We establish the global unique solution for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion by employing the standard energy method and the standard compactness arguments.
Citation: Xi Wang, Xueli Ke. Global unique solutions for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion[J]. AIMS Mathematics, 2024, 9(11): 29806-29819. doi: 10.3934/math.20241443
We establish the global unique solution for the 2-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion by employing the standard energy method and the standard compactness arguments.
[1] | H. Abidi, G. Gui, P. Zhang, On the decay and stability of global solutions to the 3-D inhomogeneous Navier-Stokes equations, Commun. Pure Appl. Math., 64 (2011), 832–881. https://doi.org/10.1002/cpa.20351 doi: 10.1002/cpa.20351 |
[2] | H. Bahouri, J. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, Berlin Heidelberg, 2011. |
[3] | M. Bulí$\breve{\rm{c}}$ek, E. Feireisl, J. Málek, On a class of compressible viscoelastic rate-type fluids with stress-diffusion, Nonlinearity, 32 (2019), 4665–4681. https://doi.org/10.1088/1361-6544/ab3614 doi: 10.1088/1361-6544/ab3614 |
[4] | M. Bulí$\breve{\rm{c}}$ek, J. Málek, V. Pru$\breve{\rm{s}}$a, E. Süli, PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion, Amer. Math. Soc., 710 (2018), 25–51. https://doi.org/10.1090/conm/710/14362 doi: 10.1090/conm/710/14362 |
[5] | M. Bulí$\breve{\rm{c}}$ek, J. Málek, C. Rodriguez, Global well-posedness for two-dimensional flows of viscoelastic rate-type fluids with stress diffusion, J. Math. Fluid Mech., 24 (2022), 24–61. https://doi.org/10.1007/s00021-022-00696-1 doi: 10.1007/s00021-022-00696-1 |
[6] | J. Chemin, Perfect incompressible fluids, Oxford University Press, New York, 1998. |
[7] | R. Danchin, Local and global well-posedness reuslts for flows of inhomogeneous viscous fluids, Adv. Differ. Equ., 9 (2004), 353–386. https://doi.org/10.57262/ade/1355867948 doi: 10.57262/ade/1355867948 |
[8] | R. Danchin, The inviscid limit for density-dependent incompressible fluids, Annal. Fac. Sci. Toulouse Math., 15 (2006), 637–688. https://doi.org/10.5802/afst.1133 doi: 10.5802/afst.1133 |
[9] | R. Danchin, P. Mucha, A Lagrangian approach for the incompressible Navier-Stokes equations with variable density, Commun. Pur. Appl. Math., 65 (2012), 1458–1480. https://doi.org/10.1002/cpa.21409 doi: 10.1002/cpa.21409 |
[10] | R. Danchin, P. Mucha, Incompressible flows with piecewise constant density, Arch. Ration. Mech. Anal., 207 (2013), 991–1023. https://doi.org/10.1007/s00205-012-0586-4 doi: 10.1007/s00205-012-0586-4 |
[11] | G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity, J. Funct. Anal., 267 (2014), 1488–1539. https://doi.org/10.1016/j.jfa.2014.06.002 doi: 10.1016/j.jfa.2014.06.002 |
[12] | H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some sem-linear evolution equations, Math. Z., 242 (2002), 251–278. https://doi.org/10.1007/s002090100332 doi: 10.1007/s002090100332 |
[13] | A. Majda, A. Bertozzi, Vorticity and incompressible flow, Cambridge University Press, Cambridge, 2002. |
[14] | P. Marius, P. Zhang, Striated regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity, Commun. Math. Phys., 376 (2020), 385–439. https://doi.org/10.1007/s00220-019-03446-z doi: 10.1007/s00220-019-03446-z |
[15] | J. Málek, V. Pru$\breve{\rm{s}}$a, T. Sk$\breve{\rm{r}}$ivan, E. Süli, Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids, 30 (2018), 023101. https://doi.org/10.1063/1.5018172 doi: 10.1063/1.5018172 |
[16] | G. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co. Inc., 1996. https://doi.org/10.1142/3302 |
[17] | H. Triebel, Theory of function spaces, Monogr. Math., Birkhäuser Verlag, Basel, Boston, 1983. https://doi.org/10.1007/978-3-0346-0416-1 |
[18] | C. Wang, Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43–62. https://doi.org/10.1016/j.aim.2011.05.008 doi: 10.1016/j.aim.2011.05.008 |