Citation: Xiangfen Song, Yinong Wang, Qianjin Feng, Qing Wang. Improved graph cut model with features of superpixels and neighborhood patches for myocardium segmentation from ultrasound image[J]. Mathematical Biosciences and Engineering, 2019, 16(3): 1115-1137. doi: 10.3934/mbe.2019053
[1] | Q. Huang, F. Zhang and X. Li, Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey, Biomed. Res. Int., 2018 (2018), 1–10,. |
[2] | K. Przyklenk, Reduction of Myocardial Infarct Size with Ischemic "Conditioning": Physiologic and Technical Considerations, Anesth. Analg., 117 (2013), 891–901. |
[3] | Z. Tao and H. D. Tagare, Tunneling descent for m.a.p. active contours in ultrasound segmentation, Med. Image. Anal., 11 (2007), 266–281. |
[4] | A. K. Hamou and M. R. El-Sakka, Optical Flow Active Contours with Primitive Shape Priors for Echocardiography, Eur. J. Adv. Signal. Process., 2010 (2010), 1–10,. |
[5] | Y. Zhu, X. Papademetris, A. J. Sinusas and J. S. Duncan, A coupled deformable model for tracking myocardial borders from real-time echocardiography using an incompressibility constraint, Med. Image. Anal., 14 (2010), 429–448. |
[6] | Q. Huang, Y. Luo and Q. Zhang, Breast ultrasound image segmentation: A survey, Int. J. Comput. Assist. Radiol. Surg., 12 (2017), 1–15. |
[7] | H. Chen, Y. Zheng, J. H. Park, P. A. Heng and S. K. Zhou, Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images, In: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016, 487–495. |
[8] | C. Balakrishna, S. Dadashzadeh and S. Soltaninejad, Automatic detection of lumen and media in the IVUS images using U-Net with VGG16 Encoder, arXiv preprint arXiv:1806.07554, 2018. |
[9] | S. Leclerc, T. Grenier, F. Espinosa and O. Bernard, A fully automatic and multi-structural segmentation of the left ventricle and the myocardium on highly heterogeneous 2D echocardiographic data, In: Ultrasonics Symposium, 2017, 1–4. |
[10] | Y. Guo, G. Q. Du, J. Y. Xue, R. Xia and Y. H. Wang, A novel myocardium segmentation approach based on neutrosophic active contour model, Comput. Meth. Prog. Bio., 142 (2017), 109–116. |
[11] | Y. Y. Boykov and M. P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in ND images, In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2001, 105–112. |
[12] | C. Rother, V. Kolmogorov and A. Blake, Grabcut: Interactive foreground extraction using iterated graph cuts, In: ACM transactions on graphics (TOG), 2004, 309–314. |
[13] | Y. Li, J. Sun, C. K. Tang and H. Y. Shum, Lazy snapping, In: ACM Transactions on Graphics (ToG), 2004, 303–308. |
[14] | N. Houhou, X. Bresson, A. Szlam, T. F. Chan and J. P. Thiran, Semi-supervised segmentation based on non-local continuous min-cut, In: International Conference on Scale Space and Variational Methods in Computer Vision, 2009, 112–123. |
[15] | A. Ciurte, N. Houhou, S. Nedevschi, A. Pica, F. Munier and J. P. Thiran, An efficient segmentation method for ultrasound images based on a semi-supervised approach and patch-based features, In: Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on, 2011, 969–972. |
[16] | L. Gao, W. Yang, Z. Liao, X. Liu, Q. Feng and W. Chen, Segmentation of ultrasonic breast tumors based on homogeneous patch, Med. phys., 39 (2012), 3299–3318. |
[17] | S. Lee, Q. Huang, L. Jin, M. Lu and T. Wang, A robust graph-based segmentation method for breast tumors in ultrasound images, Ultrasonics., 52 (2012), 266–275. |
[18] | Q. Huang, X. Bai, Y. Li, L. Jin and X. Li, Optimized graph-based segmentation for ultrasound images, Neurocomputing., 129 (2014), 216–224. |
[19] | A. Ciurte, X. Bresson, O. Cuisenaire, N. Houhou, S. Nedevschi, J. P. Thiran and M. B. Cuadra, Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut, PLoS. One., 9 (2014), e100972,. |
[20] | L. Liu, W. Qin, R. Yang, C. Yu, L. Li, T. Wen and J. Gu, Segmentation of breast ultrasound image using graph cuts and level set, In: Iet International Conference on Biomedical Image and Signal Processing, 2016, 4. |
[21] | J. Zhou, Thyroid Tumor Ultrasound Image Segmentation Based on Improved Graph Cut, In: Intelligent Transportation, Big Data & Smart City (ICITBS), 2016 International Conference on, 2016, 130–133. |
[22] | H. Zhu, Z. Zhuang, J. Zhou, X. Wang and W. Xu, Improved graph-cut segmentation for ultrasound liver cyst image, Multimed. Tools. Appl., 77 (2018), 1–19. |
[23] | Y. Boykov, O. Veksler and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE. T. Pattern Anal., 23 (2001), 1222–1239. |
[24] | Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surface via graph cuts, In: IEEE International Conference on Computer Vision, 2003. Proceedings, 2003, 26–33. |
[25] | V. Kolmogorov and Y. Boykov, What metrics can be approximated by geo-cuts, or global optimization of length/area and flux, In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, 2005, 564–571. |
[26] | M. Klodt, T. Schoenemann, K. Kolev, M. Schikora and D. Cremers, An experimental comparison of discrete and continuous shape optimization methods, In: European Conference on Computer Vision, 2008, 332–345. |
[27] | A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, In: Iccv, 1999, 1033. |
[28] | A. A. Efros and W. T. Freeman, Image quilting for texture synthesis and transfer, In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 2001, 341–346. |
[29] | L. Liang, C. Liu, Y. Q. Xu, B. Guo and H. Y. Shum, Real-time texture synthesis by patch-based sampling, ACM T. Graphic., 20 (2001), 127–150. |
[30] | A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale. Model. Simul., 4 (2005), 490–530. |
[31] | P. Coupé, P. Hellier, C. Kervrann and C. Barillot, Nonlocal means-based speckle filtering for ultrasound images, IEEE. T. Image. Process., 18 (2009), 2221–2229. |
[32] | R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, 9 (1989). |
[33] | D. Han, X. Yuan and W. Zhang, An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Math. Comput., 83 (2014), 2263–2291. |
[34] | X. Ren and J. Malik, Learning a classification model for segmentation, Iccv., 1 (2003), 10–17. |
[35] | L. Piegl, On NURBS: A survey, IEEE. Comput. Graph., 11 (1991), 55–71. |
[36] | L. Piegl and W. Tiller, The NURBS book, Springer Science & Business Media, 2012. |
[37] | M. Spink, NURBS toolbox, Matlab Central [online], Accessed on June, 15 (2014). |
[38] | L. Liu, N. Yang, J. Lan and J. Li, Image segmentation based on gray stretch and threshold algorithm, Optik., 126 (2015), 626–629. |
[39] | R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk, Slic superpixels, Dept. School Comput. Commun. Sci., EPFL, Lausanne, Switzerland, Tech. Rep, 149300 (2010). |
[40] | R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel methods, IEEE. T. Pattern. Anal., 34 (2012), 2274–2282. |
[41] | Y. Huang and Q. Huang, A Superpixel-Classification-Based Method for Breast Ultrasound Images, In: 2018 5th International Conference on Systems and Informatics (ICSAI), 2018, 560–564. |
[42] | A. B. Lee, K. S. Pedersen and D. Mumford, The nonlinear statistics of high-contrast patches in natural images, Int. J. Comput. Vision., 54 (2003), 83–103. |
[43] | G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale. Model. Simul., 7 (2008), 1005–1028. |
[44] | L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica. D., 60 (1992), 259–268. |
[45] | S. Andrews and G. Hamarneh, Multi-region probabilistic dice similarity coefficient using the Aitchison distance and bipartite graph matching, arXiv preprint arXiv:1509.07244, 2015. |
[46] | D. M. Raymond and M. M. Fahmy, Optimal merging of sorted data under the mean absolute error criterion, Comput. Electr. Eng., 18 (1992), 173–182. |
[47] | D. P. Huttenlocher, G. A. Klanderman and W. J. Rucklidge, Comparing images using the Hausdorff distance, IEEE. T. Pattern. Anal., 15 (1993), 850–863. |
[48] | R. A. Armstrong and A. C. Hilton, One-Way Analysis of Variance (Anova), Stat. Anal. Microbiol., 2010, 33–37. |
[49] | T. Fawcett, An introduction to ROC analysis, Pattern. Recogn. Lett., 27 (2006), 861–874. |
[50] | M. Kozak and A. Wnuk, Including the Tukey Mean‐Difference (Bland-Altman) Plot in a Statistics Course, Teach. Stat., 36 (2014), 83–87. |
[51] | J. Wu, H. Zhou, X. Tang and J. Chen, Implementation of CL points preprocessing methodology with NURBS curve fitting technique for high-speed machining, Comput. Ind. Eng., 81 (2015), 58–64. |
[52] | Q. Wang, P. Zhang, P. Li, X. Song, H. Hu, X. Li, W. Chen and X. Wang, Ultrasonography Monitoring of Trauma-Induced Heterotopic Ossification: Guidance for Rehabilitation Procedures, Front. Neurol., 9 (2018), 771. |