Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Fast algorithms for a linear system with infinitesimal generator structure of a Markovian queueing model

  • In this paper, we focused on solving the perturbed four-banded linear system derived from the traffic process associated with a Markovian queueing model. Utilizing the spectral decomposition of circulant and skew circulant matrices, we computed the product of Toeplitz inversion and a vector, leading to a decomposition algorithm for perturbed four-banded linear systems. This decomposed Toeplitz system features multiple right-hand terms, significantly reducing computational complexity through Toeplitz inversion. Additionally, we introduced an algorithm based on banded LU decomposition, resulting in a banded linear system with multiple right-hand terms, where the sparsity of the banded LU decomposition is pivotal. To evaluate the algorithm's performance, we presented two examples in numerical simulations.

    Citation: Jiaqi Qu, Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang. Fast algorithms for a linear system with infinitesimal generator structure of a Markovian queueing model[J]. AIMS Mathematics, 2025, 10(3): 6546-6559. doi: 10.3934/math.2025299

    Related Papers:

    [1] Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004
    [2] Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780
    [3] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [4] Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186
    [5] Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652
    [6] Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
    [7] Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548
    [8] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [9] M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229
    [10] Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604
  • In this paper, we focused on solving the perturbed four-banded linear system derived from the traffic process associated with a Markovian queueing model. Utilizing the spectral decomposition of circulant and skew circulant matrices, we computed the product of Toeplitz inversion and a vector, leading to a decomposition algorithm for perturbed four-banded linear systems. This decomposed Toeplitz system features multiple right-hand terms, significantly reducing computational complexity through Toeplitz inversion. Additionally, we introduced an algorithm based on banded LU decomposition, resulting in a banded linear system with multiple right-hand terms, where the sparsity of the banded LU decomposition is pivotal. To evaluate the algorithm's performance, we presented two examples in numerical simulations.



    Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).

    It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.

    Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].

    Set ξq(θ)=1qθ11qϖq(θ1q)0, ϖq(θ)=1πn=1(1)n1θnq1Γ(nq+1)n!sin(nπq), θ(0,). Note that ξq(θ) is a probability density function defined on (0,), namely ξq(θ)0, θ(0,) and 0ξq(θ)dθ=1.

    Define T:XX and S:XX given by

    T(t)=0ξq(θ)S(tqθ)dθ,  S(t)=q0θξq(θ)S(tqθ)dθ.

    Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t0 have following properties:

    (1) Suppose that supt0S(t)M. For any fixed t0, T() and S() are linear and bounded operators, i.e., for any uX,

    T(t)uMu and S(t)uMΓ(q)u.

    (2) {T(t),t0} and {S(t),t0} are strongly continuous.

    (3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.

    Let N0={0,1,,}. We consider the following impulsive fractional equations

    {cDqtk,tu(t)=Au(t)+f(t,u(t)), q(0,1), t(tk,tk+1), kN0,u(t+k)=u(tk)+Δk(u(tk)), kN,u(0)=u0, (2.1)

    where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)XX is the generator of a C0-semigroup {S(t),t0} on a Banach space X, f:R×XX satisfies some assumptions. We suppose the following conditions:

    (Ⅰ) f is continuous and T-periodic in t.

    (Ⅱ) There exist constants a>0, bk>0 such that

    {f(t,u)f(t,v)auv, tR, u,vX,uv+Δk(u)Δk(v)bkuv, kN, u,vX.

    (Ⅲ) There exists NN such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any kN.

    It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping

    P(u0)=u(T)+ΔN+1(u(T)).

    By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).

    Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=Nk=0MbkEq(Ma(tk+1tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds

    P(u)P(v)Ξuv, u,vX. (2.2)

    If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.

    Proof. By the mild solution of (2.1), we mean that uC((tk,tk+1),X) satisfying

    u(t)=T(ttk)u(t+k)+ttkS(ts)f(s,u(s))ds. (2.3)

    Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive

    u(t)v(t)T(ttk)(u(t+k)v(t+k))+ttk(ts)q1S(ts)(f(s,u(s)f(s,v(s))dsMu(t+k)v(t+k)+MaΓ(q)ttk(ts)q1f(s,u(s)f(s,v(s))ds. (2.4)

    Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive

    u(t)v(t)Mu(t+k)v(t+k)Eq(Ma(ttk)q), t(tk,tk+1), (2.5)

    which implies

    u(tk+1)v(tk+1)MEq(Ma(tk+1tk)q)u(t+k)v(t+k),k=0,1,,N. (2.6)

    By (2.6) and (Ⅱ), we derive

    P(u0)P(v0)=u(tN+1)v(tN+1)+ΔN+1(u(tN+1))ΔN+1(v(tN+1))bN+1u(tN+1)v(tN+1)(Nk=0MbkEq(Ma(tk+1tk)q))u0v0=Ξu0v0, (2.7)

    which implies that (2.2) is satisfied. Thus P:XX is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since

    Pn(u0)Pn(v0)Ξnu0v0, v0X,

    we get that the corresponding periodic mild solution is asymptotically stable.

    We study

    {cDqkhu(t)=Au(t)+f(u(t)), q(0,1), t(kh,(k+1)h), kN0,u(kh+)=u(kh)+ˉΔhq, kN,u(0)=u0, (2.8)

    where h>0, ˉΔX, and f:XX is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0X, tR+{kh|kN} and left continuous in t ant impulsive points {kh|kN}. We can consider the Poincaré mapping

    Ph(u0)=u(u0,h+).

    Theorem 2.3. Let w(t) be a solution of following equations

    {w(t)=ˉΔ+1Γ(q+1)f(w(t)), t[0,T],w(0)=u0. (2.9)

    Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying

    u(u0,t)=w(tqq1)+O(hq).

    If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.

    Proof. For any t(kh,(k+1)h),kN0, the mild solution of (2.8) is equivalent to

    u(u0,t)=T(tkh)u(kh+)+tkh(ts)q1S(ts)f(u(u0,s))ds=T(tkh)u(kh+)+tkh0(tkhs)q1S(tkhs)f(u(u(kh+),s))ds. (2.10)

    So

    u((k+1)h+)=T(h)u(kh+)+ˉΔhq+h0(hs)q1S(hs)f(u(u(kh+),s))ds=Ph(u(kh+)), (2.11)

    and

    Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+h0(hs)q1S(hs)f(u(u0,s))ds. (2.12)

    Inserting

    u(u0,t)=T(t)u0+hqv(u0,t), t[0,h],

    into (2.10), we obtain

    v(u0,t)=1hqt0(ts)q1S(ts)f(T(t)u0+hqv(u0,t))ds=1hqt0(ts)q1S(ts)f(T(t)u0)ds+1hqt0(ts)q1S(ts)(f(T(t)u0+hqv(u0,t))f(T(t)u0))ds=1hqt0(ts)q1S(ts)f(T(t)u0)ds+O(hq),

    since

    t0(ts)q1S(ts)(f(T(t)u0+hqv(u0,t))f(T(t)u0))dst0(ts)q1S(ts)f(T(t)u0+hqv(u0,t))f(T(t)u0)dsMLlochqtqΓ(q+1)maxt[0,h]{v(u0,t)}h2qMLlocΓ(q+1)maxt[0,h]{v(u0,t)},

    where Lloc is a local Lipschitz constant of f. Thus we get

    u(u0,t)=T(t)u0+t0(ts)q1S(ts)f(T(t)u0)ds+O(h2q), t[0,h], (2.13)

    and (2.12) gives

    Ph(u0)=T(h)u0+ˉΔhq+h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    So (2.11) becomes

    u((k+1)h+)=T(h)u(kh+)+ˉΔhq+(k+1)hkh((k+1)hs)q1S((k+1)hs)f(T(h)u(kh+))ds+O(h2q). (2.14)

    Since T(t) and S(t) are strongly continuous,

    limt0T(t)=I and limt0S(t)=1Γ(q)I. (2.15)

    Thus (2.14) leads to its approximation

    w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)),

    which is the Euler numerical approximation of

    w(t)=ˉΔ+1Γ(q+1)f(w(t)).

    Note that (2.10) implies

    u(u0,t)T(tkh)u(kh+)=O(hq), t[kh,(k+1)h]. (2.16)

    Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.

    Corollary 2.4. We can extend (2.8) for periodic impulses of following form

    {cDqkhu(t)=Au(t)+f(u(t)), t(kh,(k+1)h), kN0,u(kh+)=u(kh)+ˉΔkhq, kN,u(0)=u0, (2.17)

    where ˉΔkX satisfy ˉΔk+N+1=ˉΔk for any kN. Then Theorem 2.3 can directly extend to (2.17) with

    {w(t)=N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t[0,T], kN,w(0)=u0 (2.18)

    instead of (2.9).

    Proof. We can consider the Poincaré mapping

    Ph(u0)=u(u0,(N+1)h+),

    with a form of

    Ph=PN+1,hP1,h

    where

    Pk,h(u0)=ˉΔkhq+u(u0,h).

    By (2.13), we can derive

    Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    Then we get

    Ph(u0)=T(h)u0+N+1k=1ˉΔkhq+(N+1)h0(hs)q1S(hs)f(T(h)u0)ds+O(h2q).

    By (2.15), we obtain that Ph(u0) leads to its approximation

    u0+N+1k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). (2.19)

    Moreover, equations

    w(t)=N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t))

    has the Euler numerical approximation

    u0+hq(N+1k=1ˉΔkN+1+1Γ(q+1)f(u0))

    with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).

    Now we consider following equations with small nonlinearities of the form

    {cDq0u(t)=Au(t)+ϵf(t,u(t)), q(0,1), t(tk,tk+1), kN0,u(t+k)=u(tk)+ϵΔk(u(tk)), kN,u(0)=u0, (3.1)

    where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping

    P(ϵ,u0)=u(ϵ,T)+ϵΔN+1(u(ϵ,T)).

    Assume that

    (H1) f and Δk are C2-smooth.

    Then P(ϵ,u0) is also C2-smooth. In addition, we have

    u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2),

    where ω(t) satisfies

    {cDq0ω(t)=Aω(t)+f(t,T(t)u0), t(tk,tk+1), k=0,1,,N,ω(t+k)=ω(tk)+Δk(T(tk)u0), k=1,2,,N+1,ω(0)=0,

    and

    ω(T)=Nk=1T(Ttk)Δk(T(tk)u0)+T0(Ts)q1S(Ts)f(s,T(s)u0)ds.

    Thus we derive

    {P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)I)u0+ϵω(T)+ϵΔN+1(T(T)u0). (3.2)

    Theorem 3.1. Suppose that (I), (III) and (H1) hold.

    1). If (T(T)I) has a continuous inverse, i.e. (T(T)I)1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ0 small.

    2). If (T(T)I) is not invertible, we suppose that ker(T(T)I)=[u1,,uk] and X=im(T(T)I)X1 for a closed subspace X1 with dimX1=k. If there is v0[u1,,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ0 small.

    3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))(0,+), then the T-periodic mild solution is unstable.

    Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to

    M(ϵ,u0)+O(ϵ2)=0. (3.3)

    Note that M(0,u0)=(T(T)I)u0. If (T(T)I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.

    If (T(T)I) is not invertible, then we take a decomposition u0=v+w, v[u1,,uk], take bounded projections Q1:Xim(T(T)I), Q2:XX1, I=Q1+Q2 and decompose (3.3) to

    Q1M(ϵ,v+w)+Q1O(ϵ2)=0, (3.4)

    and

    Q2M(ϵ,v+w)+Q2O(ϵ2)=0. (3.5)

    Now Q1M(0,v+w)=(T(T)I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get

    B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). (3.6)

    So

    B(0,v)=Nk=1Q2T(Ttk)Δk(T(tk)v)+Q2T0(Ts)q1S(Ts)f(s,T(s)v)ds. (3.7)

    Consequently we get, if there is v0[u1,,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ0 small.

    In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].

    In this section, we give an example to demonstrate Theorem 2.2.

    Example 4.1. Consider the following impulsive fractional partial differential equation:

    { cD12tk,tu(t,y)=2y2u(t,y)+sinu(t,y)+cos2πt,  t(tk,tk+1), kN0,  y[0,π], Δk(u(tk,y))=u(t+k,y)u(tk,y)=ξu(tk,y),  kN,  y[0,π], u(t,0)=u(t,π)=0,  t(tk,tk+1),  kN0, u(0,y)=u0(y),  y[0,π], (4.1)

    for ξR, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)XX by Au=d2udy2 with the domain

    D(A)={uXdudy,d2udy2X, u(0)=u(π)=0}.

    Then A is the infinitesimal generator of a C0-semigroup {S(t),t0} on X and S(t)M=1 for any t0. Denote u(,y)=u()(y) and define f:[0,)×XX by

    f(t,u)(y)=sinu(y)+cos2πt.

    Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that

    Ξ=2k=0|1+ξ|E12(13)=|1+ξ|3(E12(13))3.

    Letting Ξ<1, we get E12(13)1<ξ<E12(13)1. Now all assumptions of Theorem 2.2 hold. Hence, if E12(13)1<ξ<E12(13)1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.

    This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.

    The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.

    All authors declare no conflicts of interest in this paper.



