Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network

  • Received: 02 July 2016 Accepted: 01 January 2017 Published: 01 October 2017
  • MSC : 34C23, 92C45

  • There have been some results on bifurcations of codimension one (such as saddle-node, transcritical, pitchfork) and degenerate Hopf bifurcations for an enzyme-catalyzed reaction system comprising a branched network but no further discussion for bifurcations at its cusp. In this paper we give conditions for the existence of a cusp and compute the parameter curves for the Bogdanov-Takens bifurcation, which induces the appearance of homoclinic orbits and periodic orbits, indicating the tendency to steady-states or a rise of periodic oscillations for the concentrations of the substrate and the product.

    Citation: Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1499-1514. doi: 10.3934/mbe.2017078

    Related Papers:

  • There have been some results on bifurcations of codimension one (such as saddle-node, transcritical, pitchfork) and degenerate Hopf bifurcations for an enzyme-catalyzed reaction system comprising a branched network but no further discussion for bifurcations at its cusp. In this paper we give conditions for the existence of a cusp and compute the parameter curves for the Bogdanov-Takens bifurcation, which induces the appearance of homoclinic orbits and periodic orbits, indicating the tendency to steady-states or a rise of periodic oscillations for the concentrations of the substrate and the product.


    加载中
    [1] [ A. Betz,E. Sel'kov, Control of phosphofructokinase [PFK] activity in conditions simulating those of glycolysing yeast extract, FEBS Lett., 3 (1969): 5-9.
    [2] [ S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982.
    [3] [ F. A. Davidson,J. Liu, Global stability of the attracting set of an enzyme-catalysed reaction system, Math. Comput. Model., 35 (2002): 1467-1481.
    [4] [ F. A. Davidson,R. Xu,J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002): 165-179.
    [5] [ F. Dumortier,R. Roussarie,J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. Dyn. Syst., 7 (1987): 375-413.
    [6] [ D. Erle, Nonuniqueness of stable limit cycles in a class of enzyme catalyzed reactions, J. Math. Anal. Appl., 82 (1981): 386-391.
    [7] [ D. Erle,K. H. Mayer,T. Plesser, The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979): 191-208.
    [8] [ A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996.
    [9] [ A. Goldbeter,G. Dupont, Allosteric regulation, cooperativity and biochemical oscillations, Biophy. Chem., 37 (1990): 341-353.
    [10] [ J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1990.
    [11] [ B. Hassard,K. Jiang, Unfolding a point of degenerate Hopf bifurcation in an enzyme-catalyzed reaction model, SIAM J. Math. Anal., 23 (1992): 1291-1304.
    [12] [ X. Hou,R. Yan,W. Zhang, Bifurcations of a polynomial differential system of degree n in biochemical reactions, Comput. Math. Appl., 43 (2002): 1407-1423.
    [13] [ J. P. Kernévez,G. Joly,M. C. Duban,B. Bunow,D. Thomas, Hysteresis, oscillations, and pattern formation in realistic immmobilized enzyme systems, J. Math. Biol., 7 (1979): 41-56.
    [14] [ Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, Springer, New York, 1995.
    [15] [ Z. Leng,B. Gao,Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reaction, Math. Comput. Model., 49 (2009): 556-562.
    [16] [ J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999): 285-298.
    [17] [ A. G. Marangoni, Enzymes Kinetics: A Modern Approach, Wiley-Interscience, Hoboken, NJ, 2003.
    [18] [ L. Michaelis,M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913): 333-369.
    [19] [ J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Interdisciplinary Applied Mathematics 17, Springer, Berlin, 2002.
    [20] [ H. G. Othmer,J. A. Aldridge, The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 5 (1978): 169-200.
    [21] [ I. Stoleriu,F. A. Davidson,J. Liu, Effects of priodic input on the quasi-steady state assumptions for enzyme-catalyzed reactions, J. Math. Biol., 50 (2005): 115-132.
    [22] [ Y. Tang,D. Huang,W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011): 876-898.
    [23] [ Y. Tang,W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004): 869-883.
    [24] [ R. Varón,M. García-Moreno,F. García-Molina,M. E. Fuentes,E. Arribas,J. M. Yago,M. Ll. Amo-Saus,E. Valero, Two new regulatory properties arising from the transient phase kinetics of monocyclic enzyme cascades, J. Math. Chem., 38 (2005): 437-450.
    [25] [ Y. -Q. Ye et al., Theory of Limit Cycles, Transl. Math. Monogr. 66 American Mathematical Society, Providence, RI, 1986.
    [26] [ Z. -F. Zhang, T. -R. Ding, W. -Z. Huang and Z. -X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., 101 Amer. Math. Soc., Providence, RI, 1992.
    [27] [ Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifur. Chaos, 25 (2015), 155081 (26 pages).
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2909) PDF downloads(617) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog