3. (2, 2)-threshold secret sharing

Recently, we proposed a (2, 2)-threshold multi-secret sharing scheme to split a batch of two secrets
into two shares via a semi-honest (or honest-but-curious) cloud service provider [33]. Only in the
presence of two shares, the batch of two secrets can be restored. Let us describe how this scheme can
solve the problem of privacy-preserving secret sharing. Let s1 and s2 be two secrets generated from two
separate sources, respectively. To preserve the privacy of secrets, s1 and s2 are encrypted immediately
after being produced. The encrypted secrets E(s2) and E(s2) are uploaded to the dealer for sharing. Let
x1 and x2 be any integers that satisfy

gcd(x1 + x2,N) = 1,
gcd(x1 − x2,N) = 1.

(3.1)

Note that ‘gcd’ stands for greatest common divisor. It is not difficult to find proper x1 and x2 because
N is the product of two large primes. Since

x1
2 − x2

2 ≡ (x1 + x2) · (x1 − x2) (mod N), (3.2)

we derive
gcd(x1

2 − x2
2,N) = 1. (3.3)

This also implies
gcd(x1

2 − x2
2,N) = 1. (3.4)

Then, two shares are created as

E(y1) ≡ E(s1)x1 · E(s2)x2 (mod N2),
E(y2) ≡ E(s1)x2 · E(s2)x1 (mod N2).

(3.5)

Following the homomorphic properties, we rewrite

E(y1) ≡ E(s1x1 + s2x2) (mod N2),
E(y2) ≡ E(s1x2 + s2x1) (mod N2).

(3.6)
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The dealer distributes x1 and x2 to two participants and sends E(y1) and E(y2) to the key server for
decryption. The decrypted results are

y1 ≡ s1x1 + s2x2 (mod N),
y2 ≡ s1x2 + s2x1 (mod N).

(3.7)

Then, y1 and y2 are also dispensed to the participants. When the participants pool their shares (x1, y1)
and (x2, y2) together, they compute

x1y1 − x2y2 ≡ (x1
2 − x2

2)s1 (mod N). (3.8)

Note that

x1y1 ≡ (x1
2s1 + x1x2s2) (mod N)

x2y2 ≡ (x2
2s1 + x1x2s2) (mod N).

(3.9)

Since gcd(x1
2− x2

2, n) = 1, we know there exists one and only one modular multiplicative inverse such
that

(x1
2 − x2

2) · (x1
2 − x2

2)−1 ≡ 1 (mod N). (3.10)

The value of (x1
2 − x2

2)−1 can be solved by the extended Euclidean algorithm. Eventually, the secret s1

is unveiled by
s1 ≡ (x1y1 − x2y2) · (x1

2 − x2
2)−1 (mod N). (3.11)

In the same manner, the secret s2 is decoded as

s2 ≡ (x2y1 − x1y2) · (x2
2 − x1

2)−1 (mod N). (3.12)

It is worth noting that even though y1 and y2 have been disclosed to the key server during the process,
s1 and s2 are still kept secret since the key server has no knowledge about x1 and x2. The secret
reconstruction process does not involve the decryption operation and thus is time-efficient.

4. (n, n)-threshold secret sharing

Let us extend the previous (2, 2)-threshold scheme to a (n, n)-threshold scheme. For conciseness,
we omit modulus symbols in the following description where there is no ambiguity. Let n secrets
generated from sources be denoted by s1, s2, . . . , and sn. After encryption, the encrypted results,
written as E(s1), E(s2), . . . , and E(sn), are transmitted to the dealer for sharing. The dealer chooses n
random numbers x1, x2, . . . , and xn such that a matrix

X =


x1 x2 x3 · · · xn

x2 x3 x4 · · · x1
...

...
...

. . .
...

xn x1 x2 · · · xn−1

 (4.1)
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has a modular multiplicative inverse X−1 in Z/NZ. Alternatively, X must satisfy gcd(det(X),N) = 1
and det(X) , 0. Note that ‘det’ stands for determinant. Let the dealer compute

E(y1) = E(s1)x1E(s2)x2 · · · E(sn)xn ,

E(y2) = E(s1)x2E(s2)x3 · · · E(sn)x1 ,

...

E(yn) = E(s1)xnE(s2)x1 · · · E(sn)xn−1 .

(4.2)

According to the homomorphic properties, we derive

E(y1) = E(s1x1 + s2x2 + · · · + snxn),
E(y2) = E(s1x2 + s2x3 + · · · + snx1),

...

E(yn) = E(s1xn + s2x1 + · · · + snxn−1).

(4.3)

The sharing process can be fulfilled by cloud computing to relieve the dealer of computational burdens
without revealing the private information about the secrets. The dealer dispenses x1, x2, . . . , and xn to
n participants respectively and passes E(y1), E(y2), . . . , and E(yn) to the key server for decryption. The
decrypted results, written as 

y1

y2
...

yn

 = X


s1

s2
...

sn

 , (4.4)

are allocated to individual participants as well. When all the participants pool their shares together,
they retrieve the secrets by 

s1

s2
...

sn

 = X−1


y1

y2
...

yn

 . (4.5)

Example. Let us demonstrate that the previous (2, 2)-threshold scheme is actually a special case of
the (n, n)-threshold scheme. In the case where there are two secrets s1 and s2 to be encoded, the dealer
randomly chooses x1 and x2 to form a matrix (

x1 x2

x2 x1

)
.

Then, we compute

E(y1) = E(s1)x1E(s2)x2 = E(s1x1 + s2x2),
E(y2) = E(s1)x1E(s2)x2 = E(s1x2 + s2x1),

which are equivalent to the results in Eq. (3.5) and Eq. (3.6). By decryption, we obtain(
y1

y2

)
=

(
x1 x2

x2 x1

) (
s1

s2

)
,
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which are equal to the results in Eq. (3.7). Eventually, we retrieve the secrets by(
s1

s2

)
=

(
x1 x2

x2 x1

)−1 (
y1

y2

)
,

which are identical to the results in Eq. (3.11) and Eq. (3.12).

As an extension of the (2, 2)-threshold scheme, this scheme has the same security strength. It is
theoretically secure in the sense that any subset of participants has absolutely no knowledge about
the secrets unless all the shares are in presence. The secret reconstruction procedure does not involve
decryption. Thus, it is time-efficient and can be established without the means of key distribution.

5. (t, n)-threshold secret sharing

In light of the previous (n,n)-threshold scheme, we further derive a generalised (t, n)-threshold
scheme. Before we proceed further, let us discuss some possible (t, n)-threshold schemes and analyse
their pros and cons. Let {si}

t
i=1 denote t secrets generated from separate sources and P be a large prime.

With Shamir’s algorithm, the dealer constructs a polynomial

f (x) ≡
t∑

i=1

sixi−1 (mod P), (5.1)

and draws n points (x1, f (x1)), (x2, f (x2)), . . . , (xn, f (xn)) as shares for n participants. In our defined
scenario, the secrets are encrypted into {E(si)}ti=1 immediately after being produced. Let k denotes
the decryption key. The first possible scheme is to split k into n shares by drawing n points from the
following polynomial:

f1(x) ≡ k +

t−1∑
j=1

r jx j (mod P), (5.2)

where {r j}
t−1
j=1 are t − 1 randomly chosen integers. The encrypted data has to be stored in a database so

that when t or more participants reconstruct the key collaboratively, they can retrieve and decrypt the
data. Nonetheless, the database may be vulnerable to numerous cyber attacks. The second possible
scheme is to create shares according to the following polynomial:

f2(x) ≡
t∑

i=1

E(si)xi−1 (mod P). (5.3)

When t or more participants co-operate, they can reconstruct the encrypted data. In order to decrypt
the data, the scheme must engage a key distribution protocol to share the key amongst the participants.
To compensate for the shortcomings, one may think of combining the previous two solutions and build
a polynomial in the following form:

f3(x) ≡ k +

t−1∑
j=1

E(s j)x j (mod P). (5.4)
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In this way, the authorised subset of participants is able to reconstruct and decrypt the data from the
shares. With the knowledge of the key, however, the dealer is able to decipher the data and thus the
privacy is threatened. Regrettably, as previous strategies all have obvious limitations, we need to find
another way to do so.

For a moment, let us forget about the problem of sharing ciphertexts and only consider sharing the
plaintexts since extending the idea to the sharing of the ciphertexts is easy once the following concepts
are understood. Let st,1 denote a vector of t secrets, yn,1 denote a vector of n shares, and Xn,t denote an
n × t matrix. We define an encoding function

yn,1 = Xn,t · st,1 (5.5)

and a decoding function
st,1 = X−1

t,t · yt,1, (5.6)

where yt,1 ⊂ yn,1, and Xt,t ⊂ Xn,t. In the case of (n, n)-threshold secret sharing, the above encoding
and decoding functions are equivalent to Eq. (4.4) and Eq. (4.5), respectively. In the previous special
case, we only require that Xn,n has a modular multiplicative inverse. In the current generalised case,
however, we require that any t× t sub-matrix of Xn,t has a modular multiplicative inverse. In fact, when
t = n, the current requirement reduces to the previous one since the one and only sub-matrix of Xn,t

is Xn,t itself. Our question is hence ‘is it possible to construct a valid matrix Xn,t such that any square
matrix Xt,t consisting of t rows of Xn,t has a multiplicative inverse?’.

A matrix A is invertible if and only if its determinant is non-zero. When t and n are small numbers,
we could use trial and error to construct a valid Xn,t such that det(Xt,t) , 0 for any Xt,t. This approach
is, however, not practical since collisions become difficult to be handled as the ratio between n and t,
implying the number of possible combinations, grows large. To obtain a valid matrix in a systematic
way, one of the possible solutions is to construct a Vandermonde matrix.

Definition (Vandermonde matrix). An n × t Vandermonde matrix has a form

An,t =


α1

0 α1
1 α1

2 · · · α1
t−1

α2
0 α2

1 α2
2 · · · α2

t−1

...
...

...
. . .

...

αn
0 αn

1 αn
2 · · · αn

t−1

 .
For a t × t square Vandermonde matrix, the determinant is given by

det(At,t) =
∏

1≤i< j≤t

(α j − αi).

Example. Let us compute det(A), where

A =


1 α1 α1

2

1 α2 α2
2

1 α3 α3
2

 .
The determinant of A is given by
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det


1 α1 α1

2

1 α2 α2
2

1 α3 α3
2


= det


1 α1 α1

2

0 α2 − α1 α2
2 − α1

2

0 α3 − α1 α3
2 − α1

2


= det

(
α2 − α1 α2

2 − α1
2

α3 − α1 α3
2 − α1

2

)
= (α2 − α1)(α3 − α1) det

(
1 α2 − α1

1 α3 − α1

)
= (α2 − α1)(α3 − α1) det

(
1 α2 − α1

0 α3 − α2

)
= (α2 − α1)(α3 − α1)(α3 − α2)

Corollary (Invertible Vandermonde matrix). A square Vandermonde matrix is invertible if and only if
all αi are distinct. When the condition suffices, the matrix has a nonzero determinant.

Given the above preliminaries, we can start with the detailed construction of sharing ciphertexts.
Consider a Vandermonde matrix written as

Xn,t =


x1

0 x1
1 x1

2 · · · x1
t−1

x2
0 x2

1 x2
2 · · · x2

t−1

...
...

...
. . .

...

xn
0 xn

1 xn
2 · · · xn

t−1

 , (5.7)

where {xi}
n
i=1 are all distinct. The shares are created as

E(y1) = E(s1)x1
0
E(s2)x1

1
· · · E(st)x1

t−1
,

E(y2) = E(s1)x2
0
E(s2)x2

1
· · · E(st)x2

t−1
,

...

E(yn) = E(s1)xn
0
E(s2)xn

1
· · · E(st)xn

t−1
.

(5.8)

Due to privacy homomorphisms, the above results are equivalent to

E(y1) = E(s1x1
0 + s2x1

1 + · · · + stx1
t−1),

E(y2) = E(s1x2
0 + s2x2

1 + · · · + stx2
t−1),

...

E(yn) = E(s1xn
0 + s2xn

1 + · · · + stxn
t−1).

(5.9)
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After decryption, the results become

y1 = s1x1
0 + s2x1

1 + · · · + stx1
t−1,

y2 = s1x2
0 + s2x2

1 + · · · + stx2
t−1,

...

yn = s1xn
0 + s2xn

1 + · · · + stxn
t−1,

(5.10)

or alternatively, as expressed in Eq. (5.5). Each participant will receive a share (xi, yi), where i ∈
{1, 2, . . . , n}. Suppose that a subset of participants has gathered a collection of shares, say, (x j, y j),
where j ∈ {1, 2, . . . , t}. Hence, the participants form a matrix

Xt,t =


x1

0 x1
1 x1

2 · · · x1
t−1

x2
0 x2

1 x2
2 · · · x2

t−1

...
...

...
. . .

...

xt
0 xt

1 xt
2 · · · xt

t−1

 , (5.11)

and reconstruct the secrets with Eq. (5.6). Note that Xt,t is a square Vandermonde matrix, thus in-
vertible. The reader may have observed that when Xn,t is a Vandermonde matrix, Eq. (5.5) and Eq.
(5.6) are the encoding and decoding functions of Shamir’s scheme per se. Let f (x) denote Shamir’s
encoding function, while g(x) denote ours. The connection between two functions can be expressed as

g(x) =

t∏
i=1

E(si)xi−1
= E(

t∑
i=1

sixi−1) = E( f (x)). (5.12)

Except for the processing domain (either the plaintext or ciphertext domain), a noticeable difference
between two schemes is the decoding process for which Shamir uses the Lagrange interpolation and
we utilise a matrix multiplication. We remark that there are many studies on fast algorithms for matrix
inversion [34] and multiplication [35–37].

6. Conclusion

In this paper, we address a novel research problem of secret sharing in the encrypted domain for
IoT-based healthcare applications. We study the problem of sharing encrypted data, acquired from
different sensor nodes, among a set of cloud servers. In conclusion, the proposed schemes are theoret-
ically secure in the following senses. First, since the secret data is concealed by a secure encryption
algorithm immediately after its creation, the dealer as well as other sources cannot access the secret
data. Second, the key server only has partial shares and thus is also unable to retrieve the secret data.
Third, conforming with the access policy, a subset of fewer than a certain number of participants does
not suffice to decode the secrets either. In addition to this, the data is not required to be stored in
a common database so that the scheme is not vulnerable to cyber threats against the database. Fur-
thermore, since data retrieval does not involve computationally expensive decryption operations, the
scheme is advantageous in time-sensitive circumstances. In the near future we intend to extend this
work into a more general access structure based on the assumption that there are dishonest parties
involved. Another line of further investigation is the application of this work in visual cryptography.
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