Research article Special Issues

Global unique solutions for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion

  • Received: 07 September 2024 Revised: 13 October 2024 Accepted: 15 October 2024 Published: 21 October 2024
  • MSC : 76A15, 35Q35, 35D30

  • We establish the global unique solution for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion by employing the standard energy method and the standard compactness arguments.

    Citation: Xi Wang, Xueli Ke. Global unique solutions for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion[J]. AIMS Mathematics, 2024, 9(11): 29806-29819. doi: 10.3934/math.20241443

    Related Papers:

  • We establish the global unique solution for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion by employing the standard energy method and the standard compactness arguments.



    加载中


    [1] H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations, Commun. Pure Appl. Math., 64 (2011), 832–881. https://doi.org/10.1002/cpa.20351 doi: 10.1002/cpa.20351
    [2] H. Bahouri, J. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, Berlin Heidelberg, 2011.
    [3] M. Bulí$\breve{\rm{c}}$ek, E. Feireisl, J. Málek, On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665–4681. https://doi.org/10.1088/1361-6544/ab3614 doi: 10.1088/1361-6544/ab3614
    [4] M. Bulí$\breve{\rm{c}}$ek, J. Málek, V. Pru$\breve{\rm{s}}$a, E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Amer. Math. Soc., 710 (2018), 25–51. https://doi.org/10.1090/conm/710/14362 doi: 10.1090/conm/710/14362
    [5] M. Bulí$\breve{\rm{c}}$ek, J. Málek, C. Rodriguez, Global well-posedness for two-dimensional flows of viscoelastic rate-type fluids with stress diffusion, J. Math. Fluid Mech., 24 (2022), 24–61. https://doi.org/10.1007/s00021-022-00696-1 doi: 10.1007/s00021-022-00696-1
    [6] J. Chemin, Perfect incompressible fluids, Oxford University Press, New York, 1998.
    [7] R. Danchin, Local and global well-posedness reuslts for flows of inhomogeneous viscous fluids, Adv. Differ. Equ., 9 (2004), 353–386. https://doi.org/10.57262/ade/1355867948 doi: 10.57262/ade/1355867948
    [8] R. Danchin, The inviscid limit for density-dependent incompressible fluids, Annal. Fac. Sci. Toulouse Math., 15 (2006), 637–688. https://doi.org/10.5802/afst.1133 doi: 10.5802/afst.1133
    [9] R. Danchin, P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Commun. Pur. Appl. Math., 65 (2012), 1458–1480. https://doi.org/10.1002/cpa.21409 doi: 10.1002/cpa.21409
    [10] R. Danchin, P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991–1023. https://doi.org/10.1007/s00205-012-0586-4 doi: 10.1007/s00205-012-0586-4
    [11] G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, J. Funct. Anal., 267 (2014), 1488–1539. https://doi.org/10.1016/j.jfa.2014.06.002 doi: 10.1016/j.jfa.2014.06.002
    [12] H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some sem-linear evolution equations, Math. Z., 242 (2002), 251–278. https://doi.org/10.1007/s002090100332 doi: 10.1007/s002090100332
    [13] A. Majda, A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002.
    [14] P. Marius, P. Zhang, Striated regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity, Commun. Math. Phys., 376 (2020), 385–439. https://doi.org/10.1007/s00220-019-03446-z doi: 10.1007/s00220-019-03446-z
    [15] J. Málek, V. Pru$\breve{\rm{s}}$a, T. Sk$\breve{\rm{r}}$ivan, E. Süli, Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids, 30 (2018), 023101. https://doi.org/10.1063/1.5018172 doi: 10.1063/1.5018172
    [16] G. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co. Inc., 1996. https://doi.org/10.1142/3302
    [17] H. Triebel, Theory of function spaces, Monogr. Math., Birkhäuser Verlag, Basel, Boston, 1983. https://doi.org/10.1007/978-3-0346-0416-1
    [18] C. Wang, Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43–62. https://doi.org/10.1016/j.aim.2011.05.008 doi: 10.1016/j.aim.2011.05.008
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(166) PDF downloads(50) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog