Research article

Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting

  • Received: 16 July 2023 Revised: 06 September 2023 Accepted: 17 September 2023 Published: 27 September 2023
  • In this paper, we investigate the stability and bifurcation of a Leslie-Gower predator-prey model with a fear effect and nonlinear harvesting. We discuss the existence and stability of equilibria, and show that the unique equilibrium is a cusp of codimension three. Moreover, we show that saddle-node bifurcation and Bogdanov-Takens bifurcation can occur. Also, the system undergoes a degenerate Hopf bifurcation and has two limit cycles (i.e., the inner one is stable and the outer is unstable), which implies the bistable phenomenon. We conclude that the large amount of fear and prey harvesting are detrimental to the survival of the prey and predator.

    Citation: Hongqiuxue Wu, Zhong Li, Mengxin He. Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825

    Related Papers:

  • In this paper, we investigate the stability and bifurcation of a Leslie-Gower predator-prey model with a fear effect and nonlinear harvesting. We discuss the existence and stability of equilibria, and show that the unique equilibrium is a cusp of codimension three. Moreover, we show that saddle-node bifurcation and Bogdanov-Takens bifurcation can occur. Also, the system undergoes a degenerate Hopf bifurcation and has two limit cycles (i.e., the inner one is stable and the outer is unstable), which implies the bistable phenomenon. We conclude that the large amount of fear and prey harvesting are detrimental to the survival of the prey and predator.



    加载中


    [1] J. R. Beddington, J. G. Cooke, Harvesting from a prey-predator complex, Ecol. Model., 14 (1982), 155–177. https://doi.org/10.1016/0304-3800(82)90016-3 doi: 10.1016/0304-3800(82)90016-3
    [2] D. M. Xiao, L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737–753. https://doi.org/10.1137/s0036139903428719 doi: 10.1137/s0036139903428719
    [3] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.1093/biomet/47.3-4.219 doi: 10.1093/biomet/47.3-4.219
    [4] S. Rana, S. Bhattacharya, S. Samanta, Spatiotemporal dynamics of Leslie-Gower predator-prey model with Allee effect on both populations, Math. Comput. Simul., 200 (2022), 32–49. https://doi.org/10.1016/j.matcom.2022.04.011 doi: 10.1016/j.matcom.2022.04.011
    [5] M. X. He, Z. Li, Global dynamics of a Leslie-Gower predator-prey model with square root response function, Appl. Math. Lett., 140 (2023), 108561. https://doi.org/10.1016/j.aml.2022.108561 doi: 10.1016/j.aml.2022.108561
    [6] X. Q. Wang, Y. P. Tan, Y. L. Cai, W. M. Wang, Impact of the fear effect on the stability and bifurcation of a Leslie-Gower predator-prey model, Int. J. Bifurcation Chaos, 30 (2020), 2050210. https://doi.org/10.1142/S0218127420502107 doi: 10.1142/S0218127420502107
    [7] C. Arancibia-Ibarra, J. Flores, Dynamics of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response, Allee effect and a generalist predator, Math. Comput. Simul., 188 (2021), 1–22. https://doi.org/10.1016/j.matcom.2021.03.035 doi: 10.1016/j.matcom.2021.03.035
    [8] J. Huang, Y. Gong, S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Continuous Dyn. Syst. Ser. B, 18 (2013), 2101–2121. https://doi.org/10.3934/dcdsb.2013.18.2101 doi: 10.3934/dcdsb.2013.18.2101
    [9] R. P. Gupta, M. Banerjee, P. Chandra, Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 20 (2012), 339–366. https://doi.org/10.1007/s12591-012-0142-6 doi: 10.1007/s12591-012-0142-6
    [10] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278–295. https://doi.org/10.1016/j.jmaa.2012.08.057 doi: 10.1016/j.jmaa.2012.08.057
    [11] S. Kumar, H. Kharbanda, Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey, Chaos, Solitons Fractals, 119 (2019), 19–28. https://doi.org/10.1016/j.chaos.2018.12.011 doi: 10.1016/j.chaos.2018.12.011
    [12] T. Caraballo Garrido, R. Colucci, L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Commun. Pure Appl. Anal., 17 (2018), 2703–2727. https://doi.org/10.3934/cpaa.2018128 doi: 10.3934/cpaa.2018128
    [13] D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
    [14] C. Zhu, L. Kong, Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting, Discrete Continuous Dyn. Syst. Ser. S, 10 (2017), 1187–1206. https://doi.org/10.3934/dcdss.2017065 doi: 10.3934/dcdss.2017065
    [15] R. Cristiano, M. M. Henao, D. J. Pagano, Global stability of a Lotka-Volterra piecewise-smooth system with harvesting actions and two predators competing for one prey, J. Math. Anal. Appl., 522 (2023), 126998. https://doi.org/10.1016/j.jmaa.2023.126998 doi: 10.1016/j.jmaa.2023.126998
    [16] R. Sivasamy, K. Sathiyanathan, K. Balachandran, Dynamics of a modified Leslie-Gower model with gestation effect and nonlinear harvesting, J. Appl. Anal. Comput., 9 (2019), 747–764. https://doi.org/10.11948/2156-907x.20180165 doi: 10.11948/2156-907x.20180165
    [17] X. Yan, C. Zhang, Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type, Appl. Math. Lett., 114 (2021), 106904. https://doi.org/10.1016/j.aml.2020.106904 doi: 10.1016/j.aml.2020.106904
    [18] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [19] M. M. Chen, Y. Takeuchi, J. F. Zhang, Dynamic complexity of a modified Leslie-Gower predator-prey system with fear effect, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107109. https://doi.org/10.1016/j.cnsns.2023.107109 doi: 10.1016/j.cnsns.2023.107109
    [20] X. B. Zhang, H. L. Hu, Q. An, Dynamics analysis of a diffusive predator-prey model with spatial memory and nonlocal fear effect, J. Math. Anal. Appl., 525 (2023), 127123. https://doi.org/10.1016/j.jmaa.2023.127123 doi: 10.1016/j.jmaa.2023.127123
    [21] C. M. Zhang, S. L. Liu, J. H. Huang, W. M. Wang, Stability and Hopf bifurcation in an eco-epidemiological system with the cost of anti-predator behaviors, Math. Biosci. Eng., 20 (2023), 8146–8161. https://doi.org/10.3934/mbe.2023354 doi: 10.3934/mbe.2023354
    [22] Y. J. Li, M. X. He, Z. Li, Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect, Math. Comput. Simul., 201 (2022), 417–439. https://doi.org/10.1016/j.matcom.2022.05.017 doi: 10.1016/j.matcom.2022.05.017
    [23] J. X. Zhao, Y. F. Shao, Bifurcations of a prey-predator system with fear, refuge and additional food, Math. Biosci. Eng., 20 (2023), 3700–3720. https://doi.org/10.3934/mbe.2023173 doi: 10.3934/mbe.2023173
    [24] M. He, Z. Li, Stability of a fear effect predator-prey model with mutual interference or group defense, J. Biol. Dyn., 16 (2022), 480–498. https://doi.org/10.1080/17513758.2022.2091800 doi: 10.1080/17513758.2022.2091800
    [25] D. Pal, D. Kesh, D. Mukherjee, Qualitative study of cross-diffusion and pattern formation in Leslie-Gower predator-prey model with fear and Allee effects, Chaos, Solitons Fractals, 167 (2023), 113033. https://doi.org/10.1016/j.chaos.2022.113033 doi: 10.1016/j.chaos.2022.113033
    [26] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, American Mathematical Society, 1992.
    [27] J. C. Huang, Y. J. Gong, J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Int. J. Bifurcation Chaos, 23 (2013), 1350164. https://doi.org/10.1142/s0218127413501642 doi: 10.1142/s0218127413501642
    [28] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996. https://doi.org/10.1007/978-1-4684-0392-3
    [29] L. Yang, Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28 (1999), 225–242. https://doi.org/10.1006/jsco.1998.0274 doi: 10.1006/jsco.1998.0274
    [30] Y. Dai, Y. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003
    [31] M. Lu, J. Huang, S. Ruan, P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differ. Equations, 267 (2019), 1859–1898. https://doi.org/10.1016/j.jde.2019.03.005 doi: 10.1016/j.jde.2019.03.005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1354) PDF downloads(183) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog