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1. Introduction

In this paper, we investigate the global well-posedness of the following system:
ut + u · ∇u − ∆u + ∇Π + σdiv (∇b ⊗ ∇b − 1

2 |∇b|2I) = 0,
bt + u · ∇b + 1

ν
(e′(b) − σ∆b) = 0,

div u = 0,
(u, b)(t, x)|t=0 = (u0, b0)(x),

(1.1)

where u = (u1, u2, u3) and b = b(x, t) represent the velocity field of the fluid and the spherical
component of the elastic strain tensor, respectively. The scalar pressure function is denoted by
Π = Π(x, t). Generally, the viscosity coefficients ν and σ are positive constants, and e(·) denotes a
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smooth convex function of b. Furthermore, it is assumed that the second derivative of e with respect to
b, which is denoted as e′′(b), is bounded by a constant C.

The system we study in this paper controls the motion of non-Newtonian fluids, which is described
by a simplified viscoelastic rate-type model incorporating a stress-diffusion component. It retains many
qualitative characteristics of more complex viscoelastic rate-type models, which makes it an important
tool for studying the mathematical properties of non-Newtonian fluids. In this paper, we present a
proof regarding the blow-up criterion applicable to this model. In the context of differential equations,
when we say that the solution of an equation containing the “time” variable undergoes “blow-up”, it
typically means that the domain of definition of the solution is finite, and some kind of “undesirable”
situation occurs at the endpoint of the time interval: The solution may tend towards infinity or it
may lose smoothness (which can cause the differential equation to lose physical meaning), among
other possibilities. This is an important and challenging phenomenon. As time progresses, whether
it is displacement, velocity, heat, field intensity, or any other form of response, they will all tend
towards infinity.

On the other hand, the presence of the stress-diffusion term in the governing equations is
significant for several reasons. First, it enhances the qualitative mathematical properties of the
governing equations to a certain degree. Second, the existence of the diffusion term has a profound
impact on the dynamical behavior predicted by the system of governing equations, as exemplified by
its utilization in modeling the shear banding phenomenon. There are two interpretations of the stress-
diffusion term: One views it as a consequence of a nonlocal energy storage mechanism, while the other
sees it as a result of a nonlocal entropy production mechanism. These different interpretations of the
stress-diffusion mechanism lead to distinct evolution equations for temperature. Hence, understanding
the thermodynamic foundation of the derived models is crucial when examining the nonlinear stability
of equilibrium resting states. Moreover, in the current model, the presence of the additional stress
tensor disrupts the original structure outlined in [1]. Growth strain induces stress, which, in turn,
affects the diffusion process through chemical potential and diffusivity. Consequently, substantial
modifications must be made to this part of the theory.

This model combines features of the Oldroyd-B and Giesekus models, and incorporates diffusion
terms. Moreover, the fluid type studied in this investigation is characterized by its elastic response,
which can be represented by spherical strain (a scalar multiplier of the identity tensor), specifically a
scalar multiplication of the identity tensor. A detailed derivation process of the mathematical model
can be found in the appendix of [2] (carrying on the developments outlined in [3–5]). Although
mathematically complex, the model is capable of capturing the complex microstructure of fluids, which
is essential for predicting and simulating the flow of non-Newtonian fluids. The rate-type fluid models
with stress-diffusion are popular in the modeling of shear and vorticity banding phenomena; see, for
example, the reviews in [6–8]. The results of this model provide profound insights into the behavior of
viscoelastic fluids and offer mathematical tools and theoretical foundations for fluid dynamics problems
in engineering and scientific applications. This task is particularly interesting if one considers fluid
models that include terms that are associated with the elastic properties of the material.

When b = 0, the system reduces to the incompressible Navier-Stokes equations. The theoretical
investigation of these equations was initiated by the foundational works of Leray [9] and Hopf [10]
on the global existence of a weak solution. Regarding the local well-posedness of strong solutions,
Ciga and Miyakawa [11], Kato [12], and others researched it using semigroup theory. Abidi, Gui, and
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Zhang [13] explored the global well-posedness of solutions in Besov spaces for systems with a bounded
density. More recently, the authors of [14] also investigated the global existence and uniqueness
of solution to two-dimensional (2-D) inhomogeneous incompressible Navier-Stokes equations in
critical spaces.

Moreover, in the case where σ = 0, our Eq (1.1) can be conceptualized as the coupling of two
systems: The inhomogeneous Navier-Stokes equation governing a fluid with constant density, and
a transport equation with the damped term e′(b). As we mentioned above, research on the three-
dimensional (3-D) incompressible Navier-Stokes equation is indeed extensive, with numerous studies,
such as [1, 15, 16] and others. On the other hand, for when σ > 0, Wang and Zhang [17] investigated
the global well-posedness of the 2-D Boussinesq system incorporating the temperature-dependent
viscosity and thermal diffusivity. Abidi and Zhang [18] explored the global well-posedness of a 3-
D Boussinesq system with variable viscosity.

For the system we study in this paper, M. Bulı́ček, J. Málek, Vit Průsǎ, and E. Süli have conducted
some related research in recent years. They [3] established the long-time and large-data existence of
a weak solution to the evolutionary spatially periodic problem associated with the set of governing
equations for compressible fluids with variable density in 3-D space. M. Bathory, M. Bulı́ček, and
J. Málek [19] explored a global-in-time and large-data existence theory, within the context of weak
solutions, to a class of homogeneous incompressible rate-type viscoelastic fluids confined in a closed 3-
D container.

Compared with these reference papers, our primary focus is on the simplified model of viscoelastic
fluids with stress-diffusion, which was derived in [2]. In this model, we specifically consider
the scenario where the extra stress tensor, which describes the elastic response of the fluid, is
purely spherical. Furthermore, we have incorporated the divergence-free condition to investigate the
incompressible situation. In this paper, we have rigorously proven, for the first time, the existence
and uniqueness of the local solution to the system using the energy method. Additionally, we have
obtained global well-posedness under the assumption of small initial data through the application of a
blow-up criterion.

Our main result reads as follows:

Theorem 1.1. Assume that when s > 3
2 and the initial data (u0, b0) satisfy u0 ∈ H s(R3), b0 ∈ H s+1(R3)

and div u0 = 0, the following hold:
(1) (Local existence) There exists a small time T ∗ > 0 such that (1.1) has a unique strong solution (u, b)
on (0,T ∗) satisfying

u ∈ C(0,T ∗; H s) ∩ L2(0,T ∗; H s+1), b ∈ C(0,T ∗; H s+1) ∩ L2(0,T ∗; H s+2).

(2) (Blow-up criterion) T ∗ is the finite blow-up time of (u, b) if and only if∫ T ∗

0
(‖∇u‖4L2 + ‖∇2b‖

4
L2)dτ = +∞.

(3) (Global existence) If there exists a small constant ε > 0 such that

‖u0‖Hs + ‖b0‖Hs+1 < ε,

then T ∗ = ∞.
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The remainder of this paper is structured as follows. In Section 2, we introduce preliminary
knowledge that will be subsequently used throughout the text. Next, the primary focus of the
subsequent sections is on proving Theorem 1.1. In Section 3, we utilize Friedrich’s method to construct
approximate solutions for the system in (1.1). By employing a priori estimates to the approximate
system, we establish the existence and uniqueness of the local strong solution for (1.1). In Section 4,
we derive a blow-up criterion by a contradiction argument to determine whether the local solution
exhibits blow-up behavior. Finally, we demonstrate the global existence of the solution under the
assumption that the initial data are sufficiently small, thereby completing the proof of (1.1).

Let us complete this section with the notations we are going to use in the following.
(1) If u, v are two functions, let us set u := v to define u as equal to v.
(2) For X being a Banach space and I being an interval of R, 1 ≤ q ≤ ∞, we denote by Lq(I; X) the
set of measurable function on I with values in X. Sometimes, for convenience in this paper, we write it
as Lq(X).

(3) For m ∈ N, fi ∈ Lp (i = 1, 2, ...,m), we write ‖( f1, f2, ..., fm)‖Lp :=
m∑

i=1
‖ fi‖Lp .

(4) For a . b, we mean that there exists a uniform constant C, which may be different in different lines,
such that a ≤ Cb.
(5) For m > 1, x ∈ Rn, and a vector-valued function u(x) = (u1, u2, ..., um), we define

∇u :=


u1

x1
· · · u1

xn
...

. . .
...

u1
x1
· · · um

xn

 ,
∆u := (

n∑
i=1

u1
xi xi
,

n∑
i=1

u2
xi xi
, ...,

n∑
i=1

um
xi xi

).

2. Preliminary

First, in order to facilitate the construction of an approximate equation for the system in (1.1), we
introduce two projection operators Pn and P here.

Definition 2.1. (see [20]) Let us define the Helmholtz projection operator P with a divergence-free
condition by

P = (δi j + RiR j)1≤i, j≤3,

where R j denotes the Riesz transform and satisfies F (R j f )(ξ) = −
iξ j

|ξ|
F f (ξ).

Definition 2.2. (see [21]) The projection operator Pn is defined as follows:

Pn f (x) = F −1(1Bn)(ξ)F f (ξ)(x),

where the Fourier operator F f (ξ) :=
∫
R3 f (x)e−ixξdx, and the characteristic function 1Bn is defined on

the surface of a sphere Bn centered at the origin with a radius n.
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Clearly, based on the definitions of Pn and P provided above, it is straightforward to deduce that
PnP = PPn and P2

n = Pn. The proofs of these statements are omitted here for brevity.
Next, we recall some basic definitions and properties related to the Littlewood-Paley theory

(see [21] for more details). Assume that ψ and θ are two functions in C∞(R3) with

S upp ψ̂ ⊆ {
3
4
≤ |ξ| ≤

8
3
}, S upp θ̂ ⊆ {|ξ| ≤

4
3
},

and θ̂(ξ) +
∑
j≥0
ψ̂(2− jξ) = 1 (∀ ξ ∈ R3).

Definition 2.3. (see [21]) We define the Littlewood-Paley operator ∆ j in R3 as follows:

∆ j f (x) := ψ ∗ f (x) =

∫
R3
ψ j(x − y) f (y)dy; ψ j(x) := 23 jψ(2 jx), j ≥ 0;

∆−1 f (x) := θ ∗ f (x); S j f (x) :=
j−1∑

k=−1

∆k f (x).

In particular, utilizing the definition of the Littlewood-Paley operator provided above, we can
re-describe the Sobolev space H s(R3).

Definition 2.4. (see [22]) Let s ∈ R; the Sobolev space H s(R3) can then be defined as

H s(R3) := {u ∈ D′(R3) :
∑
j≥−1

22 js‖∆ ju‖2L2 < ∞}.

We set the norm as

‖u‖2Hs :=
∑
j≥−1

22 js‖∆ ju‖2L2 .

Definition 2.5. (see [22]) We define the space L̃∞(0,T ; H s) by the norm:

‖u‖2L̃∞(0,T ;Hs) :=
∑
j≥−1

22 js‖∆ ju‖2L∞(0,T ;L2) < ∞.

Next, we introduce some lemmas that will be used in the following sections.

Lemma 2.1. (see [23]) Assume that k ∈ N, 1 ≤ p ≤ q ≤ ∞, and j ≥ 0, α is a multi-index (i.e., an
element of N3), ∀ f ∈ Lp(R3), and there exists a positive constant C which is independent of j such that

‖∂α∆ j f ‖Lq + ‖∂αS j f ‖Lq ≤ C2 j|α|+3 j( 1
p−

1
q )
‖ f ‖Lp .

Lemma 2.2. (see [24]) Let s > 0 and f ∈ H s(R3) ∩ L∞(R3); F(·) is a smooth function on R and
F(0) = 0. The following thus holds

‖F( f )‖Hs . (1 + ‖ f ‖L∞)bsc+1‖ f ‖Hs .
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Lemma 2.3. (see [25]) Let s > 0 and set Λs :=
√
−∆, then

‖u(x)‖2Hs =

∫
R3

(Λsu)2(x)dx,

and for ∀ f , g ∈ H s(R3) ∩ L∞(R3), we have

‖Λs( f g)‖L2 . ‖ f ‖L∞‖Λsg‖L2 + ‖g‖L∞‖Λs f ‖L2 .

Lemma 2.4. (see [26]) (Lions-Aubin lemma) Assume that X ↪→↪→ Y ↪→ Z, where X, Z are reflexible
spaces, and X is dense in Z, then let W := {u ∈ Lp0(0,T ; X), ut ∈ Lp1(0,T ; X), and 1 < p0, p1 ≤ ∞}. It
then holds that W ↪→↪→ Lp0(0,T ; Y).

3. Local well-posedness

This section is devoted to the proof of the local well-posedness of Eq (1.1). To clearly illustrate
the process, we will divide it into five steps.
Step 1. Construct approximate equations.

We use the Friedrich’s method to construct the approximate solutions. Recall the projector
operator Pn and the Helmholtz projection operator P stated in Definitions 2.1 and 2.2, respectively,
and then utilize them to introduce the following approximate system for (1.1):

∂tun + PnP(Pnun · ∇Pnun) − Pn∆Pnun + σPnP(∇Pnbn∆Pnbn) = 0,
∂tbn + Pn(Pnun · ∇Pnbn) + 1

ν
Pn(e′(Pnbn) − σ∆Pnbn) = 0,

(un, bn)(t, x)|t=0 = (Pnu0, Pnb0)(x),

(3.1)

where we used the fact that

div
(
∇b ⊗ ∇b −

1
2
|∇b|2I

)
= ∇b∆b. (3.2)

Step 2. Energy estimates to approximate equations.
First, we take the scalar product of (3.1)1 with un and integrate the resulting expression over R3,

which gives

1
2

d
dt
‖un‖

2
L2 + ‖∇Pnun‖

2
L2 + σ

∫
R3
∇Pnbn · ∆Pnbn · Pnun dx = 0. (3.3)

Next, by multiplying (3.1)2 by −σ∆bn and integrating in space, we have

σ

2
d
dt
‖∇bn‖

2
L2 +

σ2

ν
‖∇2Pnbn‖

2
L2 +

σ

ν

∫
R3

e′′(Pnbn)|∇Pnbn|
2 dx

= −σ

∫
R3

Pnun · ∇Pnbn · ∆Pnbn. (3.4)

Hence, by summing up (3.3) and (3.4), we get

d
dt

(
1
2
‖un‖

2
L2 +

σ

2
‖∇bn‖

2
L2) + ‖∇Pnun‖

2
L2 +

σ2

ν
‖∇2Pnbn‖

2
L2 ≤ 0. (3.5)
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By then integrating it over [0,Tn], one eventually gets

un ∈ L∞(0,Tn; L2), ∇Pnun ∈ L2(0,Tn; L2),
∇bn ∈ L∞(0,Tn; L2), ∇2Pnbn ∈ L2(0,Tn; L2). (3.6)

In addition, taking the L2 inner product of the bn equation with Pn(e′(Pnbn)) gives

d
dt
‖Pn(e(bn))‖L1 +

1
ν
‖Pn(e′(Pnbn))‖2L2 ≤

1
2ν
‖Pn(e′(Pnbn))‖2L2 + C‖∆Pn(bn)‖2L2 .

