Citation: Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1499-1514. doi: 10.3934/mbe.2017078
[1] | [ A. Betz,E. Sel'kov, Control of phosphofructokinase [PFK] activity in conditions simulating those of glycolysing yeast extract, FEBS Lett., 3 (1969): 5-9. |
[2] | [ S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982. |
[3] | [ F. A. Davidson,J. Liu, Global stability of the attracting set of an enzyme-catalysed reaction system, Math. Comput. Model., 35 (2002): 1467-1481. |
[4] | [ F. A. Davidson,R. Xu,J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002): 165-179. |
[5] | [ F. Dumortier,R. Roussarie,J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. Dyn. Syst., 7 (1987): 375-413. |
[6] | [ D. Erle, Nonuniqueness of stable limit cycles in a class of enzyme catalyzed reactions, J. Math. Anal. Appl., 82 (1981): 386-391. |
[7] | [ D. Erle,K. H. Mayer,T. Plesser, The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979): 191-208. |
[8] | [ A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996. |
[9] | [ A. Goldbeter,G. Dupont, Allosteric regulation, cooperativity and biochemical oscillations, Biophy. Chem., 37 (1990): 341-353. |
[10] | [ J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1990. |
[11] | [ B. Hassard,K. Jiang, Unfolding a point of degenerate Hopf bifurcation in an enzyme-catalyzed reaction model, SIAM J. Math. Anal., 23 (1992): 1291-1304. |
[12] | [ X. Hou,R. Yan,W. Zhang, Bifurcations of a polynomial differential system of degree n in biochemical reactions, Comput. Math. Appl., 43 (2002): 1407-1423. |
[13] | [ J. P. Kernévez,G. Joly,M. C. Duban,B. Bunow,D. Thomas, Hysteresis, oscillations, and pattern formation in realistic immmobilized enzyme systems, J. Math. Biol., 7 (1979): 41-56. |
[14] | [ Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, Springer, New York, 1995. |
[15] | [ Z. Leng,B. Gao,Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reaction, Math. Comput. Model., 49 (2009): 556-562. |
[16] | [ J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999): 285-298. |
[17] | [ A. G. Marangoni, Enzymes Kinetics: A Modern Approach, Wiley-Interscience, Hoboken, NJ, 2003. |
[18] | [ L. Michaelis,M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913): 333-369. |
[19] | [ J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Interdisciplinary Applied Mathematics 17, Springer, Berlin, 2002. |
[20] | [ H. G. Othmer,J. A. Aldridge, The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 5 (1978): 169-200. |
[21] | [ I. Stoleriu,F. A. Davidson,J. Liu, Effects of priodic input on the quasi-steady state assumptions for enzyme-catalyzed reactions, J. Math. Biol., 50 (2005): 115-132. |
[22] | [ Y. Tang,D. Huang,W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011): 876-898. |
[23] | [ Y. Tang,W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004): 869-883. |
[24] | [ R. Varón,M. García-Moreno,F. García-Molina,M. E. Fuentes,E. Arribas,J. M. Yago,M. Ll. Amo-Saus,E. Valero, Two new regulatory properties arising from the transient phase kinetics of monocyclic enzyme cascades, J. Math. Chem., 38 (2005): 437-450. |
[25] | [ Y. -Q. Ye et al., Theory of Limit Cycles, Transl. Math. Monogr. 66 American Mathematical Society, Providence, RI, 1986. |
[26] | [ Z. -F. Zhang, T. -R. Ding, W. -Z. Huang and Z. -X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., 101 Amer. Math. Soc., Providence, RI, 1992. |
[27] | [ Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifur. Chaos, 25 (2015), 155081 (26 pages). |