Citation: Kyle Wendling, Cheng Ly. Firing rate distributions in a feedforward network of neural oscillators with intrinsic and network heterogeneity[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2023-2048. doi: 10.3934/mbe.2019099
[1] | J. Gjorgjieva, R. A. Mease, W. J. Moody, et al., Intrinsic neuronal properties switch the mode of information transmission in networks, PLoS Comput. Biol., 10 (2014), e1003962. |
[2] | A. Kohn, R. Coen-Cagli, I. Kanitscheider, et al., Correlations and neuronal population information, Annu. Rev. Neurosci., 39 (2016), 237–256. |
[3] | C. Ly and G. Marsat, Variable synaptic strengths controls the firing rate distribution in feedforward neural networks, J. Comput. Neurosci., 44 (2018), 75–95. |
[4] | G. Marsat and L. Maler, Neural heterogeneity and efficient population codes for communication signals, J. Neurophysiol.y, 104 (2010), 2543–2555. |
[5] | R. A. Mease, M. Famulare, J. Gjorgjieva, et al., Emergence of adaptive computation by single neurons in the developing cortex, J. Neurosci., 33 (2013), 12154–12170. |
[6] | K. Padmanabhan and N. N. Urban, Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content, Nature Neurosci., 13 (2010), 1276–1282. |
[7] | M. I. Chelaru and V. Dragoi, Efficient coding in heterogeneous neuronal populations, P. Nat. Acad. Sci., 105 (2008), 16344–16349. |
[8] | J. Mejias and A. Longtin, Optimal heterogeneity for coding in spiking neural networks, Phys. Rev. Lett., 108 (2012), 228102. |
[9] | A. S. Ecker, P. Berens, A. S. Tolias, et al., The effect of noise correlations in populations of diversely tuned neurons, J. Neurosci., 31 (2011), 14272–14283. |
[10] | C. Ly, Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity, J. Comput. Neurosci., 39 (2015), 311–327. |
[11] | E. Marder, Variability, compensation, and modulation in neurons and circuits, P. Nat. Acad. Sci., 108 (2011), 15542–15548. |
[12] | E. Marder and J.-M. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nature Rev. Neurosci., 7 (2006), 563. |
[13] | A. Roxin, N. Brunel, D. Hansel, et al., On the distribution of firing rates in networks of cortical neurons, J. Neurosci., 31 (2011), 16217–16226. |
[14] | S. Ratté, S. Hong, E. De Schutter, et al., Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer, Neuron, 78 (2013), 758–772. |
[15] | N.W. Schultheiss, A. A. Prinz and R. J. Butera, Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, vol. 6 of Springer Series in Computational Neuroscience, Springer, 2012. |
[16] | S. D. Burton, G. B. Ermentrout and N. N. Urban, Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization, J. Neurophysiol., 108 (2012), 2115–2133. |
[17] | J. A. Acebrón, L. Bonilla, C. J. P. Vincente,et al., The kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137–185. |
[18] | J. Ahn, L. Kreeger, S. Lubejko, et al., Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information, J. Neurophysiol., 111 (2014), 2320–2331. |
[19] | I. Aihara, Modeling synchronized calling behavior of japanese tree frogs, Phys. Rev. E, 80 (2009), 011918. |
[20] | K. Arai and H. Nakao, Phase coherence in an ensemble of uncoupled limit-cycle oscillators receiving common poisson impulses, Phys. Rev. E, 77 (2008), 036218. |
[21] | P. Ashwin, S. Coombes and R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6 (2016), 2. |
[22] | R. Azouz and C. M. Gray, Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo, P. Nat. Acad. Sci., 97 (2000), 8110–8115. |
[23] | A. Bremaud, D. West and A. Thomson, Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex, P. Nat. Acad. Sci., 104 (2007), 14134–14139. |
[24] | R. J. Butera Jr, J. Rinzel and J. C. Smith, Models of respiratory rhythm generation in the prebotzinger complex. ii. populations of coupled pacemaker neurons, J. Neurophysiol., 82 (1999), 398–415. |
[25] | F. P. Chabrol, A. Arenz, M. T. Wiechert, et al., Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons, Nature Neurosci., 18 (2015), 718. |
[26] | B. Ermentrout, Type i membranes, phase resetting curves, and synchrony, Neural. Comput., 8 (1996), 979–1001. |
[27] | B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, vol. 14, Siam, 2002. |
[28] | G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, vol. 35 of Interdisciplinary Applied Mathematics, Springer, 2010. |
[29] | A. Georgopoulos, A. Schwartz and R. Kettner, Neuronal population coding of movement direction, Science, 233 (1986), 1416–1419. |
[30] | J. Gjorgjieva, G. Drion and E. Marder, Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance, Curr. Opin. Neurobiol., 37 (2016), 44–52. |
[31] | P. Goel and B. Ermentrout, Synchrony, stability, and firing patterns in pulse-coupled oscillators, Physica D: Nonlinear Phenomena, 163 (2002), 191–216. |
[32] | R. Grashow, T. Brookings and E. Marder, Compensation for variable intrinsic neuronal excitability by circuit-synaptic interactions, J. Neurosci., 30 (2010), 9145–9156. |
[33] | G. Hermann and J. Touboul, Heterogeneous connections induce oscillations in large-scale networks, Phys. Rev. Lett., 109 (2012), 018702. |
[34] | X. Jiang, S. Shen, C. R. Cadwell, et al., Principles of connectivity among morphologically defined cell types in adult neocortex, Science, 350 (2015), aac9462. |
[35] | S. Kay, Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory, Prentice Hall PTR, 1993. |
[36] | Y. Kuramoto, Chemical oscillations, waves and turbulence, Berlin: Springer, 1984. |
[37] | Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics (ed. H. Araki), Springer Berlin Heidelberg, Berlin, Heidelberg, 1975, 420–422. |
[38] | R. B. Levy and A. D. Reyes, Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex, J Neurosci., 32 (2012), 5609–5619. |
[39] | C. Ly and B. Doiron, Noise-enhanced coding in phasic neuron spike trains, PLoS ONE, 4 (2017), e0176963. |
[40] | C. Ly and G. B. Ermentrout, Analysis of recurrent networks of pulse-coupled noisy neural oscillators, SIAM J. Appl. Dyn. Syst., 9 (2010), 113–137. |
[41] | C. Ly, T. Melman, A. L. Barth, et al., Phase-resetting curve determines how bk currents affect neuronal firing, J. Comput. Neurosci., 30 (2011), 211–223. |
[42] | T. McGeer et al., Passive dynamic walking, I. J. Robotic Res., 9 (1990), 62–82. |
[43] | A. L. Meredith, S.W.Wiler, B. H. Miller, et al., Bk calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output, Nature Neurosci., 9 (2006), 1041. |
[44] | J. Middleton, A. Longtin, J. Benda, et al., Postsynaptic receptive field size and spike threshold determine encoding of high-frequency information via sensitivity to synchronous presynaptic activity, J. Neurophysiol., 101 (2009), 1160–1170. |
[45] | C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35 (1981), 193–213. |
[46] | J. M. Newby and M. A. Schwemmer, Effects of moderate noise on a limit cycle oscillator: Counterrotation and bistability, Phys. Rev. Lett., 112 (2014), 114101. |
[47] | S. Oprisan, A. Prinz and C. Canavier, Phase resetting and phase locking in hybrid circuits of one model and one biological neuron, Biophys. J., 87 (2004), 2283–2298. |
[48] | A. Oswald, B. Doiron, J. Rinzel, et al., Spatial profile and differential recruitment of gabab modulate oscillatory activity in auditory cortex, J. Neurosci., 29 (2009), 10321–10334. |
[49] | D. Parker, Variable properties in a single class of excitatory spinal synapse, J. Nneurosci., 23 (2003), 3154–3163. |
[50] | N. Priebe and D. Ferster, Inhibition, spike threshold, and stimulus selectivity in primary visual cortex, Neuron, 57 (2008), 482–497. |
[51] | H. Risken, The fokker-planck equation. methods of solution and applications, vol. 18 of, Springer series in synergetics, 301. |
[52] | J. T. Schwabedal and A. Pikovsky, Phase description of stochastic oscillations, Phys. Rev. Lett., 110 (2013), 204102. |
[53] | M. Shamir and H. Sompolinsky, Implications of neuronal diversity on population coding, Neural computation, 18 (2006), 1951–1986. |
[54] | A. A. Sharp, F. K. Skinner and E. Marder, Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits, J. Neurophysiol., 76 (1996), 867–883. |
[55] | K. M. Stiefel, B. S. Gutkin and T. J. Sejnowski, Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons, PloS one, 3 (2008), e3947. |
[56] | J.-N. Teramae, H. Nakao and G. B. Ermentrout, Stochastic phase reduction for a general class of noisy limit cycle oscillators, Phys. Rev. Lett., 102 (2009), 194102. |
[57] | P. J. Thomas and B. Lindner, Asymptotic phase for stochastic oscillators, Physical review letters, 113 (2014), 254101. |
[58] | T. I. Tóth, M. Grabowska, N. Rosjat, et al., Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves, Biol.l cybern., 109 (2015), 349–362. |
[59] | S. J. Tripathy, K. Padmanabhan, R. C. Gerkin, et al., Intermediate intrinsic diversity enhances neural population coding, P. Natl. Acad. Sci. USA, 110 (2013), 8248–8253. |
[60] | A. T.Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42. |
[61] | A. T. Winfree, The geometry of biological time, vol. 12, Springer Science & Business Media, 2001. |
[62] | L. Yassin, B. L. Benedetti, J.-S. Jouhanneau, et al., An embedded subnetwork of highly active neurons in the neocortex, Neuron, 68 (2010), 1043–1050. |
[63] | R. A. York and T. Itoh, Injection-and phase-locking techniques for beam control [antenna arrays], IEEE T. Microw. Theory, 46 (1998), 1920–1929. |
[64] | R. Yuste, J. N. MacLean, J. Smith, et al., The cortex as a central pattern generator, Nature Rev. Neurosci., 6 (2005), 477. |
[65] | V. Zampini, J. K. Liu, M. A. Diana, et al., Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit, eLife, 5 (2016), e15872. |
[66] | P. Zhou, S. Burton, N. Urban, et al., Impact of neuronal heterogeneity on correlated colored noise-induced synchronization, Front. comput. neurosci., 7 (2013), 113. |