In this article, using the Fuk-Nagaev type inequality, we studied general strong law of large numbers for weighted sums of $ m $-widely acceptable ($ m $-WA, for short) random variables under sublinear expectation space with the integral condition
$ \hat{\mathbb{E}} \left ( f^-\left ( \left | X \right | \right ) \right ) \le \mathrm{C}_\mathbb{V}\left ( f^-\left ( \left | X \right | \right ) \right )< \infty $
and $ Choquet $ integrals existence, respectively, where
$ f\left ( x \right ) = x^{1/\beta }L\left ( x \right ) $
for $ \beta > 1 $, $ L\left (x \right) > 0 $ $ \left(x > 0\right) $ was a monotonic nondecreasing slowly varying function, and $ f^-\left (x \right) $ was the inverse function of $ f\left(x\right) $. One of the results included the Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large numbers for $ m $-WA random variables under sublinear expectation space. Besides, we obtained almost surely convergence for weighted sums of $ m $-WA random variables under sublinear expectation space. These results improved the corresponding results of Ma and Wu under sublinear expectation space.
Citation: Qingfeng Wu, Xili Tan, Shuang Guo, Peiyu Sun. Strong law of large numbers for weighted sums of $ m $-widely acceptable random variables under sub-linear expectation space[J]. AIMS Mathematics, 2024, 9(11): 29773-29805. doi: 10.3934/math.20241442
In this article, using the Fuk-Nagaev type inequality, we studied general strong law of large numbers for weighted sums of $ m $-widely acceptable ($ m $-WA, for short) random variables under sublinear expectation space with the integral condition
$ \hat{\mathbb{E}} \left ( f^-\left ( \left | X \right | \right ) \right ) \le \mathrm{C}_\mathbb{V}\left ( f^-\left ( \left | X \right | \right ) \right )< \infty $
and $ Choquet $ integrals existence, respectively, where
$ f\left ( x \right ) = x^{1/\beta }L\left ( x \right ) $
for $ \beta > 1 $, $ L\left (x \right) > 0 $ $ \left(x > 0\right) $ was a monotonic nondecreasing slowly varying function, and $ f^-\left (x \right) $ was the inverse function of $ f\left(x\right) $. One of the results included the Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large numbers for $ m $-WA random variables under sublinear expectation space. Besides, we obtained almost surely convergence for weighted sums of $ m $-WA random variables under sublinear expectation space. These results improved the corresponding results of Ma and Wu under sublinear expectation space.
[1] | S. G. Peng, Nonlinear expectations and nonlinear Markov chains, Chinese Ann. Math., 26 (2005), 159–184. https://doi.org/10.1142/S0252959905000154 doi: 10.1142/S0252959905000154 |
[2] | S. G. Peng, $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type, Stoch. Anal. Appl., 2007,541–567. https://doi.org/10.1007/978-3-540-70847-6_25 doi: 10.1007/978-3-540-70847-6_25 |
[3] | S. G. Peng, Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015 |
[4] | S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7 |
[5] | L. X. Zhang, Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations, Acta. Math. Sci., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z |
[6] | L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1 |
[7] | L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2 |
[8] | H. Dong, X. L. Tan, Y. Zhang, Complete convergence and complete integration convergence for weighted sums of arrays of rowwise $m$-END under sub-linear expectations space, AIMS Math., 8 (2023), 6705–6724. https://doi.org/10.3934/math.2023340 doi: 10.3934/math.2023340 |
[9] | S. Guo, Y. Zhang, Central limit theorem for linear processes generated by $m$-dependent random variables under the sub-linear expectation, Commun. Stat., 52 (2023), 6407–6419. https://doi.org/10.1080/03610926.2022.2028840 doi: 10.1080/03610926.2022.2028840 |
[10] | H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1 |
[11] | A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. https://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662 |
[12] | A. Kuczmaszewska, Complete convergence and complete moment convergence for widely negative orthant dependent random variables under the sub-linear expectations, Stochastics, 95 (2023), 1101–1119. https://doi.org/10.1080/17442508.2022.2164695 doi: 10.1080/17442508.2022.2164695 |
[13] | W. Liu, Y. Zhang, Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Commun. Stat., 52 (2023), 5727–5741. https://doi.org/10.1080/03610926.2021.2018462 doi: 10.1080/03610926.2021.2018462 |
[14] | Y. Wu, X. Deng, M. M. Xi, X. J. Wang, Strong convergence theorems under sub-linear expectations and its applications in nonparametric regression models, Commun. Math. Stat., 2023. https://doi.org/10.1007/s40304-023-00344-8 doi: 10.1007/s40304-023-00344-8 |
[15] | F. X. Feng, D. C. Wang, Q. Y. Wu, H. W. Huang, Complete and complete moment convergence for weighted sums of arrays of rowwise negatively dependent random variables under the sub-linear expectations, Commun. Stat., 50 (2021), 594–608. https://doi.org/10.1080/03610926.2019.1639747 doi: 10.1080/03610926.2019.1639747 |
[16] | L. X. Zhang, J. H. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. Probab. Lett., 137 (2018), 269–276. https://doi.org/10.1016/j.spl.2018.01.022 doi: 10.1016/j.spl.2018.01.022 |
[17] | Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0 |
[18] | C. Hu, Weak and strong laws of large numbers for sub-linear expectation, Commun. Stat., 49 (2020), 430–440. https://doi.org/10.1080/03610926.2018.1543771 doi: 10.1080/03610926.2018.1543771 |
[19] | Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053 |
[20] | Y. Wu, X. Deng, X. J. Wang, Capacity inequalities and strong laws for $m$-widely acceptable random variables under sub-linear expectations, J. Math. Anal. Appl., 525 (2023), 127282. https://doi.org/10.1016/j.jmaa.2023.127282 doi: 10.1016/j.jmaa.2023.127282 |
[21] | X. C. Ma, Q. Y. Wu, On some conditions for strong law of large numbers for weighted sums of END random variables under sublinear expectations, Discrete Dyn. Nat. Soc., 2019 (2019), 1–8. https://doi.org/10.1155/2019/7945431 doi: 10.1155/2019/7945431 |
[22] | X. L. Tan, K. L. Zhang, Y. Zhang, T. Z. Liu, Almost sure convergence of weighted sums for sequence of WOD random variables under sublinear expectations, J. Jilin Uni., 60 (2022), 295–302. http://doi.org/10.13413/j.cnki.jdxblxb.2021274 doi: 10.13413/j.cnki.jdxblxb.2021274 |
[23] | Y. Shen, J. Yang, S. H. Hu, On strong law of large numbers and growth rate for a class of random variables, J. Inequal. Appl., 2013 (2013), 563. https://doi.org/10.1186/1029-242X-2013-563 doi: 10.1186/1029-242X-2013-563 |
[24] | E. Seneta, Regularly varying functions, Springer, 2006. |
[25] | Z. J. Chen, P. Y. Wu, M. B. Li, A strong law of large numbers for non-additive probabilities, Int. J. Approx. Reason., 54 (2013), 365–377. https://doi.org/10.1016/j.ijar.2012.06.002 doi: 10.1016/j.ijar.2012.06.002 |
[26] | M. Loève, Elementary probability theory, Springer, 1977. https://doi.org/10.1007/978-1-4684-9464-8_1 |
[27] | X. C. Ma, Q. Y. Wu, Limiting behavior of weighted sums of extended negatively dependent random variables under sublinear expectations, Adv. Math., 49 (2020), 497–511. |
[28] | A. Linero, A. Rosalsky, On the Toeplitz lemma, convergence in probability, and mean convergence, Stoch. Anal. Appl., 31 (2013), 684–694. https://doi.org/10.1080/07362994.2013.799406 doi: 10.1080/07362994.2013.799406 |
[29] | N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge University Press, 1989. |