    [1] G. Giambene, Queuing theory and telecommunications networks and applications, 2 Eds., New York: Springer, 2005. http://dx.doi.org/10.1007/978-1-4614-4084-0
    [2] T. Oda, Moment analysis for traffic associated with Markovian queueing systems, IEEE T. Commun., 39 (1991), 737–746. http://dx.doi.org/10.1109/26.87164 doi: 10.1109/26.87164
    [3] M. Fumiaki, An infinitely many server queue having Markov renewal arrivals and hyperexponential service times, J. Oper. Res. Soc. Jpn., 29 (2017), 338–351. http://dx.doi.org/10.2307/2582311 doi: 10.2307/2582311
    [4] C. Wen, T. Z. Huang, X. M. Gu, Z. L. Shen, H. F. Zhang, C. Liu, Multipreconditioned GMRES for simulating stochastic automata networks, Open Math., 16 (2018), 986–998. http://dx.doi.org/10.1515/math-2018-0083 doi: 10.1515/math-2018-0083
    [5] D. A. Bini, B. Meini, Effective methods for solving banded Toeplitz systems, SIAM J. Numer. Anal., 20 (1999), 700–719. http://dx.doi.org/10.1137/S0895479897324585 doi: 10.1137/S0895479897324585
    [6] D. Fischer, G. Golub, O. Hald, C. Leiva, O. Widlund, On Fourier-Toeplitz methods for separable elliptic problems, Math. Comput., 28 (1974), 349–368. http://dx.doi.org/10.2307/2005913 doi: 10.2307/2005913
    [7] A. N. Malyshev, M. Sadkane, Fast solution of unsymmetric banded Toeplitz systems by means of spectral factorizations and Woodbury's formula, Numer. Linear Algebra Appl., 21 (2014), 13–23. https://doi.org/10.1002/nla.1853 doi: 10.1002/nla.1853
    [8] Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, J. Cao, A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation, J. Comput. Appl. Math., 362 (2019), 99–115. http://dx.doi.org/10.1016/j.cam.2019.05.019 doi: 10.1016/j.cam.2019.05.019
    [9] S. Serra-Capizzano, C. Tablino-Possio, Multigrid methods for multilevel circulant matrices, SIAM J. Sci. Comput., 26 (2004), 55–85. http://dx.doi.org/10.1137/S1064827501388509 doi: 10.1137/S1064827501388509
    [10] M. A. Jandron, A. A. Ruffa, J. Baglama, An asynchronous direct solver for banded linear systems, Numer. Algorithms, 76 (2017), 211–235. http://doi.org/10.1007/s11075-016-0251-3 doi: 10.1007/s11075-016-0251-3
    [11] Y. R. Fu, X. Y. Jiang, Z. L. Jiang, S. Jhang, Fast algorithms for finding the solution of CUPL-Toeplitz linear system from Markov chain, Appl. Math. Comput., 396 (2021), 125859. http://doi.org/10.1016/j.amc.2020.125859 doi: 10.1016/j.amc.2020.125859
    [12] X. Zhang, X. Y. Jiang, Z. L. Jiang, H. Byun, An improvement of methods for solving the CUPL-Toeplitz linear system, Appl. Math. Comput., 421 (2022), 126932. http://doi.org/10.1016/j.amc.2022.126932 doi: 10.1016/j.amc.2022.126932
    [13] X. Zhang, Y. P. Zheng, Z. L. Jiang, H. Byun, Numerical algorithms for corner-modified symmetric Toeplitz linear system with applications to image encryption and decryption, J. Appl. Math. Comput., 69 (2023), 1967–1987. http://doi.org/10.1007/s12190-022-01819-7 doi: 10.1007/s12190-022-01819-7
    [14] X. Zhang, Y. P. Zheng, Z. L. Jiang, H. Byun, Fast algorithms for perturbed Toeplitz-plus-Hankel system based on discrete cosine transform and their applications, Jpn. J. Ind. Appl. Math., 41 (2024), 567–583. http://doi.org/10.1007/s13160-023-00616-4 doi: 10.1007/s13160-023-00616-4
    [15] X. Zhang, Y. P. Zheng, Z. L. Jiang, Fast algorithms for the solution of perturbed symmetric Toeplitz linear system and its applications, Comput. Appl. Math., 43 (2024), 252. http://dx.doi.org/10.1007/s40314-024-02773-9 doi: 10.1007/s40314-024-02773-9
    [16] J. T. Jia, S. M. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 69 (2015), 503–509. http://dx.doi.org/10.1016/j.camwa.2015.01.012 doi: 10.1016/j.camwa.2015.01.012
    [17] J. T. Jia, T. Sogabe, S. M. Li, A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems, J. Comput. Appl. Math., 290 (2015), 423–432. http://dx.doi.org/10.1016/j.cam.2015.05.026 doi: 10.1016/j.cam.2015.05.026
    [18] J. A. Marrero, A numerical solver for general bordered tridiagonal matrix equations, Comput. Math. Appl., 72 (2016), 2731–2740. http://dx.doi.org/10.1016/j.camwa.2016.09.025 doi: 10.1016/j.camwa.2016.09.025
