In this paper, we investigate the blow-up criterion of an evolutionary partial differential equation system controlling the flows of incompressible viscoelastic rate-type fluids with stress-diffusion, where the extra stress tensor describing the elastic response of the fluid is purely spherical. By utilizing this criterion, the global well-posedness of the system can be readily obtained. Despite being a physical simplification, this model exhibits features that necessitate novel mathematical approaches to tackle the technically complex structure of the associated internal energy, as well as the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of a global solution to the model under small initial data.
Citation: Xi Wang. Blow-up criterion for the 3-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion[J]. AIMS Mathematics, 2025, 10(1): 1826-1841. doi: 10.3934/math.2025084
In this paper, we investigate the blow-up criterion of an evolutionary partial differential equation system controlling the flows of incompressible viscoelastic rate-type fluids with stress-diffusion, where the extra stress tensor describing the elastic response of the fluid is purely spherical. By utilizing this criterion, the global well-posedness of the system can be readily obtained. Despite being a physical simplification, this model exhibits features that necessitate novel mathematical approaches to tackle the technically complex structure of the associated internal energy, as well as the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of a global solution to the model under small initial data.
[1] | P. L. Lions, Mathematical topics in fluids mechanics. Vol.1 incompressible models, New York: Oxford Univeristy Press, 1996. https://doi.org/10.1080/00107514.2013.869264 |
[2] | M. Bulíček, E. Feireisl, J. Málek, On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665–4681. https://doi.org/10.1088/1361-6544/ab3614 doi: 10.1088/1361-6544/ab3614 |
[3] | M. Bulíček, J. Málek, V. Pruša, E. A. S$\ddot{u}$li, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Amer. Math. Soc., 710 (2018), 25–53. https://doi.org/10.48550/arXiv.1707.02350 doi: 10.48550/arXiv.1707.02350 |
[4] | J. Málek, V. Pruša, T. Skřivan, E. A. S$\ddot{u}$li, Thermodynamics of viscoelastic rate-type fuids with stress diffusion, Phys. Fluids, 30 (2018), 023101. https://doi.org/10.1063/1.5018172 doi: 10.1063/1.5018172 |
[5] | J. Málek, V. Pruša, Derivation of equations for continuum mechanics and thermodynamics of fluids, Handbook Math. Anal. Mech. Viscous Flu., 2016, 3–72. https://doi.org/10.1007/978-3-319-10151-4_1-1 doi: 10.1007/978-3-319-10151-4_1-1 |
[6] | T. Divoux, M. A. Fardin, S. Manneville, S. Lerouge, Shear banding of complex fluids, Annu. Rev. Fluid Mech, 48 (2016), 81–103. https://doi.org/10.1146/annurev-fluid-122414-034416 doi: 10.1146/annurev-fluid-122414-034416 |
[7] | J. K. G. Dhont, W. J. Briels, Gradient and vorticity banding, Rheol. Acta, 47 (2008), 257–281. https://doi.org/10.1007/s00397-007-0245-0 doi: 10.1007/s00397-007-0245-0 |
[8] | M. A. Fardin, T. J. Ober, C. Gay, G. Gregoire, G. H. McKinley, S. Lerouge, Potential "ways of thinking" about the shear-banding phenomenon, Soft Matt., 8 (2012), 910–922. https://doi.org/10.1039/C1SM06165H doi: 10.1039/C1SM06165H |
[9] | J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. https://doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354 |
[10] | E. Hopf, über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet, Math. Nachr., 4 (1950), 213–231. https://doi.org/10.1002/mana.3210040121 doi: 10.1002/mana.3210040121 |
[11] | Y. Giga, T. Miyawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Ration. Mech. Anal., 85 (1985), 267–281. https://doi.org/10.1007/BF00276875 doi: 10.1007/BF00276875 |
[12] | T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471–480. https://doi.org/10.1007/BF01174182 doi: 10.1007/BF01174182 |
[13] | H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations, Commun. Pure. Appl. Math., 64 (2011), 832–881. https://doi.org/10.1002/cpa.20351 doi: 10.1002/cpa.20351 |
[14] | H. Abidi, G. Gui, P. Zhang, On the global existence and uniqueness of solution to 2-D inhomogeneous incompressible Navier-Stokes equations in critical spaces, J. Diff. Equ., 406 (2024), 126–173. https://doi.org/10.1016/j.jde.2024.06.004 doi: 10.1016/j.jde.2024.06.004 |
[15] | R. Danchin, Local and global well-posedness reuslts for flows of inhomogeneous viscous fluids, Adv. Differ. Equ., 9 (2004), 353–386. https://doi.org/10.57262/ade/1355867948 doi: 10.57262/ade/1355867948 |
[16] | B. Desjardins, Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Differ. Int. Equ., 10 (1997), 587–598. http://dx.doi.org/10.1016/j.jmaa.2016.09.050 doi: 10.1016/j.jmaa.2016.09.050 |
[17] | C. Wang, Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43–62. https://doi.org/10.1016/j.aim.2011.05.008 doi: 10.1016/j.aim.2011.05.008 |
[18] | H. Abidi, P. Zhang, On the global well-posedness of 3-D Boussinesq system with variable viscosity, Chin. Ann. Math. Ser. B, 40 (2019), 643–688. https://doi.org/10.1007/s11401-019-0156-2 doi: 10.1007/s11401-019-0156-2 |
[19] | M. Bathory, M. Bulíček, J. Málek, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10 (2020), 501–521. https://doi.org/10.1515/anona-2020-0144 doi: 10.1515/anona-2020-0144 |
[20] | J. Bedrossian, V. Vicol, The mathematical analysis of the incompressible Euler and Navier-Stokes equations: An introduction, Rhode Island: American Mathematical Society, 2022. https://doi.org/10.1090/gsm/225 |
[21] | H. Bahouri, J. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, New York: Berlin Springer, 2011. |
[22] | J. Chemin, Théorémes d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27–50. https://doi.org/10.1007/BF02791256 doi: 10.1007/BF02791256 |
[23] | J. Chemin, Perfect incompressible fluids, New York: Oxford University Press, 1998. |
[24] | H. Triebel, Theory of function spaces, Basel, Boston, Berlin: Birkhäuser Verlag, 1983. https://doi.org/10.1007/978-3-0346-0416-1 |
[25] | T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun, Pure Appl. Math, 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704 |
[26] | J. L. Lions, Some methods of solution of nonlinear boundary-value problems, Moscow: Mir, 1972. |
[27] | A. J. Majda, A. L. Bertozzi, A. Ogawa, Vorticity and incompressible flow, NewYork: Cambridge University Press, 2002. |