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Abstract: The level of firing rate heterogeneity in a population of cortical neurons has consequences
for how stimuli are processed. Recent studies have shown that the right amount of firing rate
heterogeneity (not too much or too little) is a signature of efficient coding, thus quantifying the
relative amount of firing rate heterogeneity is important. In a feedforward network of stochastic
neural oscillators, we study the firing rate heterogeneity stemming from two sources: intrinsic (different
individual cells) and network (different effects from presynaptic inputs). We find that the relationship
between these two forms of heterogeneity can lead to significant changes in firing rate heterogeneity.
We consider several networks, including noisy excitatory synaptic inputs, and noisy inputs with both
excitatory and inhibitory inputs. To mathematically explain these results, we apply a phase reduction
and derive asymptotic approximations of the firing rate statistics assuming weak noise and coupling.
Our analytic calculations reveals how the interaction between intrinsic and network heterogeneity
results in different firing rate distributions. Our work shows the importance of the phase-resetting
curve (and various transformations of it revealed by our analytic calculations) in controlling firing rate
statistics.
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1. Introduction

The underlying mechanisms of how cortical neural networks process stimuli is an important and
complex topic. In a population of neurons, understanding how sensory signals are efficiently encoded
and transmitted to higher areas of the brain is especially challenging given that neurons are known to
be stochastic and have heterogeneous attributes. For this reason, and due to the nature of quantifying
information content and efficient coding, many advances stem from a combination of experiments and
computational modeling [1–6]. Firing rate heterogeneity is the most commonly studied heterogeneous
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attribute; it has been shown to have consequences on neural coding in the olfactory bulb [6,59], on the
visual system (i.e., orientation tuning curves [7, 53]), and on a variety of other systems including the
auditory [18] and electrosensory systems [4, 29]. In general, the population firing rate and the level of
its heterogeneity directly affect important information-theoretic measures of coding such as the Fisher
information and mutual information [35]. Firing rate heterogeneity is a fundamental entity for systems
that code signals based on rate, or the total number of spikes. Although we do not focus on the potential
impact of higher order spiking statistics (i.e., covariance [2]) or spike timing in this paper, firing rate
heterogeneity has deep implications on the way cells encode sensory signals.

Several studies have shown that increased firing rate heterogeneity is a signature of more efficient
coding (e.g., Fisher Information [6, 53], discrimination error of distinct trial-averaged firing rates [4]).
However, the relative level of heterogeneity is important because other studies have shown that too
much or too little heterogeneity can be detrimental. This has been shown, for example, in spiking
model networks [8], in a generalized linear model (GLM) fit to olfactory bulb neurons [59], and in
orientation tuning curves [9]. Thus, the actual level of heterogeneity, not just whether neurons are
heterogeneous, is important to quantify. Analyzing firing rate heterogeneity in model networks has the
potential benefit of enabling predictions of how neural attributes relate to efficient coding.

An understudied aspect of firing rate heterogeneity is the genesis of this network statistic from
underlying neural attributes. Many theoretical studies specify the firing rate heterogeneity a priori,
but interactions of cellular and network attributes are nonlinear and can lead to unexpected spiking
dynamics [3, 10–13]. However, others have focused on how intrinsic attributes affect neural
coding [1, 14]. Importantly, experimental measurements have shown that both intrinsic and network
heterogeneity are material. At the cellular level, many intrinsic factors influence the firing rate of a
cell such as ion channel composition or cell morphology. Our modeling centers on neural oscillators,
a class of cells whose intrinsic properties lead to repetitive action potentials. We primarily consider
intrinsic heterogeneity via a neuron’s phase-response curve (PRC) [15], an experimentally
measurable entity that quantifies how inputs advance/delay time to next spike in oscillating neurons.
Experiments have shown that PRCs are heterogeneous in olfactory bulb cells [16] as well as in mice
visual cortex [55]. The researchers [55] demonstrate that the PRC type can modulate with
acetylcholine (carbachol) rather than altering stimulus input. At the network level, the same
presynaptic input strength can result in heterogeneous postsynaptic responses. Effective synaptic
input strength is determined by many physiological parameters: presynaptic firing rate, postsynaptic
potential size [23, 38] for each presynaptic spike, or in the total number of inputs [38, 48, 49] (in
addition to these cortical examples, experiments in the cerebellum show postsynaptic targets are
heterogeneous [25, 65]). We do not distinguish here between these different aspects of network
heterogeneity; rather we use a simple parameter for input strength to model network heterogeneity
(see [7, 12], who modeled network heterogeneity in a similar way).

In this study, we focus on the nonlinear interactions of intrinsic and network heterogeneity because
such theoretical studies are relatively rare (i.e, [6,8,16,59,66] considered intrinsic heterogeneity alone,
and [7, 33, 49] considered network heterogeneity alone). Some exceptions are Marder and colleagues
[11,12], who have considered many heterogeneous attributes in detail, including intrinsic and network,
with a focus on the detailed structure of voltage traces with relatively small numbers of neurons. Both
intrinsic and synaptic diversity in two coupled oscillators have been considered in dynamic clamp
experiments combined with theoretical modeling in [32, 54] (see [30] for a more thorough review). At
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least in the context of altering the spiking statistics of large networks of neurons with noise, the only
other studies that we are aware of that consider the effects of both intrinsic and network heterogeneity
are: [3, 10].

In [10], we analyzed how the relationship between intrinsic (spike threshold) and network
heterogeneity, along with the operating regime, alter firing rate distributions in a generic recurrent
network model of leaky integrate-and-fire (LIF) neurons. In [3], we made stimulus-dependent
predictions about the relationship between threshold and synaptic input, as well as effective network
connectivity, with modeling and in vivo recordings of the hindbrain in weakly electric fish. However,
these works do not include realistic intrinsic dynamics when modeling the relationship between
intrinsic and network heterogeneity. Simple spiking models such as LIF do not account for ion
channel dynamics that can have significant and counter-intuitive effects on firing rate statistics (i.e.,
blocking a potassium current does not always increase firing rates [41, 43]). In addition, higher
dimensional models that incorporate these features can better characterize the intrinsic dynamics of
neurons, as opposed to LIF. LIF and many spiking models only integrate network input without
properly accounting for how the current state affects responses.

Here we consider a feedforward network of heterogeneous Morris-Lecar cells [45], where
“feedforward” indicates that target neurons do not affect the presynaptic population. We find the
relationship between intrinsic (PRC) and network heterogeneity can dramatically alter firing rate
heterogeneity or distribution. We use a phase reduction method to calculate asymptotic firing rates
assuming weak noise and coupling. Our first order analytic formulas qualitatively and succinctly
capture the observed firing rate statistics of the high-dimensional model. We also demonstrate the
value of the second order analytic formulas in capturing how firing rates change as the noise level
varies. Our work reveals which aspects of the PRC control firing rate dynamics in the weak coupling
and noise regime.

2. Materials and method

2.1. General feedforward oscillator model

Consider a population of N distinct neural oscillators receiving independent noise, coupled to a
presynaptic population providing feedforward input. Let X j ∈ R

n denote the state variables of the
jth ∈ {1, 2, . . . ,N} oscillator. The uncoupled and noise-free oscillatory system would be characterized
as dX j

dt = F j(X j) with a period T j. With the addition of noise and coupling, the equation for X j is of the
form:

dX j

dt
= F j(X j) + q j

∑
k

w j,kG(X j,Yk) + ς~ξ j(t) (2.1)

where ς � 1 is the power of the noise, q jw j,kG � 1 is the coupling, and ~ξ j(t) are independent white
noise processes with zero mean and variance 〈ξ(t)ξ(t′)〉 = δ(t − t′). Combining noise and coupling
perturbations, we define the system as dX j

dt =: F j(X j) + ε j and assume the models are Itô stochastic
differential equations (SDEs). We also assume that the unperturbed system dX j

dt = F j(X j) has an
asymptotically stable limit cycle, X0(t) = X0(t + T j).

We use a phase reduction method applied to model above (Eq. 2.1) to obtain a network of phase
oscillator models [17, 26]. The phase reduction employed here is standard and has been described
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previously by many authors (see Chapter 8 of [28] and Chapter 1 of [15]). Note that there are other
phase reduction methods; for example, see [56] for addressing how the time-scale of the noise and
return time to limit cycle could yield a different phase reduction; see [52, 57] for phase descriptions
with noise and without a stable limit cycle; with moderate to strong perturbations, see [21,46,47]. For
our purposes, we will focus on the case where the oscillators return to the limit cycle very quickly with
weak perturbations.

Near the limit cycle, there is a function φ : Rn → S 1 mapping a neighborhood of the limit cycle to
the one-dimensional phase along the limit cycle, Θ j ∈ [0,T j), where T j is the period of the uncoupled
oscillator. Defining Θ j = φ(X j), the variable Θ j satisfies

dΘ j

dt
= 1 + ∇Xφ(X j) · ε j. (2.2)

This analytically exact equation has to be further approximated because X j is not captured with the
phase variables. However, since ε j is small, we can approximate X j by X0(Θ j) to get a simpler equation
for Θ j:

dΘ j

dt
≈ 1 + Z(Θ j) · ε j(Θ1, ..., .ΘN), (2.3)

where Z(Θ) := ∇Xφ(X0(Θ)). The function Z(Θ) is called the adjoint and satisfies the linear equation

Z′(Θ) = −DxF j(X0(Θ))T Z(Θ). (2.4)

A normalization condition uniquely determines the solution to this equation (see [15]). We assume that
the noise and coupling only affect the voltage component (i.e., voltage is the first component so ε j has
0 except in the first), which holds for a wide class of neuron models. Thus, for the vector product (i.e.,
last term of RHS of Eq. 2.3), the only relevant quantity is the first component of Z(Θ), which we call
∆ j, the (infinitesimal) Phase Resetting Curve or PRC of the neuron. The PRC is a periodic function
that has negligible value at the end points because in neurons, perturbations have negligible effect on
the dynamics at the moment of a spike, and is also an experimentally measurable entity. The PRCs
here are are calculated with the program XPPAUT [27].

The result of applying the phase reduction and scaling Eq. 2.3 by T j is the following set of stochastic
differential equations:

dΘ j

dt
= ω j + q j

∑
k

P j,k +
σ2

2
∆ j(Θ j)∆′j(Θ j) + σ∆ j(Θ j)ξ j(t) (2.5)

where again the noise is independent, frequency ω j = 1
T j

because the phase variables Θ j have been
scaled to take on values in [0,1), and

P j,k =
1
T j

w j,k
1
T j

∫ T j

0
∆ j(t)G(X0(t),Yk(t)) dt. (2.6)

The first factor 1
T j

is from the scaling. Yk(t) is the average value of presynaptic input. ∆ j(t) is the time-

scaled version of the PRC ∆ j(t) := T j∆ j

(
t

T j

)
. Here the noise level ς is simply scaled by the period:

σ =
ς
T j
. The term σ2

2 ∆ j(Θ j)∆′j(Θ j) is a result of Itô’s Lemma because the original model (Eq. 2.1)
is an Itô stochastic differential equation (SDE). We model intrinsic heterogeneity with different ∆ j

(although there is minuscule variation in ω j in the models we consider), and network heterogeneity
is captured by q j that scales the presynaptic input.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2023–2048.



2027

2.2. Morris-Lecar model

The specific multi-dimensional model we focus on is the Morris-Lecar model [45]. Although this
model has only 2 state variables (dynamics of voltage trace and potassium gating), it is an ideal model
for our purposes because our central focus is on intrinsic heterogeneity manifested with different PRCs.
Indeed, a wide variety of PRCs result with varying 4 parameters (Figure 3C,D). The model dynamics
consist of multiple time-scales, three intrinsic ionic currents, and spike generation. At its core, the
dynamics of the voltage trace are modeled by the difference between an applied background current
and the intrinsic ionic currents, so dV j

dt ∝ Iapp − Iion. Meanwhile, potassium dynamics are modeled by
the difference between the steady-state fraction of open potassium channel at the current voltage level
and the actual current fraction of open channels, so dWJ

dt ∝ Win f (V j) −W j. The model is:

Cm
dV j

dt
= Iapp − gL(V j − EL) − gKW(t)(V j − EK) − gCam∞(V j)(V j − ECa)

− q j

M∑
k=1

w j,ksk(t)(V j − Esynk) + ςξ j(t)

dW j

dt
= φ

W∞(V j) −W j

τW(V j)

(2.7)

ξ j(t) is an independent white noise process with strength ς and Cm is the membrane capacitance. The
parameters gL, gK , and gCa are the maximal conductances for the leak current, potassium channels,
and calcium channels, respectively; EL, EK , and ECa are the corresponding reversal potentials. The
functions in the model are:

m∞(V) =
1
2

[1 + tanh((V − V1)/V2), ]

τW(V) =
1

cosh((V − V3)/(2V4))
,

W∞(V) =
1
2

[1 + tanh((V − V3)/V4)],

(2.8)

where m∞ and W model the steady-state fraction of open calcium and potassium channels, respectively,
and τW represents the time scale of potassium; V1 through V4 are the parameters that affect the intrinsic
ion channel dynamics. All of the intrinsic parameters are fixed except V3, V4, φ and the background
current Iapp (see Table 1). These four parameters are varied to model intrinsic heterogeneity, resulting
in different PRCs (see Figure 3C). In some circumstances, φ is calculated via the temperature [28], but
here we assume it can vary within the population.

Finally, the sum q j

M∑
k=1

w j,ksk(t)(V j − Esynk) represents the total pre-synaptic input assumed to be

feedforward from an unmodeled population. The parameter q j models network heterogeneity; the
values are chosen independently from a uniform distribution from positive values: q j ∼ U(qmin, qmax),
with either [qmin, qmax] = [0.005, 0.015] or [qmin, qmax] = [0.001, 0.003]. The same presynaptic input
strength can result in heterogeneous postsynaptic responses (see [7, 12] who modeled network
heterogeneity in a similar way). The coupling matrix w j,k is an N × M matrix with N = 730 neurons
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Table 1. Morris-Lecar Parameter Values. The fixed parameters are from [45], the parameters
for synapses (τr, τd, A) are below, see Eqs. 2.9–2.10; the subscripts denote whether the
pre-synaptic input is excitatory (i.e., τrE) or inhibitory (i.e., τrI). In the second table, the
parenthetical notation refers to the extreme values, obtained from [27] files (mlecar.ode),
that we vary to determine how periodic firing arises.

Fixed Values Value Value Value
Cm 20 µF

cm2 gl 2 mS
cm2 gK 8 mS

cm2

gCa 4 mS
cm2 EL -60 mV EK -84 mV

ECa 120 mV V1 -1.2 mV V2 18 mV
τrE 1 ms τdE 5 ms AE 2 EsynE 80 mV
τrI 2 ms τdI 10 ms AI 2 EsynI -60 mV

Parameters for Intrinsic Heterogeneity Value
V3 12 mV to 1 mV
V4 17 mV to 31 mV
φ 0.06667 ms−1 to 0.04 ms−1

Iapp 47 µA
cm2 to 109 µA

cm2

(population of interest) and M = 1000 synapses, k ∈ {1, . . . ,M}, consisting entirely of 0’s and 1’s. The
coupling matrix is an Erdös-Rényi graph, with the probability of connection of 0.3 for all w j,k

(independently chosen). The random number of presynaptic inputs to the N = 730 neurons is a minor
source of variability but not one of our significant sources of heterogeneity. The synapse variable sk(t)
is modeled by the following ODE system:

dsk

dt
=
−sk + ak

τd
(2.9)

dak

dt
= −

ak

τr
+ A

∑
δ(t − t∗) (2.10)

The times t∗ when a instantaneously jumps a(t∗)→ a(t∗) + A are random, governed by a homogeneous
Poisson process with rate λ.

The synaptic kernel associated with the synapse model is:

s(t − t′) = H(t − t′)
τras

τd − τr

(
e−(t−t′)/τd − e−(t−t′)/τr

)
(2.11)

where H(x) is the Heaviside step function (1 if x > 0, and 0 if x < 0). Here we assume τd > τr,
commonly observed in cortical synapses.

2.3. Phase reduction of the feedforwad Morris-Lecar network

The result of applying the general phase reduction method in section 2.1 to the feedforward Morris-
Lecar network with conductance-based synaptic input is described here.
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The noise level ς in the Morris-Lecar model is simply scaled by the period so that:

σ =
ς

T j
.

Recall that the time-scaled version of the PRC, ∆ j(t), is defined as the following: ∆ j(t) := T j∆ j

(
t

T j

)
.

As described previously for a general model (Eq. 2.5), we scale time by T j and use the dimensionless
version of the PRC, ∆ j. The feedforward coupling term (Eq. 2.6) is approximated by:

P j,k = ∆ j(θ) w j,k
1

CmT j

∫ T j

0
sk(t)(Esynk − VLC

j (t)) dt. (2.12)

where VLC
j (t) is the unperturbed voltage in one cycle. The PRC is taken out of the integral as an

ad-hoc approximation, although partially justified because the feedforward input is very noisy
(synapses are driven by a Poisson process) and is effectively pulse-coupled inputs when Esynk is much
larger/smaller than the possible values of V j(t) (see [31, 40] who use phase oscillator models of a
similar form). Finally, the synaptic input sk(t) is approximated by applying the synaptic filter (Eq.
2.11) at all discretized points in the period and averaging because the synapses are driven by a
Poisson process. Thus,

dΘ j

dt
= ω j +

σ2

2
∆ j∆

′
j + q jP̄ j∆ j + σ∆ jξ j(t) (2.13)

Θ j(t−) ≥ 1, ⇒ Θ j(t+) = 0 (2.14)

P̄ j :=
∑

k

w j,k
1

Cm

〈
1
T j

∫ T j

0
s(t − t′)(Esynk − VLC

j (t)) dt
〉

t′
(2.15)

where 〈·〉t′ denotes the average over all t′ ∈ [0,T j).

2.4. Asymptotic approximation to the firing rate distribution

Here we describe the phase reduction theory to capture the firing statistics of the full Morris-Lecar
feedforward network. The phase reduction (Eqs. 2.13–2.15) makes the subsequent asymptotic
calculations feasible. Stochastic systems are often characterized by a probability density equation
which is described by a Fokker-Planck [51] equation. Let

Pr
(
Θ j(t) ∈ (θ, θ + dθ)

)
= % j(θ j, t) d~θ. (2.16)

The corresponding Fokker-Planck equation of the jth neuron is:

∂% j

∂t
= −

∂

∂θ

{[
ω j + q jP̄ j∆ j(θ j) +

σ2

2
∆ j(θ)∆′j(θ)

]
% j −

σ2

2
∂

∂θ

{
∆2

j(θ)% j

}}
=: −

∂

∂θ

{
J j(θ, t)

}
(2.17)

with periodic boundary conditions: % j(θ = 0, t) = % j(θ = 1, t) and normalization
∫ 1

0
% j(θ, t) dθ = 1. The

firing rate of actions potentials is:

r j(t) :=
Pr

(
Θ j(t) ≥ 1

)
Unit Time

= J j(θ = 1, t) (2.18)
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The probability flux J j(θ, t) can re-written by differentiation to get:

∂% j

∂t
= −

∂

∂θ

{ [
ω j −

σ2

2
∆ j(θ j)∆′j(θ j) + q jP̄ j∆ j(θ j)

]
% j(θ) −

σ2

2
∆2

j(θ)
∂% j

∂v

}
We are only interested in the steady-state solution (∂% j

∂t = 0):

0 = −
∂

∂θ

{ [
ω j −

σ2

2
∆ j(θ j)∆′j(θ j) + q jP̄ j∆ j(θ j)

]
% j(θ) −

σ2

2
∆2

j(θ)%
′
j(θ)

}
(2.19)

0 =
∂

∂θ
{J j(θ)}

Since J j(θ) is constant, we pick a convenient θ, namely θ = 1, which gives the firing rate of the jth

neuron. This value of θ has the added benefit that the PRC vanishes there at the moment of firing:
∆(1) = 0. Thus, the firing rate is simply:

r j = ω j% j(1) (2.20)

We exploit the weak coupling and noise assumption by applying a standard asymptotic
approximation to the P.D.F. % j to obtain an approximation for the firing rate of the jth neuron, and
consequently the firing rate heterogeneity (i.e., standard deviation across all r j):

% j(θ) = %0(θ) + ε%1(θ) + ε2%2(θ) + O(ε3) (2.21)

The P.D.F. has to integrate to 1 (i.e.,
∫ 1

0
% j(θ) dθ = 1); we assume the following normalization

conditions for the asymptotic approximation of %:∫ 1

0
%0(θ) dθ = 1,

∫ 1

0
%l(θ) dθ = 0 ∀l ≥ 1 (2.22)

so that any truncation from 0th order and onward results in the correct normalization. Substituting Eq.
2.21 into Eq. 2.19 while assuming σ2 and q jP̄ j are order ε gives:

J j(θ) =

(
ω j − ε

σ2

2
∆ j(θ)∆′j(θ) + εq jP̄ j∆ j(θ j)

) [
%0(θ) + ε%1(θ) + ε2%2(θ)

]
− ε

σ2

2
∆2

j(θ)%
′
j(θ)

(2.23)

This results in a hierarchy of asymptotic equations (after dividing by ε l). We impose the condition that
each order of the approximation for J j has 0 derivative (with respect to θ), equivalent to assuming the
steady-state Fokker-Planck Eq. 2.19 is satisfied in all orders. The 0th order equation is simply:

J j(θ) = ω j%0(θ)

With the normalization condition:
∫ 1

0
%0(θ) dθ = 1 and the fact that J j ≡ K0 is constant (i.e., J j has 0

derivative) results in %0 ≡ 1, giving the following 0th order approximation to r j:

r j ≈ ω j (2.24)
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First Order Formula

The 1st order formula is derived via the O(ε) equation in Eq. 2.23. Note that:

%′j(θ) = ε%′1(θ) + ε2%′2(θ) + O(ε3) (2.25)

Since %′j(θ) is multiplied by an order ε term (σ
2

2 ), the resulting 1st order approximation for J j does not
contain derivatives of %l:

J j(θ) = ω j%1(θ) −
σ2

2
∆ j(θ)∆′j(θ)%0(θ) + q jP̄ j∆ j(θ j)%0(θ) (2.26)

Setting J j to a constant K1 via 0 = ∂
∂θ
{J j(θ)} and substituting for %0 results in a simple equation for %1:

K1 = ω j%1(θ) −
σ2

2
∆ j(θ)∆′j(θ) + q jP̄ j∆ j(θ j)

%1(θ) =
1
ω j

[
σ2

2
∆ j(θ)∆′j(θ) − q jP̄ j∆ j(θ j) + K1

]
(2.27)

The constant K1 is determined by integrating both sides from θ = 0 to 1 and using the normalization
condition:

∫ 1

0
%1(θ) dθ = 0.

0 =
1
ω j

[
σ2

4
∆2

j(θ)
∣∣∣∣∣1
0
− q jP̄ j

∫ 1

0
∆ j(θ)dθ + K1θ

∣∣∣∣∣1
0

]

0 =
1
ω j

(
−q jP̄ j∆̄ j + K1

)
K1 = q jP̄ j∆̄ j.

Thus we have:

%1(θ) =
1
ω j

[
σ2

2
∆ j(θ)∆′j(θ) + q jP̄ j

(
∆̄ j − ∆ j(θ)

)]
. (2.28)

where: ∆̄ :=
∫ 1

0
∆(θ)dθ. The resulting 1st order approximation is:

r j ≈ ω j + q jP̄ j∆̄ j (2.29)

Second Order Formula

We derive a 2nd order approximation to the P.D.F. and firing rate analogously. Again we use Eq.
2.23 but only consider O(ε2) this time.

J j(θ) = ω j%2(θ) −
σ2

2
∆ j(θ)∆′j(θ)%1(θ) + q jP̄ j∆ j(θ)%1(θ) −

σ2

2
∆2

j(θ)%
′
1(θ) (2.30)
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From the equation for %1 (Eq. 2.28), we have:

%′1(θ) =
1
ω j

[
σ2

2
∆ j(θ)∆′′j (θ) +

σ2

2
(
∆′j(θ)

)2
− q jP̄ j∆

′
j(θ)

]
(2.31)

Substituting %1(θ) and %′1(θ) into the RHS of Eq. 2.30:

= ω j%2(θ) −
σ2

2
∆ j(θ)∆′j(θ)

[
1
ω j

(
σ2

2
∆ j(θ)∆′j(θ) − q jP̄ j∆ j(θ) + q jP̄ j∆̄ j

)]
+ q jP̄ j∆ j(θ)

[
1
ω j

(
σ2

2
∆ j(θ)∆′j(θ) − q jP̄ j∆ j(θ) + q jP̄ j∆̄ j

)]
−
σ2

2
∆2(θ)

[
1
ω j

(
σ2

2
∆ j(θ)∆′′j (θ) +

σ2

2
(
∆′j(θ)

)2
− q jP̄ j∆

′
j(θ)

)]
We skip some of the straight forward yet tedious calculations. Assuming all order of % j satisfy the
equation 0 = ∂

∂θ
{J j(θ)} as before, the equation for %2 is:

K2 = ω j%2(θ) −
1
ω j

(σ2

2
∆ j(θ)∆′j(θ)

)2

+
σ2

2
q jP̄ j

(
∆̄ j∆ j(θ)∆′j(θ) − ∆2

j(θ)∆
′
j(θ)

)
+

1
ω j

[
σ2

2
q jP̄ j∆

2
j(θ)∆

′
j(θ) +

(
q jP̄ j

)2
(
∆̄ j∆ j(θ) − ∆2

j(θ)
)]

−
1
ω j

[(σ2

2
)2

∆3
j(θ)∆

′′
j (θ) +

(σ2

2
∆ j(θ)∆′j(θ)

)2
−
σ2

2
q jP̄ j∆

2
j(θ)∆

′
j(θ)

]
To distinguish the contribution of noise, network inputs, etc., the terms are grouped by (σ

2

2 )2, (q jP̄ j)2,
and the interaction between these two: σ2

2 q jP̄ j:

K2 = ω j%2(θ) −
1
ω j

[(σ2

2
)2
(
2
(
∆ j(θ)∆′j(θ)

)2
+ ∆3

j(θ)∆
′′
j (θ)

)]
−

1
ω j

[
σ2

2
q jP̄ j

(
∆̄ j∆ j(θ)∆′j(θ) − ∆2

j(θ)∆
′
j(θ)

)]
−

1
ω j

[(
q jP̄ j

)2
(
∆2

j(θ) − ∆̄ j∆ j(θ)
)] (2.32)

We solve for %2(θ) and K2 by integrating both sides in θ from 0 to 1, using the normalization condition
(Eq.2.22) and recalling that ∆ j(0) = ∆ j(1) = 0. Then, we have:

K2 = −
1
ω j

[(σ2

2
)2
(
2
∫ 1

0
∆2(θ)(∆′(θ))2dθ +

∫ 1

0
∆3(θ)∆′′(θ)dθ

)
+

(
q jP̄ j

)2
(
∆2 − ∆̄2

)]
(2.33)

where ∆2 :=
∫ 1

0
∆2(θ)dθ. This equation can be further simplified with integration by parts:∫ 1

0
∆3(θ)∆′′(θ)dθ = ∆3(θ)∆′(θ)

∣∣∣∣∣1
0
− 3

∫ 1

0
∆2(θ)(∆′(θ))2dθ = −3

∫ 1

0
∆2(θ)(∆′(θ))2dθ
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Eq. 2.33 is equal to:

K2 =
1
ω j

[(σ2

2
)2
(∫ 1

0
∆2

j(θ)(∆
′
j(θ))

2dθ
)

+
(
q jP̄ j

)2
(
∆̄2

j − ∆2
j

)]
(2.34)

The final result for %2 using Eqs 2.32 and 2.34 is:

%2(θ) =
1
ω2

j

[(σ2

2
)2
(∫ 1

0
∆2

j(θ)(∆
′
j(θ))

2dθ
)

+
(
q jP̄ j

)2
(
∆̄2

j − ∆2
j

)]
+

1
ω2

j

[(σ2

2
)2
(
2
(
∆ j(θ)∆′j(θ)

)2
+ ∆3

j(θ)∆
′′
j (θ)

)]
+

1
ω2

j

[
σ2

2
q jP̄ j

(
∆̄ j∆ j(θ)∆′j(θ) − ∆2

j(θ)∆
′
j(θ)

)]
+

1
ω2

j

[(
q jP̄ j

)2
(
∆2

j(θ) − ∆̄ j∆ j(θ)
)]

(2.35)

Evaluating at θ = 1 greatly simplifies %2, the only value that matters for the firing rate.

%2(1) =
1
ω2

j

[(σ2

2
)2
(∫ 1

0
∆2

j(θ)(∆
′
j(θ))

2dθ
)

+
(
q jP̄ j

)2
(
∆̄2

j − ∆2
j

)]
(2.36)

The 2nd order approximation to the firing rate then is:

r j ≈ ω j + q jP̄ j∆̄ j +
1
ω j

[(σ2

2
)2
(∫ 1

0
∆2

j (θ)(∆
′
j(θ))

2dθ
)

+
(
q jP̄ j

)2
(
∆̄2

j − ∆2
j

)]
(2.37)

Finally, we consider the standard deviation across the population predicted by our analytic theory:
σ(~r) = 1

N

∑N
j=1(r j − µ~r)2. We only use the 1st order approximation (Eq. 2.29) in the firing rate

heterogeneity approximation – in the Results section the 2nd order formula is not useful for the large
feedforward network.

σ(~r) ≈ σ(ω + q P̄ ∆). (2.38)

(all variables in the standard deviation σ are vectors).

3. Results

We start with an illustrative example that highlights the importance of properly accounting for
intrinsic dynamics. Consider the Morris-Lecar (ML) model with two different parameter sets (Figure
1). The voltage trajectories are similar and the phase planes have minor discrepancies that are
predominant in the W variable, so one would naively think that the population response would be
similar. However, we will show that the population response can be different with two simple
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homogeneous networks in Figure 2. Although experimentalists interested in systems neuroscience
and coding tend to focus primarily on network coupling structure and synaptic dynamics, we show
that cellular attributes alone can shape response statistics and subsequently provide a mathematical
explanation of these observations.

Consider two homogeneous populations of ML cells, each having different intrinsic dynamics
(Figure 1 and Eqs. 2.7–2.8) which we call SNIC (saddle-node bifurcation on invariance circle) and
Hopf. We use these names (SNIC and Hopf) because the stable limit cycles emerge from these
respective types of bifurcations. Each homogeneous population, of size N = 730, receives
feedforward input that is heterogeneous, modeled by a factor q j (i.e., network heterogeneity) that

scales input from a feedforward population of M = 1000, q j

1000∑
k=1

w j,ksk(t)(V j − Esynk); cells in the target

population are uncoupled. The coupling between the presynaptic and postsynaptic populations is
randomly and independently chosen (Erdös-Rényi graph), with the probability of connection of 0.3
for all w j,k; all feedforward networks in this paper have this structure (all except Figure 6). These two
network models have vastly different population firing rate statistics with statistically identical input
(Figure 2). Not only are the mean firing rates different, but the standard deviation of the population
firing rate vary more with network type (SNIC or Hopf) than the actual type of input (excitatory
versus inhibitory input, Figure 2A,B). The SNIC network has consistently larger firing rate
heterogeneity than the Hopf network. The mean firing rate also changes more significantly between
excitatory and inhibitory inputs for SNIC cells than it does for Hopf cells. This surprising result can
be explained with our theoretical calculations (see below). Note that the bifurcation diagrams for each
network (Figure 2C,D) are very different, providing a hint to a possible explanation of the
observations; one network type has cells that undergo a SNIC bifurcation and the other following a
Hopf bifurcation with increased current injection.

Biophysical neuron models often have many dimensions, and in a coupled network, analysis is often
intractable because of the dimensions and nonlinear processing of presynaptic inputs. The assumption
that both coupling and noise are weak, however, allows us to employ the phase reduction while still
incorporating biophysically-realistic dynamics. The phase-resetting curve (PRC) is a key entity in the
phase reduction. We use the common convention for the PRC that an excitatory input at phase θ will
delay the time until the next spike if ∆(θ) < 0 but will advance the time until the next spike if ∆(θ) > 0
(see Figure 3A). These advances or delays with perturbations naturally impact firing rate. We derive
approximations to the individual firing rates: 1st order Eq. 2.29. Specifically, the approximation to
firing rate heterogeneity (standard deviation across the population) is:

σ(~r) ≈ | ∆̄ |σ(P̄ q)

This is derived from Eq. 2.38, noting that frequencies (ω j), integrated PRCs (∆̄ :=
∫ 1

0
∆ j(θ) dθ), and

average input strength times noise (σ(P̄ q)) are all the same within a population. Thus, independent of
input type, the consistently lower firing rate heterogeneity in the Hopf population occurs because the
integral of the PRC ∆̄ is smaller compared to the SNIC network; recall that all other components of the
prior equation are fixed. The ∆̄ are shown in Figure 3D – the smallest value (dark blue) is the Hopf and
the largest value (dark red) is the SNIC. Note that how limit cycles emerge has deep implications on

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2023–2048.



2035

A B

C D

0

0.2

0.4

0.1

0.3

0.5

-40

-20

0

20

0 100 200 300

V
o

lt
a

g
e

 (
m

V
)

0 100 200 300
Time (ms)

W
 v

a
ri
a

b
le

-40

-20

0

20

0 100 200 300

V
o

lt
a

g
e

 (
m

V
)

W
 v

a
ri
a

b
le

0 100 200 300
Time (ms)

0

0.1

0.2

0.3

0.4

0.5

-40 -20 0 20

Voltage (mV)

W
 v

a
ri
a

b
le

W-nullcline

V-nullcline

0

0.1

0.2

0.3

0.4

0.5

-40 -20 0 20

Voltage (mV)

W
 v

a
ri
a

b
le

W-nullcline

V-nullcline

Figure 1. The Morris-Lecar model with two different parameter sets. A) Voltage and
potassium gating variable trajectories with no coupling and weak noise, ς = 3 (see Eqs.
2.7–2.8 with v3 = 12, v4 = 17, φ = 0.06667, Iapp = 47). B) Corresponding phase plane for
variables in A, with an asymptotically stable limit cycle. C) Similar to A with no coupling
and weak noise, ς = 3, but with a different parameter set (v3 = 1, v4 = 28, φ = 0.042,
Iapp = 97.5). D) Corresponding phase plane for variables in C, again with an asymptotically
stable limit cycle. The parameters v3, v4 and φ control the dynamics of the W variable.
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Figure 2. Population firing rate for homogeneous Morris-Lecar neurons receiving
(heterogeneous) feedforward synaptic input. A) The resulting population firing rate for
two homogeneous populations (SNIC is from Figure 1A,B, Hopf is from Figure 2C,D).
The two populations have vastly different mean firing rates and standard deviations (i.e.,
heterogeneity) with the same synaptic input despite similar trajectories (Figure 1). The gray
whiskers bars represent 3 standard deviations for visual purposes. B) Same data as in A
except showing all N = 730 cell’s firing rate. C) The bifurcation diagram of the SNIC model
and the Hopf model (D) indicate that the intrinsic dynamics are vastly different despite similar
trajectories (red star indicates the precise Iapp values used). The excitatory and inhibitory
synaptic inputs are statistically identical for each of the two homogeneous populations, with
a Poisson process input rate of λ = 20 Hz and network heterogeneity: q j ∼ U(0.001, 0.003)
(uniform distribution, mean=0.002); see Table 1 and Eqs. 2.9–2.10.
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Figure 3. A) Schematic showing phase reduction method and the importance of the PRC (∆)
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The phase plane showing the (uncoupled) asymptotically stable limit cycles for 68 different
Morris-Lecar parameter sets, modeling intrinsic heterogeneity. C) The corresponding 68
PRCs; note that the periods T j are similar. D) The integral of the PRC ∆̄ j :=
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have a wide range of values, with color corresponding to C. The inset shows 2 extreme PRCs.
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the shape of the PRC, i.e., Hopf generally has large negative region versus SNIC has mostly positive
PRC [26]. SNIC is often called Type I because the firing rate vs. input current curve is continuous, and
Hopf is often called Type II because the firing rate vs. input current curve has a discontinuous jump.

Next we consider an ML network with both intrinsic heterogeneity via the PRC and network
heterogeneity in the same manner as before with a parameter q j. Experimentalists often focus on
either measuring intrinsic cellular attributes (uncoupled) or synaptic dynamics and connectivity
structure because of feasibility in recordings and precise control. However, we show here that not
only do both cellular and circuit attributes matter, but they have to be taken together and not
separately because they interact nonlinearly to affect firing rate statistics. To this end, we developed
68 parameter sets to model intrinsic heterogeneity by systematically varying four parameters:
effective input current and three others related to recovery variable dynamics (see Table 1). The
effective input current is varied to ensure all cells have an approximate period of 85 ms when varying
the other three parameters (see all limit cycles in Figure 3B and PRCs in Figure 3C). The PRC of a
prototypical SNIC or Type I oscillator [26] would result from parameters similar to the following:
V3 = 12 mV, V4 = 17 mV, and φ = 0.06667 ms−1. Meanwhile, the PRC of a prototypical Hopf or
Type II oscillator [26] would result from parameters on the opposite extremes: V3 = 1 mV,
V4 = 31 mV, and φ = 0.04 ms−1. We produced intermediate PRCs by uniformly selecting the three
parameter values from the ranges bracketed by these prototypical values and then adjusting current to
establish periodic uniformity. Figure 3 also shows the integrals of the 68 PRCs ∆̄ (Figure 3D), which
as we have already seen, is important for firing rate heterogeneity. We remark that there are notable
differences in the both the PRCs and its integral ∆̄.

The network in Figure 4 is from duplicating the unique set of 68 parameter sets to obtain a larger
network of N = 730 with a wide range of intrinsic dynamics; the network is feedforward with
unmodeled ‘pre-synaptic’ neurons that only provide excitatory presynaptic input. This network has
both intrinsic heterogeneity via the PRCs (Figure 3C) and network heterogeneity via the q j parameter
that scales the network input.

We perform Monte Carlo simulations to accurately capture the firing rate heterogeneity. With both
sources of heterogeneity chosen independently, we see significant heterogeneity (measured by the
standard deviation across the entire population (Figure 4A)) even though the intrinsic periods are
roughly equal ω j ≈ ω (Figure 3C). Recall the firing rate heterogeneity approximation Eq. 2.38
(σ(ω + q P ∆̄)) that has the term:

q P ∆̄.

Our calculations predict that the relative level of firing rate heterogeneity can be modulated by
changing the relationship, or correlation, between components of the intrinsic ∆̄ and network
heterogeneity q (neglecting P, average synaptic input). Specifically, if q j is negatively correlated with
∆̄ j, the firing rate heterogeneity will be relatively smaller since the product of large and small numbers
will not deviate much cross the population j = 1, . . . ,N. Contrast that when the correlation is positive:
the product of large with large and small with small numbers willl result in larger heterogeneity across
the population. Note that given a vector of ∆̄ j values, we can generate q j so that the vector of q and ∆̄
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Figure 4. A) Cell-to-cell comparison of firing rate of cell population (N = 730) for Monte
Carlo simulation of ML model versus phase reduction theory, with q j and ∆̄ j uncorrelated.
Note that the 2nd order approximation closely follows the 1st order approximation. B)
Cell-to-cell comparison of firing rate by Monte Carlo simulation of ML model versus
1st order phase reduction theory at various correlations between q j and ∆̄ j. The range
of firing rates grows larger as the correlation is increased from ρ = −0.7 to ρ = 0.7.
C) Mean absolute error of approximations across five correlation levels. The 1st order
approximation significantly reduces error compared to 0th order approximation and slightly
outperforms 2nd order approximation. D) Firing rate heterogeneity (standard deviation) with
five correlation levels. The phase reduction theory qualitatively captures the increase in firing
rate heterogeneity as the correlation between q j and ∆̄ j increases from ρ = −0.7 to ρ = 0.7.
Here q j ∼ U(0.005, 0.015) (uniform distribution, mean=0.01). Using the Brown-Forsythe
test for equal variance on the Monte Carlo firing rates, we find that the standard deviation of
the firing rates is statistically significant between all levels of correlation (significance level
α = 0.01).
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have any specified (Pearson’s) correlation coefficient, see [3, 10]. Indeed, this prediction is precisely
what is shown in the Monte Carlo simulations (Figure 4B on a cell-by-cell basis and Figure 4D); these
trends are captured by both the 1st order (Eq. 2.29) and 2nd order (Eq. 2.37) approximations.

Our 1st theory is valuable, producing significantly less error than the 0th order theory that just
incorporates intrinsic frequency (Figure 4C). We can see from Figure 4A–B that the error of
cell-to-cell firing rate approximations increases with actual firing rate, which is not surprising since
the deviations from the uncoupled system ε are relatively large. However, the trends are still captured
qualitatively with the phase reduction theory, and the cell-to-cell error appears to be largely
independent of correlation (Figure 4B). From Figure 4C, we see that the firing rate heterogeneity
approximation is better with ρ(∆̄, q) < 0, and the error increases with ρ. The 2nd order approximation
(Eq. 2.37) does not improve the predictive power; in fact it is slightly less accurate yet more
complicated than the 1st order approximation.

We next applied our theory with the same heterogeneous ML neurons but with presynaptic input
from both excitatory and inhibitory conductance-based inputs. The Poisson process input rates are
scaled to three levels: λE = 0.2 and λI = 0.1, λE = 0.4 and λI = 0.2, and λE = 0.8 and λI = 0.4. In
Figure 5A and B, we show the cell-to-cell comparisons for the 1st order approximation (Eq. 2.29) with
Monte Carlo simulations, including just the two extreme correlation values, ρ = −0.7 and ρ = 0.7.
We see from Figure 5C–D that the asymptotic approximation becomes very inaccurate as firing rates
increase, but it still qualitatively captures the mean firing rate trends (Figure 5C) and the firing rate
heterogeneity trends (Figure 5D). In Figure 5C–D, with a fixed correlation, our approximation captures
how the firing rate changes with presynaptic input rate (i.e., varying 1X, 2X, 3X with a fixed color);
also, the approximation captures how the mean and standard deviation both increase with correlation
(fixing synaptic input rate, gray lines connecting stars and squares).

Thus far, the 2nd order approximation to the firing rate has not been any more informative than
the 1st order approximation. This result was initially quite puzzling because one would expect that
the 2nd order approximation to be more accurate than 1st order, at least for small, perhaps minuscule
parameters. However, even with very small parameters, the 2nd order approximation does no better in
any of the networks we considered. Upon further investigation, we find that both terms in the 2nd order
approximation (see Eq. 2.37 or Eq. 3.2) are positive for all of the networks thus far, so no matter how
small the parameters are, this observation will hold since the 1st order approximation overestimates all
firing rates. It would seem that the 2nd order approximation yields no information, however note that
it can likely account for differences in how the noise parameter σ or other aspects of the PRC (∆2, ∆′,
∆̄2 :=

∫
∆2(θ) dθ) affect firing rate. Thus, we demonstrate the value of this calculation on two single

phase oscillator SDEs where we have more precise control over the components (i.e., ω j, q jP̄ j, σ),
rather than having them endowed from the full coupled network. Consider the simpler equation (based
on Eq. 2.13):

dΘ j

dt
= 1 +

σ2

2
∆ j∆

′
j + Q∆ j + σ∆ jξ j(t) (3.1)

where we set the intrinsic frequency to 1 and treat the network heterogeneity (formerly q jP̄ j) as a
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specified parameter Q. The 2nd order approximation is then (see Eq. 2.37)

r j ≈ 1 + Q∆̄ j +

[
σ4

4

∫ 1

0
∆2

j(θ)(∆
′
j(θ))

2 dθ + Q2
(
∆̄2

j − ∆̄2
j

)]
(3.2)

We select two cells where the integrals of the PRCs (∆̄) are similar but the dynamics of the PRCs are
drastically different (Figure 6A). These two PRCs are obtained from the full ML network but scaled
to have (arbitrary) units of phase. Consequently, while our 1st order theory (Eq. 2.29) would predict
similar firing rates, our 2nd order theory (Eq. 3.2) might capture the discrepancies between the two
cells via the additional terms. In the bar charts of Figure 6B, note that the Q and Q2 terms in Eq. 3.2 do
not vary much, while there is a relatively large discrepancy in the σ4 term. Thus, our theory indicates
that the variation in the noise/coupling term σ, rather than the network strength Q, drives the difference
in firing rate of the cells. As σ increases, our 2nd order calculation predicts that Cell II will then fire at
a faster rate than Cell I (Figure 6D). Our Monte Carlo simulation corroborates the theory (Figure 6C),
with Cell I’s firing rate only mildly increasing with the increase in noise and coupling while Cell II’s
firing rate increases at a far more significant rate. The theory qualitatively matches the results for both
cells up to approximately σ = 25, at which point our assumption of weak noise and coupling has been
violated because σ , O(ε). Therefore, the 2nd order firing rate approximation is valuable in capturing
firing rate dynamics despite quantitative inaccuracies in our models.

4. Discussion

Analyzing the modulation of firing rate heterogeneity in model neural networks could potentially
link how neural attributes (cellular and circuit) are related to efficient coding. As we have seen in
Figure 2, seemingly similar populations of neurons receiving the same synaptic input can have
significantly different firing rate means and standard deviations. This statistical discrepancy
demonstrates that we cannot ignore intrinsic heterogeneity. We then consider a feedforward network
with combined intrinsic heterogeneity and network heterogeneity in order to evaluate their nonlinear
interaction. Our asymptotic calculations, developed from phase reduction analysis, succinctly capture
the impact of how sources of heterogeneity lead to firing rate heterogeneity in several feedforward
networks: with excitatory input only and with different levels of balanced excitatory and inhibitory
input.

Using our theory, we can effectively modulate the level of firing rate heterogeneity by altering the
correlation structure between sources of intrinsic and network heterogeneity in a biophysical
(Morris-Lecar) model. The elegant 1st order theory demonstrates the impact of phase-resetting curves
on firing rate statistics and its nonlinear interaction with network input. Although the calculations are
less accurate if the weak noise and coupling assumptions are violated, they still capture the
overarching trends of intrinsically oscillating neurons in these feedforward networks. The 2nd order
theory is not any more informative than 1st order in our large feedforward networks. However, the 2nd

order theory can account for the impact of noise on firing rate dynamics in single cell models
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Figure 5. A) Cell-to-cell comparison of firing rates for ρ = −0.7 but now for balanced
network of E and I inputs with three different levels of presynaptic firing rates. The
asymptotic theory becomes less accurate as the presynaptic firing rate increases but still
qualitatively follows the ML model (Monte Carlo). B) Cell-to-cell comparison but for
ρ = 0.7. The asymptotic theory qualitatively captures the increasing firing rate and
firing rate variability. C) Comparison of mean firing rates at five different correlation
levels. Though error increases as synaptic input rates (1X to 3X) increase, the relationship
between correlation structure and mean firing rate is still captured by the approximation.
D) Comparison of firing rate standard deviations at five different correlation levels. Again,
error increases as synaptic input rates increase, but the approximation still qualitatively
predicts the increase in heterogeneity as correlation increases from negative to positive.
Here q j ∼ U(0.005, 0.015) (uniform distribution, mean=0.01). We again using the Brown-
Forsythe test for equal variance to evaluate the Monte Carlo firing rates for all three balanced
networks. At significance level α = 0.01, we find statistically significant differences in firing
rate standard deviation between all pair-wise comparisons of the five correlation levels for
each network.
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Figure 6. A) The PRCs for both cells have similar integrals but demonstrate distinct behavior
captured by the 2nd order theory B) Only the term associated with σ4 differs noticeably
between cells (here σ = 10 and Q = 0.5). Thus, noise drives the difference in firing rate. C)
Monte Carlo simulation of firing rate asσ varies. This difference in firing rate is not predicted
by the 1st order theory. D) 2nd order theory for both cells, which qualitatively captures the
faster firing rate for Cell II as noise increases.

(Figure 6), giving an overall more complete asymptotic theory. Unlike many common spiking models
(e.g., leaky integrate-and-fire), we have incorporated biophysically realistic intrinsic dynamics with
significant heterogeneity.

The spike threshold of the cell (or equivalently, the intrinsic frequency of the phase oscillator)
is a crucial attribute that controls output firing rates, since low threshold (high intrinsic frequency)
will directly cause high firing rates and vice-versa. Thus, variable spike threshold or frequency is a
common way to induce intrinsic heterogeneity [3, 8, 10, 44]. Threshold heterogeneity has been shown
experimentally in cortical cells [22] and has crucial effects in the electrosensory system [44] and others
[50]. We did not focus on spike threshold as an intrinsic heterogeneous attribute because the interaction
between network heterogeneity and heterogeneity in these variables was unsurprising and had been
analyzed before by [10]. A low effective network strength correlated with high spike threshold would
of course lead to lower firing rate heterogeneity, while the opposite would lead to higher firing rate
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heterogeneity. These results are fairly intuitive and consistent with our results, so we focused on
the relationship between effective network strength and intrinsic phase-dependent response to inputs
because the results are not obvious. Thus, accounting for cellular response over a cycle, beyond just the
spike frequency, should be a consideration to experimentalists to account for different neural responses.

Although the oscillating regime is not always applicable for neural dynamics, there are many times
when neural networks can at least be well-modeled by oscillators (also see [64]). Neural oscillator
models have already been successfully used to model the olfactory system [16, 66] as well as
breathing [24] and locomotion [58]. There are other mathematical frameworks that account for
oscillatory dynamics [21, 46, 57] generated from excitable cells [39, 48] that we have not used here
because of our phase oscillator assumption, but may be effective in analyzing (intrinsic) firing rate
heterogeneity.

Neural networks were the underlying motivation for this work, but the general framework of using
phase reduction methods to study output heterogeneity from nonlinear interaction of heterogeneous
components might generalize to other fields. Indeed, there is a long history of using phase reduction
methods in biology and other fields. Winfree pioneered the approach for biological systems of
synchronized oscillators, with a particular focus on circadian rhythms [60, 61]. Kuramoto’s model of
coupled oscillators is usable for such phenomenon as the Belousov-Zhabotinsky chemical
reaction [17, 36, 37]. The call and response of two tree frogs, an anti-phase synchronized system, can
also be modeled via phase oscillators [19]. In engineering, the leg movements of passively walking
robots [42], electric circuits powering flashing LEDs with periodicity [20], and injection locking of
neighboring electric circuits and lasers [63] all have limit-cycle oscillations.

The exact relationship of various heterogeneous components, such as the correlation of q and
functions of ∆, is not precisely known, so we systematically varied these entities in this modeling
study. However, [34] labeled and classified 1600 neurons and their connectivity profiles in the mouse
visual cortex in vitro. Some other experimental studies suggest that heterogeneous attributes are not
random but have structure [11, 12, 62]. Thus, technological advances may lead to opportunities to
experimentally measure these relationships. Our theoretical study explores the consequences on
spiking statistics with idealized relationships to provide a better sense of how heterogeneity and
relationships between forms of heterogeneity shape neural responses. This theoretical work
complements studies of how entities that are difficult to measure experimentally (i.e. intrinsic and
network diversity) affect firing rate activity, which is easier to measure. Such theories are necessary to
ultimately understand how the relationship of neural attributes affect neural coding.
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