Next, doing integration by parts and integrating it over [0,Tn], which, along with (3.6) shows that

Pn(e(Pnbn)) ∈ L∞(0,Tn; L1), Pn(e′(Pnbn)) ∈ L2(0,Tn; L2). (3.7)

Therefore, from (3.6) and (3.7), we observe that each term in (3.1)1 and (3.1)2 is bounded in L2(R3).
Consequently, it follows from the Cauchy-Lipschitz theorem that there exists a unique solution
(un, bn) ∈ C(0,Tn; L2) to the system in (3.1). Due to the uniqueness of the solution, one has Pnun = un

and Pnbn = bn. Hence the approximate system in (3.1) simplifies to the following form:
∂tun + PnP(un · ∇un) − ∆un + σPn(∇bn∆bn) = 0,
∂tbn + Pn(un · ∇bn) + 1

ν
Pn(e′(bn) − σ∆bn) = 0,

(un, bn)(t, x)|t=0 = (Pnu0, Pnb0)(x).

(3.8)

Moreover, the inequalities in (3.6) and (3.7) can also be reformulated as follows:

un ∈ L∞(0,Tn; L2) ∩ L2(0,Tn; Ḣ1), bn ∈ L∞(0,Tn; H1) ∩ L2(0,Tn; H2),
e(bn) ∈ L∞(0,Tn; L1), e′(bn) ∈ L2(0,Tn; L2). (3.9)

In what follows, we focus on estimating ‖un‖Hs and ‖bn‖Hs+1 .
Applying the operator Λs to (3.8)1 and taking the L2 inner product of the resulting equation with

Λsun, followed by integrating it over R3, one obtains

1
2

d
dt
‖Λsun‖

2
L2 +

∫
R3

(
Λs(un · ∇un) · Λsun + |Λs∇un|

2 + σΛs(∇bn∆bn) · Λsun
)
dx = 0. (3.10)

Similarly, we perform the same operation on the bn equation. Applying the Λs operator to (3.8)2 and
multiplying the resulting expression by Λsbn, −Λs∆bn, by integrating them over R3, we then have

1
2

d
dt
‖Λsbn‖

2
L2 +

∫
R3

(
Λs(un · ∇bn)Λsbn +

1
ν
Λse′(bn)Λsbn +

σ

ν
|Λs∇bn|

2)dx = 0 (3.11)

and

1
2

d
dt
‖Λs∇bn‖

2
L2 +

∫
R3

(
− Λs(un · ∇bn)Λs∆bn −

1
ν
Λse′(bn)Λs∆bn +

σ

ν
|Λs∆bn|

2)dx = 0. (3.12)

Summing Eqs (3.10)–(3.12) gives

1
2

d
dt
‖(Λsun, Λ

sbn, Λ
s∇bn)‖2L2 + (‖Λs∇un‖

2
L2 +

σ

ν
‖Λs∇bn‖

2
L2 +

σ

ν
‖Λs∆bn‖

2
L2)

AIMS Mathematics Volume 10, Issue 1, 1826–1841.



1833

=

∫
R3

[
− Λs(un · ∇un) · Λsun − σΛ

s(∇bn∆bn) · Λsun − Λ
s(un · ∇bn)Λsbn

−
1
ν
Λse′(bn)Λsbn + Λs(un · ∇bn)Λs∆bn +

1
ν
Λse′(bn)Λs∆bn

]
dx.

According to Hölder’s inequality, Young’s inequality, and Lemmas 2.2 and 2.3, we can estimate each
term on the right side of the above inequality:∫

R3
−Λs(un · ∇un) · Λsundx ≤ |

∫
R3
Λs(un ⊗ un)Λs∇undx| ≤ ‖Λs(un ⊗ un)‖L2‖Λs∇un‖L2

≤ 2‖un‖L∞‖Λ
sun‖L2‖Λs∇un‖L2 ≤

1
4
‖Λs∇un‖

2
L2 + C‖un‖

2
L∞‖Λ

sun‖
2
L2 ,∫

R3
−σΛs(∇bn∆bn) · Λsundx ≤ σ|

∫
R3
Λs(∇bn ⊗ ∇bn)Λs∇undx|

≤
1
4
‖Λs∇un‖

2
L2 + C‖∇bn‖

2
L∞‖Λ

s∇bn‖
2
L2 ,∫

R3
−Λs(un · ∇bn)Λsbndx ≤ |

∫
R3
Λs(unbn)Λs∇bndx|

≤
σ

2ν
‖Λs∇bn‖

2
L2 + C‖un‖

2
L∞‖Λ

sbn‖
2
L2 + C‖bn‖

2
L∞‖Λ

sun‖
2
L2 ,∫

R3
−

1
ν
Λse′(bn)Λsbndx ≤ |

∫
R3
Λse′(bn)Λsbndx| ≤ CJ(‖bn‖L∞)‖Λsbn‖

2
L2 ,∫

R3
Λs(un · ∇bn)Λs∆bndx ≤ |

∫
R3
Λs(un · ∇bn)Λs∆bndx|

≤
σ

2ν
‖Λs∆bn‖

2
L2 + C‖un‖

2
L∞‖Λ

s∇bn‖
2
L2 + C‖∇bn‖

2
L∞‖Λ

sun‖
2
L2 ,∫

R3

1
ν
Λse′(bn)Λs∆bndx ≤

1
ν
|

∫
R3
Λse′(bn)Λs∆bndx| ≤

1
ν
|

∫
R3
Λs+1e′(bn)Λs∇bndx|

≤ CJ(‖bn‖L∞)‖Λs∇bn‖
2
L2 ,

where J(‖bn‖L∞) = (1 + ‖bn‖L∞)bsc+2.
Hence, plugging these estimates into the above inequality yields

d
dt

(‖un‖
2
Hs + ‖bn‖

2
Hs + ‖∇bn‖

2
Hs) + (‖∇un‖

2
Hs + ‖∇bn‖

2
Hs + ‖∇2bn‖

2
Hs)

. (J(‖bn‖L∞) + ‖un‖
2
L∞ + ‖bn‖

2
L∞ + ‖∇bn‖

2
L∞)(‖un‖

2
Hs + ‖bn‖

2
Hs + ‖∇bn‖

2
Hs),

which, together with Grönwall’s inequality, gives rise to

En(t) . En(0) exp
∫ t

0
Hn(τ)dτ, (3.13)

where we defined

En(t) := ‖un(t)‖2Hs + ‖bn(t)‖2Hs+1 +

∫ t

0
(‖un‖

2
Hs+1 + ‖bn‖

2
Hs+2)(τ)dτ,

En(0) := ‖Pnu0‖
2
Hs + ‖Pnb0‖

2
Hs+1 ,
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Hn(t) := J(‖bn‖L∞) + ‖un‖
2
L∞ + ‖bn‖

2
L∞ + ‖∇bn‖

2
L∞ .

Subsequently, assume that Tn is the maximal existence time of the approximate system in (3.8).
Furthermore, there exists a uniform lower bound for Tn, which ensures that the limit of time is in a
certain interval. We omit the detailed proof here; the readers can refer to [27]. In addition, we set

T̃n := sup
t
{t ∈ [0,Tn) : En(t) ≤ 4En(0)}.

Since J(·) is an increasing function and s > 3
2 , it follows from the Sobolev embedding theorem that

when t ∈ [0, T̃n),

En(t) ≤ En(0) exp{
∫ t

0
[J(‖bn‖Hs) + ‖un‖

2
Hs + ‖bn‖

2
Hs + ‖∇bn‖

2
Hs]dτ}

≤ En(0) exp{
∫ t

0
[J(En) + En]dτ}

≤ En(0) exp{J(4En(0))t + 4En(0)t}.

Clearly, exp{J(4En(0))t+4En(0)t} is an increasing and continuous function with respect to t. Therefore,
we can choose T ∗ ∈ [0, T̃n) to be sufficiently small such that exp{J(4En(0))t + 4En(0)t} < 2.
Consequently, for any t ∈ [0,T ∗], one has

En(t) ≤ 2En(0), (3.14)

which implies that

un ∈ L∞(0,T ∗; H s) ∩ L2(0,T ∗; H s+1), bn ∈ L∞(0,T ∗; H s+1) ∩ L2(0,T ∗; H s+2). (3.15)

Finally, with the help of Lemma 2.3 and Sobolev’s embedding theorem, it follows from (3.8)1 that

‖∂tun‖
2
Hs−1 ≤ ‖un · ∇un‖

2
Hs−1 + ‖∇2un‖

2
Hs−1 + ‖∇bn∆bn‖

2
Hs−1

≤ ‖un‖
2
L∞‖∇un‖

2
Hs−1 + ‖∇un‖

2
L∞‖un‖

2
Hs−1 + ‖un‖

2
Hs+1 + ‖∇bn‖

2
L∞‖∆bn‖

2
Hs−1

+ ‖∆bn‖
2
L∞‖∇bn‖

2
Hs−1

≤ ‖un‖
2
Hs‖un‖

2
Hs+1 + ‖un‖

2
Hs+1 + ‖∇bn‖

2
Hs‖bn‖

2
Hs+1 + ‖bn‖

2
Hs+2‖bn‖

2
Hs ,

which, combined with (3.15), shows that

∂tun ∈ L2(0,T ∗; H s−1). (3.16)

Similarly, performing the same operation on (3.8)2 yields

∂tbn ∈ L2(0,T ∗; H s). (3.17)

Thus, we have completed the desired estimates for the approximate solutions.
Step 3. The existence of a local solution for the system in (1.1).

Based on the estimates of (3.15) to (3.17) derived in Step 2 , the Lions-Aubin compactness
theorem guarantees the existence of the subsequence (unk , bnk) of (un, bn) and a function (u, b) ∈
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L∞(0,T ∗; H s) ∩ L2(0,T ∗; H s+1) × L∞(0,T ∗; H s+1) ∩ L2(0,T ∗; H s+2) such that for any s′ < s, when
k → ∞,

unk → u in L2(0,T ∗; H s′+1
loc ),

bnk → b in L2(0,T ∗; H s′+2
loc ).

Additionally, it is straightforward to observe that (u, b) satisfies Eq (1.1) by taking the limit of the
approximate equations; thus we have proved the uniqueness of the system in (1.1).
Step 4. Continuity of the solution.

To establish the continuity of the solution, we apply the operator ∆ j to both sides of (3.5) and
then integrate it on [0,T ∗]. Subsequently, multiplying the integrated expression by 22 js and ultilizing
Definition 2.5 gives rise to

‖un‖L̃∞(0,T ∗;Hs) + ‖bn‖L̃(0,T ∗;Hs+1) ≤ C.

Therefore, we easily infer the improved estimates for (u, b) that

‖u‖L̃∞(0,T ∗;Hs) + ‖b‖L̃∞(0,T ∗;Hs+1) ≤ C. (3.18)

Meanwhile, Definition 2.4 indicates that there exists a positive integer N such that

∞∑
j=N

22 js‖∆ ju‖2L∞(0,T ∗;L2) ≤
ε

4
.

Hence, for any t ∈ (0,T ∗) and any δ such that t + δ ∈ (0,T ∗), one obtains

‖u(t + δ) − u(t)‖2Hs

=

N∑
j=−1

22 js‖∆ ju(t + δ) − ∆ ju(t)‖2L2 +

∞∑
j=N

22 js‖∆ ju(t + δ) − ∆ ju(t)‖2L2

≤

N∑
j=−1

22 js‖

∫ t+δ

t
∂τ∆ ju(τ)dτ‖2L2 +

ε

2

≤

N∑
j=−1

22 js|δ|

∫ t+δ

t
‖∂τu(τ)‖2L2dτ +

ε

2

≤2N22sN‖∂tu‖2L2(0,T ∗;L2)|δ| +
ε

2
,

where we have used Hölder’s inequality and Lemma 2.1.
Taking δ which is small enough that 2N22sN |δ|‖∂tu(t)‖2L2(0,T ∗;L2) ≤

ε
2 , one can easily check that for

any ε > 0, a δ > 0 exists such that
‖u(t + δ) − u(t)‖2Hs ≤ ε,

which yields

u ∈ C(0,T ∗; H s). (3.19)
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On the other hand, by the same argument, the fact b ∈ L̃∞(0,T ∗; H s+1) ensures that b ∈
C(0,T ∗; H s+1). Therefore, the continuity of the solution (u, b) to Eq (1.1) has been proved.
Step 5. Uniqueness of the solution.

Let (u(1), b(1),Π(1)) and (u(2), b(2),Π(2)) be two solutions of Eq (1.1) with the same initial data. We
denote ũ := u(2) − u(1), b̃ := b(2) − b(1), and Π̃ := Π(2) −Π(1); (ũ, b̃, Π̃) then solves the following equation:

ũt + ũ · ∇u(2) + u(1) · ∇ũ − ∆ũ + ∇Π̃ + σ∇b(2)∆b̃ + σ∇b̃∆b(1) = 0,
b̃t + ũ · ∇b(2) + u(1) · ∇b̃ + 1

ν
(e′(b(2)) − e′(b(1))) − σ

ν
∆b̃ = 0,

div ũ = 0,
ũ = 0, b̃ = 0.

(3.20)

As we proved in Step 2, we can apply the standard L2 energy estimate to ũ and b̃, which gives

1
2

d
dt

(‖ũ‖2L2 + ‖b̃‖2L2 + σ‖∇b̃‖2L2) + (‖∇ũ‖2L2 +
σ

ν
‖∇b̃‖2L2 +

σ2

ν
‖∆b̃‖2L2)

≤

∫
R3

[
ũ · ∇u(2) · ũ + σ∇b̃∆b(1) · ũ + ũ · ∇b(2) · b̃ + u(1) · ∇b̃b̃ +

1
ν

(e′(b(2)) − e′(b(1)))b̃

+ σu(1) · ∇b̃∆b̃ +
σ

ν

(
e′(b(2)) − e′(b(1))

)
∆b̃

]
dx.

Combining integration by parts with Gagliardo-Nirenberg inequality, Hölder’s inequality, and Young’s
inequality, we can estimate the right side of the inequality above as follows:∫

R3
ũ · ∇u(2) · ũdx ≤ ‖∇u(2)‖L∞‖ũ‖2L2 ,∫

R3
σ∇b̃∆b(1) · ũdx ≤ ‖∇b̃‖L2‖∆b(1)‖L∞‖ũ‖L2 ≤

σ

6ν
‖∇b̃‖2L2 + ‖∆b(1)‖2L∞‖ũ‖

2
L2 ,∫

R3
ũ · ∇b(2) · b̃dx ≤ ‖ũ‖

1
2
L2‖∇ũ‖

1
2
L2‖∇b(2)‖L2‖∇b̃‖L2

≤
1
2
‖∇ũ‖2L2 +

σ

6ν
‖∇b̃‖2L2 + C‖∇b(2)‖4L2‖ũ‖2L2 ,∫

R3
u(1) · ∇b̃b̃dx ≤ ‖u(1)‖L∞‖∇b̃‖L2‖b̃‖L2 ≤

σ

6ν
‖∇b̃‖2L2 + C‖u(1)‖2L∞‖b̃‖

2
L2 ,∫

R3

1
ν

(e′(b(2)) − e′(b(1)))b̃dx ≤ e′′(ξ)‖b̃‖2L2 ≤ C‖b̃‖2L2 ,∫
R3
σu(1) · ∇b̃∆b̃dx ≤ ‖u(1)‖L∞‖∇b̃‖L2‖∆b̃‖L2 ≤ ‖u(1)‖2L∞‖∇b̃‖2L2 +

σ2

4ν
‖∆b̃‖2L2 ,∫

R3

σ

ν

(
e′(b(2)) − e′(b(1))

)
∆b̃dx ≤ ‖e′′(ξ)b̃‖L2‖∆b̃‖L2 ≤

σ2

4ν
‖∆b̃‖2L2 + C‖b̃‖2L2 ,

where ξ is a function between b(1) and b(2). Putting all these estimates into the former inequality and
utilizing the Sobolev embedding theorem, we can then rewrite the inequality as follows:

d
dt

(‖ũ‖2L2 + ‖b̃‖2L2 + ‖∇b̃‖2L2) + ‖∇ũ‖2L2 + ‖∇b̃‖2L2 + ‖∆b̃‖2L2
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≤ C(‖u(2)‖Hs+1 + ‖b(1)‖2Hs+2 + ‖u(1)‖2Hs + ‖b(2)‖4H1 + 1)(‖ũ‖2L2 + ‖b̃‖2L2 + σ‖∇b̃‖2L2).

Note that ∫ t

0
(‖u(2)‖Hs+1 + ‖b(1)‖2Hs+2 + ‖u(1)‖2Hs + ‖b(2)‖4H1 + 1)(τ)dτ ≤ C(t).

Grönwall’s inequality then yields

sup
t>0

(‖ũ(t)‖2L2 + ‖b̃(t)‖2L2 + ‖∇b̃(t)‖2L2) ≤ exp(C(t))
(
‖ũ0‖

2
L2 + ‖b̃0‖

2
L2 + ‖∇b̃0‖

2
L2

)
.

Therefore, one can easily conclude that

ũ = 0, b̃ = 0, ∇b̃ = 0.

Hence the uniqueness of the solution has been proved.

4. Blow-up criteria

In this section, we prove the blow-up criterion of the system in (1.1) by a contradiction argument.
First of all, let T ∗ < ∞ be the maximal existence time of the solution and assume that∫ T ∗

0
(‖∇u‖4L2 + ‖∇2b‖

4
L2)dτ < +∞. (4.1)

Taking the L2 inner product of (1.1)1 with −∆u, which, along with Hölder’s and the Gagliardo-
Nirenberg inequality, yields

1
2

d
dt
‖∇u‖2L2 + ‖∆u‖2L2 ≤ |

∫
R3

(
u · ∇u · ∆u + σ∇b∆b · ∆u

)
dx|

≤ ‖∇u‖
3
2
L2‖∇

2u‖
3
2
L2 + σ‖∇2b‖

3
2
L2‖∇

3b‖
1
2
L2‖∇

2u‖L2

≤
1
4
‖∇2u‖2L2 +

σ

4ν
‖∇3b‖2L2 + C‖∇u‖6L2 + C‖∇2b‖6L2 ,

Next, by applying the Laplace operator ∆ to (1.1)2 and multiplying the resulting expression by ∆b, and
then integrating the resulting expression over R3, we obtain

1
2

d
dt
‖∆b‖2L2 +

σ

ν
‖∇3b‖2L2 = −

∫
R3

[∆(u · ∇b) · ∆b +
1
ν

∆e′ · ∆b]dx

= −

∫
R3

(∆u · ∇b · ∆b + u · ∇∆b · ∆b + 2∇u · ∇2b · ∆b −
1
ν
∇e′∇3b)dx.

As we computed in the previous example, each term on the right-hand side of the inequality can also
be estimated as follows:

−

∫
R3

∆u · ∇b · ∆bdx ≤ 2‖∇2u‖L2‖∇2b‖
3
2
L2‖∇

3b‖
1
2
L2 ≤

σ

8ν
‖∇3b‖2L2 +

1
4
‖∇2u‖2L2 + C‖∇2b‖6L2 ,
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−

∫
R3

u · ∇∆b · ∆bdx ≤ ‖∇u‖L2‖∇3b‖
3
2
L2‖∇

2b‖
1
2
L2 ≤

σ

8ν
‖∇3b‖2L2 + C‖∇u‖4L2‖∇

2b‖2L2 ,

− 2
∫
R3
∇u · ∇2b · ∆bdx ≤ ‖∇u‖L2‖∇3b‖

3
2
L2‖∇

2b‖
1
2
L2 ≤

σ

8ν
‖∇3b‖2L2 + C‖∇u‖4L2‖∇

2b‖2L2 ,

1
ν

∫
R3
∇e′∇3bdx ≤ C‖∇b‖L2‖∇3b‖L2 ≤

σ

8ν
‖∇3b‖2L2 + C‖∇b‖2L2 .

Hence, it follows from (3.9) and a simple simplification that
d
dt
‖(∇u,∆b)‖2L2 + ‖(∆u,∇3b)‖2L2 . (‖∇u‖4L2 + ‖∇2b‖4L2)(‖∇u‖2L2 + ‖∇2b‖2L2) + 1.

Then, by virtue of Grönwall’s inequality and (4.1), one deduces that

u ∈ L∞(0,T ∗; H1) ∩ L2(0,T ∗; H2), b ∈ L∞(0,T ∗; H2) ∩ L2(0,T ∗; H3). (4.2)

Furthermore, the Sobolev embedding theorem gives

‖u‖L2(L∞) ≤ ‖u‖L2(H2), ‖b‖L∞(L∞) ≤ ‖b‖L∞(H2), ‖∇b‖L2(L∞) ≤ ‖∇b‖L2(H2). (4.3)

Thus, with (4.2) and (4.3), by using the same method as employed in proving Eq (3.13), one eventually
finds that when s > 3

2 ,

‖(u, b,∇b)‖2Hs(T ∗) ≤ ‖(u0, b0,∇b0)‖2Hs exp{
∫ T ∗

0
[J(‖b‖H2) + ‖u‖2H2 + ‖b‖2H2 + ‖∇b‖2H2]dτ}

≤ C. (4.4)

The result implies that the solution can be extended even when t = T ∗, which contradicts the definition
of T ∗. Therefore, we have ∫ T ∗

0
(‖∇u‖4L2 + ‖∇2b‖

4
L2)dτ = +∞. (4.5)

Finally, the converse is readily obvious from (4.4).

5. Global existence

First, for simplicity, we define

E(t) := ‖u(t)‖2Hs + ‖b(t)‖2Hs+1 +

∫ t

0
(‖∇u‖2Hs + ‖b‖2Hs+2(τ)dτ,

E(0) := ‖u0‖
2
Hs + ‖b0‖

2
Hs+1 .

Assuming that the solution (u, b) blows up at T ∗ and T ∗ < ∞, by utilizing the same proof of (3.14),
one can find that when t ∈ [0,T ∗),

E(t) ≤ 2E(0) ≤ 2ε,

then ∫ T ∗

0
(‖∇u‖4L2 + ‖∇2b‖

4
L2)dτ ≤ 4ε2 < +∞.

On the basis of the blow-up criterion we proved in Section 4, we conclude that T ∗ = ∞. Therefore, the
proof of Theorem 1.1 is completed.
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6. Conclusions

In this paper, we studied a streamlined model that shares numerous similarities with the
more complicated viscoelastic rate-type models commonly used in modeling fluids with complex
microstructures. We have proven the blow-up result for this fluid, which implies the global well-
posedness of the 3-D incompressible viscoelastic rate-type fluid system. In other words, this model has
been mathematically proven to be thermodynamically consistent, and the blow-up criteria implies that
these models are capable of describing the long-term behavior of fluids under small initial conditions
and external forces. There are still many issues to explore concerning this equation, such as studying
the stability of the solution or the existence of the smooth solution in the case of variable density, among
others. These results will provide important preliminary insights into the mathematical properties of
those more complex and practically significant models of non-Newtonian fluids used in applications.
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22. J. Chemin, Théorémes d’unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math.,
77 (1999), 27–50. https://doi.org/10.1007/BF02791256

23. J. Chemin, Perfect incompressible fluids, New York: Oxford University Press, 1998.

24. H. Triebel, Theory of function spaces, Basel, Boston, Berlin: Birkhäuser Verlag, 1983.
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