    [19] A. Martin, I. D. Boyd, Variant of the Thomas Algorithm for opposite-bordered tridiagonal systems of equations, Int. J. Numer. Meth. Bio., 26 (2010), 752–759. http://dx.doi.org/10.1002/CNM.1172 doi: 10.1002/CNM.1172
    [20] L. Du, T. Sogabe, S. L. Zhang, A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems, Appl. Math. Lett., 75 (2018), 74–81. http://dx.doi.org/10.1016/j.aml.2017.06.016 doi: 10.1016/j.aml.2017.06.016
    [21] Y. L. Wei, Y. P. Zheng, Z. L. Jiang, S. Shon, A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers, Mathematics, 7 (2019), 893. http://dx.doi.org/10.3390/math7100893 doi: 10.3390/math7100893
    [22] Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Adv. Differ. Equ., 2019 (2019), 410. http://dx.doi.org/10.1186/s13662-019-2335-6 doi: 10.1186/s13662-019-2335-6
    [23] Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners, J. Appl. Anal. Comput., 10 (2020), 178–191. http://dx.doi.org/10.11948/20190105 doi: 10.11948/20190105
    [24] T. Sogabe, Numerical algorithms for solving comrade linear systems based on tridiagonal solvers, Appl. Math. Comput., 198 (2008), 117–122. http://dx.doi.org/10.1016/j.amc.2007.08.029 doi: 10.1016/j.amc.2007.08.029
    [25] J. T. Jia, S. M. Li, New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations, Comput. Math. Appl., 78 (2019), 144–151. http://dx.doi.org/10.1016/j.camwa.2019.02.028 doi: 10.1016/j.camwa.2019.02.028
    [26] G. Golub, C. Van Loan, Matrix computations, 3 Eds., Baltimore and London: Johns Hopkins University Press, 1996.
    [27] C. Garoni, S. Serra-Capizzano, Generalized locally Toeplitz sequences: Theory and applications, Cham: Springer, 2017.
    [28] A. Böttcher, S. M. Grudsky, Spectral properties of banded Toeplitz matrices, Philadelphia: SIAM, 2005.
    [29] M. Bogoya, S. M. Grudsky, S. Serra-Capizzano, Fast non-Hermitian Toeplitz eigenvalue computations, joining matrixless algorithms and FDE approximation matrices, SIAM J. Matrix Anal. Appl., 45 (2024), 284–305. http://doi.org/10.1137/22M1529920 doi: 10.1137/22M1529920
    [30] S. Serra-Capizzano, P. Tilli, Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices, J. Comput. Appl. Math., 108 (1999), 113–130. http://dx.doi.org/10.1016/S0377-0427(99)00104-1 doi: 10.1016/S0377-0427(99)00104-1
    [31] M. Batista, A. A. Karawia, The use of the Sherman-Morrison-Woodbury formula to solve cyclic block tri-diagonal and cyclic block penta-diagonal linear systems of equations, Appl. Math. Comput., 210 (2009), 558–563. http://dx.doi.org/10.1016/j.amc.2009.01.003 doi: 10.1016/j.amc.2009.01.003
    [32] R. H. Chan, X. Q. Jin, An introduction to iterative Toeplitz solvers, Philadelphia: SIAM, 2007. http://dx.doi.org/10.1137/1.9780898718850
    [33] X. Q. Jin, Preconditioning techniques for Toeplitz systems, Beijing: Higher Education Press, 2010.
    [34] M. K. Ng, Iterative methods for Toeplitz systems, New York: Oxford University Press, 2004.
    [35] S. L. Lei, Y. C. Huang, Fast algorithms for high-order numerical methods for space fractional diffusion equations, Int. J. Comput. Math., 94 (2017), 1062–1078. http://dx.doi.org/10.1080/00207160.2016.1149579 doi: 10.1080/00207160.2016.1149579
    [36] R. H. Chan, A. M. Yip, M. K. Ng, The best circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Numer. Anal., 38 (2000), 876–896. http://dx.doi.org/10.1137/s0036142999354083 doi: 10.1137/s0036142999354083
    [37] I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, Integr. Equat. Oper. Th., 15 (1992), 730–743. http://dx.doi.org/10.1007/BF01200697 doi: 10.1007/BF01200697
    [38] R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. http://dx.doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
  • This article has been cited by:

    1. Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397
    2. Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193
    3. Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859
    4. Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463
    5. Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(179) PDF downloads(30) Cited by(0)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog