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Abstract: In this article, using the Fuk-Nagaev type inequality, we studied general strong law of
large numbers for weighted sums of m-widely acceptable (m-WA, for short) random variables under
sublinear expectation space with the integral condition

Ê
(
f − (|X|)

)
≤ CV

(
f − (|X|)

)
< ∞

and Choquet integrals existence, respectively, where

f (x) = x1/βL (x)

for β > 1, L (x) > 0 (x > 0) was a monotonic nondecreasing slowly varying function, and f − (x) was the
inverse function of f (x). One of the results included the Kolmogorov-type strong law of large numbers
and the partial Marcinkiewicz-type strong law of large numbers for m-WA random variables under
sublinear expectation space. Besides, we obtained almost surely convergence for weighted sums of
m-WA random variables under sublinear expectation space. These results improved the corresponding
results of Ma and Wu under sublinear expectation space.
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1. Introduction

Probability limit theories are widely used in various fields of life, including statistics, finance,
medicine, engineering, etc. When the mathematical model is definite, classical probability limit
theories offer a convenient way to solve problems. However, in a practical situation, some phenomena
exist in uncertainty, such as risk measure, super-hedging in finance, and assets pricing, which cannot

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241442


29774

be settled by classical probability limit theories. In other words, linear additivity cannot be satisfied.
Therefore, to solve the limitation of the phenomena, Peng [1–3] introduced the concept of sublinear
expectation and established the sublinear expectation space as an extension for classical probability
limit theory. Due to the fact that classical probability space tools may not be directly applied in
sublinear expectation space, Peng [4] introduced several concepts in sublinear expectation space, such
as identical distribution, independence, maximum distribution, G-normal distribution, and so on.
Furthermore, the theory of sublinear expectation space can be found in Peng’s [1–4]. In recent years,
numerous scholars have dedicated themselves to the theoretical research of sublinear expectation
space. Zhang [5–7] obtained a series of major inequalities under sublinear expectation space. Dong
and Tan [8] got complete convergence and complete integration convergence for arrays of row-wise
m-extended negatively dependent (m-END) under sublinear expectation space. Guo and Zhang [9]
studied the central limit theorem of m-dependent random variables under sublinear expectation space.
In addition, we can read Zhong and Wu [10], Anna [11, 12], Liu and Zhang [13], Wu et al. [14], Feng
et al. [15], and so on.

The strong law of large numbers is one of the important theorems in probability limit theories.
In practical applications, especially in statistical inference and data analysis, the strong law of large
numbers makes us believe that the sample mean can be used as an estimate of the population mean.
Let {Xi, i ≥ 1} be a sequence of random variables in the probability space, and let {an, n ≥ 1} and
{bn, n ≥ 1} be sequences of constants with

0 < bn ↑ ∞.

The sequence {Xi, i ≥ 1} has a finite expectation EXi. Then, {aiXi, i ≥ 1} is said to obey the general
strong law of large numbers with constant {bn, n ≥ 1} if

1
bn

n∑
i=1

ai (Xi − EXi)→ 0 almost surely (a.s.) P (1.1)

holds. If
bn = n, an = 1,

it is the Kolmogorov-type strong law of large numbers. If

bn = n1/r, an = 1, r > 0,

it is the Marcinkiewicz-type strong law of large numbers. When

bn =

n∑
i=1

ai,

the fundamental result is obtained for the strong law of large numbers. In recent years, many results
of the strong law of large numbers have been obtained in sublinear expectation space. Zhang and
Lin [5,16] established the Kolmogorov and Marcinkiewicz strong law of large numbers of independent
and identical random variables under sublinear expectation space with the condition

lim
c→∞
Ê

[
(|X1| − c)+

]
= 0.
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Chen [17] studied strong law of the large number of independent and identical random variables under
sublinear expectation space with the condition

Ê |X1|
1+α < ∞

for some α ∈ (0, 1]. Hu [18] obtained weak and strong laws of large numbers of independent random
variables under sublinear expectation space with the condition

lim
n→∞

sup
m≥1
Ê [|Xm| I (|Xm| > n)] = 0.

Moreover, we can refer to Jiang and Wu [19], Wu and Deng [20], Ma and Wu [21], Tan et al. [22], and
so on.

Recently, Wu et al. [20] obtained capacity inequalities and strong laws for m-WA (m-widely
acceptable) random variables under sublinear expectation space. Ma and Wu [21] established strong
law of large numbers for weighted sums of END random variables on some conditions under
sublinear expectation space, which was inspired by Shen et al. [23]. Therefore, the goal of this article
is to establish strong law of large numbers and almost surely convergence for weighted sums of
m-WA random variables under sublinear expectation space. These results improve the corresponding
results of Ma and Wu [21] under the sublinear expectation space. In addition, the main structure of
this article is as follows. In the Section 2, we introduce some basic definitions and main lemmas to
provide tools for proofs of main results. In the Section 3, we give the main results for strong law of
large numbers and the almost surely convergence of m-WA random variables under sublinear
expectation space with the condition

Ê
(
f − (|X|)

)
≤ CV

(
f − (|X|)

)
< ∞

and Choquet integrals existence. In the Section 4, corresponding proofs of main results are provided.

2. Preliminaries

We use the framework and notions of Peng [1–4]. Let (Ω, F ) be a given measurable space. H was
a linear space of real functions defined on (Ω,F ) such that if X1, X2, · · · , Xn ∈ H , then
φ (X1, X2, · · · , Xn) ∈ H for each φ ∈ Cl,Lip (Rn), where Cl,Lip (Rn) denotes the linear space of local
Lipschitz functions φ satisfying

|φ (x) − φ (y)| ≤ c (1 + |x|m + |y|m) |x − y| , ∀x, y ∈ Rn,

for some c > 0 and m ∈ N depending on φ. Therefore, H can be a space of random variables. In this
case we denote X ∈ H . We also define Cb,Lip (Rn) as the linear space bounded Lipschitz continuous
functions φ fulfilling

|φ (x) − φ (y)| ≤ c |x − y| , ∀x, y ∈ Rn

for some c > 0.

Definition 2.1. [4] A sublinear expectation Ê is a function Ê on

H : H → R̄ := [−∞,+∞]
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satisfying the following conditions: for all X,Y ∈ H ,
(1) Monotonicity: Ê (X) ≥ Ê (Y) if X ≥ Y;
(2) Constant preserving: Ê (c) = c for c ∈ R;
(3) Sub-additivity: Ê (X + Y) ≤ Ê (X)+ Ê (Y), whenever Ê (X)+ Ê (Y) is not of the form +∞−∞ or

−∞ +∞;
(4) Positive homogeneity: Ê (λX) = λÊ (X), ∀λ ≥ 0.

The triple
(
Ω, H , Ê

)
is called a sublinear expectation space.

For a given a sublinear Ê, let’s define a conjugate expectation ε̂ of Ê by

ε̂ (X) := −Ê (−X) , ∀X ∈ H .

From the definition, it is easily obtained that for all X,Y ∈ H ,

ε̂ (X) ≤ Ê (X) , Ê (X + c) = Ê (X) + c,
∣∣∣Ê (X − Y)

∣∣∣ ≤ Ê |X − Y | , Ê (X − Y) ≥ Ê (X) − Ê (Y) .

Definition 2.2. [5] Let G ⊂ F . A function V: G → [0, 1] is called a capacity satisfying
(a) V (∅) = 0, V (Ω) = 1;
(b) V (A) ≤ V (B), ∀A ⊆ B, A, B ∈ G.

It is called to be sub-additive if

V (A ∪ B) ≤ V (A) + V (B)

for all A, B ∈ G with
A ∪ B ∈ G.

Let
(
Ω, H , Ê

)
be a sublinear expectation space and ε̂ be a conjugate expectation of Ê. We define a

pair (V, V) of capacities by

V (A) := inf
{
Ê (ξ) : IA ≤ ξ, ξ ∈ H

}
, V (A) = 1 − V (Ac) , ∀A ∈ F ,

where Ac is the complement set of A. From the above definition,

Ê ( f ) ≤ V (A) ≤ Ê (g) , ε̂ ( f ) ≤ V (A) ≤ ε̂ (g) , i f f ≤ I (A) ≤ g, f , g ∈ H .

For all X ∈ H , p > 0, and x > 0,

I (|X| > x) ≤
|X|p

xp I (|X| > x) ≤
|X|p

xp ,

and we can get the Markov inequality:

V (|X| ≥ x) ≤
Ê |X|p

xp , p > 0, x > 0.

Definition 2.3. [5] The Choquet integral/expectation (CV, CV) is defined by

CV (X) =
∫

XdV =
∫ 0

−∞

(V (X ≥ t) − 1) dt +
∫ ∞

0
V (X ≥ t) dt, ∀ X ∈ H ,
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where V is replaced by V andV, respectively.

Definition 2.4. [19] (i) A sublinear expectation Ê: H → R is called to be countably sub-additive if it
satisfies

Ê (X) ≤
∞∑

i=1

Ê (Xi) ,

whenever

X ≤
∞∑

i=1

Xi,

X, Xi ∈ H and X ≥ 0, Xi ≥ 0, i ≥ 1.
(ii) A function V: F → [0, 1] is called to be countably sub-additive if

V

 ∞⋃
i=1

Ai

 ≤ ∞∑
i=1

V (Ai) , ∀Ai ∈ F .

Definition 2.5. [19] A sequence of random variables {Xi, i ≥ 1} is called to converge to X a.s. V defined
by Xi → X a.s. V as i→ ∞, if

V (Xi ↛ X) = 0.

Further, by
V (A) + V (Ac) = 1

for any A ∈ F ,
Xi → X a.s. V⇐⇒V (Xi → X) = 1.

Definition 2.6. [20] Suppose {Xi, i ≥ 1} is a sequence of random variables in sublinear expectation
space

(
Ω, H , Ê

)
. {Xi, i ≥ 1} is called to be WA if there exists a positive sequence {g (n) , n ≥ 1}

dominating coefficients such that for each n ≥ 1,

Ê

exp

 n∑
i=1

aniφi (Xi)

 ≤ g (n)
n∏

i=1

Ê
[
exp (aniφi (Xi))

]
,

where {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of nonnegative constants and

φi (·) ∈ Cb,Lip (R) , i ≥ 1

are all nondecreasing (resp., all nonincreasing) real-valued truncation functions.

Definition 2.7. [20] Let m ≥ 1 be a fixed integer. A sequence of random variables {Xi, i ≥ 1} is said to
be m-WA if for any i ≥ 2 and any n1, n2, n3, · · · , ni satisfying∣∣∣nk − n j

∣∣∣ ≥ m

for all 1 ≤ k , j ≤ i, we have that Xn1 , Xn2 , · · · , Xni are WA.

Remark 2.1. It is easily seen that m-WA random variables are a natural extension of WA random
variables. It follows by the definition of m-WA random variables that sequences

{X1, X1+m, X1+2m, · · · } , {X2, X2+m, X2+2m, · · · } , · · · , {Xm, X2m, X3m, · · · }
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are WA and m-WA is WA if m = 1. m-WA random variables include negatively dependent (ND)
random variables, END random variables, widely negative orthant dependent (WOD) random
variables, m-END random variables, m-WOD random variables, etc. Thus, it is meaningful to
research probability limit theories for m-WA random variables.

Definition 2.8. [24] A function L (x): (0, ∞) → (0, ∞) is called a slowly varying function, if for any
λ > 0,

lim
x→∞

L (λx)
L (x)

= 1.

In this paper, the symbol c stands for a positive constant which may not be the same in various
places. Let C be a concrete positive constant. I (A) is the indicator function of the event A. an = O (bn)
means there exists a constant c > 0 such that an ≤ cbn for all n ≥ 1. an ≪ bn means that there exists a
constant c > 0 such that an ≤ cbn for sufficiently large n. The symbol #A is on behalf of the number of
elements in set A.

Lemma 2.1. [20] Let {Xi, i ≥ 1} be a sequence of m-WA random variables with dominating coefficients
{g (n) , n ≥ 1} in sublinear expectation space

(
Ω, H , Ê

)
. If {φi (·) , i ≥ 1} ∈ Cb,Lip (R) are all non-

decreasing (resp., all nonincreasing), then the sequence {φi (Xi) , i ≥ 1} is still m-WA random variables
with dominating coefficients {g (n) , n ≥ 1}.

Lemma 2.2. [25] (Borel-Cantelli’s lemma) Let {An, n ≥ 1} be a sequence of events in F . Suppose that
V is a countably sub-additive capacity. If

∞∑
n=1

V (An) < ∞,

then
V (An, i.o.) = 0,

where

{An, i.o.} =
∞⋂

n=1

∞⋃
i=n

Ai.

Lemma 2.3. (1) Cr inequality [3]: Let X1, X2, · · · , Xn ∈ H for n ≥ 1, then

Ê |X1 + X2 + · · · + Xn|
r
≤ Cr

[
Ê |X1|

r + Ê |X2|
r + · · · + Ê |Xn|

r
]
,

where

Cr =

{
1, 0 < r ≤ 1,
nr−1, r > 1.

(2) Jensen inequality [25]: Let f (·) be a convex function on R. Assume that Ê (X) and Ê ( f (X)) exist.
Then,

Ê
[
f (X)

]
≥ f

(
Ê (X)

)
.

(3) [15] For all X ∈ H and 0 < r < s, (
Ê |X|r

)1/r
≤

(
Ê |X|s

)1/s
.
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Lemma 2.4. [14] For any X, Y ∈ H , it holds that∣∣∣Ê (X) − Ê (Y)
∣∣∣ ≤ Ê |X − Y | .

Lemma 2.5. [26] (Toeplitz lemma) Let kn be a positive number and {ank, 1 ≤ k ≤ kn, n ≥ 1} be an array
of real numbers fulfilling for any k ≥ 1,

lim
n→∞

ank = 0

and

sup
n≥1

kn∑
k=1

|ank| < ∞.

Let {xn, n ≥ 1} be a sequence of real numbers. If

lim
n→∞

xn = 0,

then,

lim
n→∞

kn∑
k=1

ankxk = 0.

Lemma 2.6. [24] A function L (x): (0, ∞)→ (0, ∞) is a slowly varying function, then for η > 0,

lim
x→∞

xηL (x) = ∞, lim
x→∞

x−ηL (x) = 0.

Lemma 2.7. [27] Assume that X ∈ H and

f (x) = x1/βL (x) , 0 < β < ∞,

and L (x) is a slowly varying function. Then, for any c > 0,

CV
(

f − (|X|) c−β
)
< ∞ ⇐⇒

∞∑
n=1

V
(
|X| > cn1/βL (n)

)
< ∞,

where f − (x) is the inverse function of f (x).

Lemma 2.8. [20] (Fuk-Nagaev type inequality) Let {Xi, i ≥ 1} be a sequence of m-WA random
variables in

(
Ω, H , Ê

)
with

Ê [Xi] ≤ 0

for i ≥ 1. Then, for all x > 0 and d > 0,

V

 n∑
i=1

Xi > x

 ≤ mV
(
max
1≤i≤n

Xi >
d
m

)
+ mg (n) exp

{
x
d
−

x
d

ln
(
1 +

xd/m2∑n
i=1Ê |Xi|

2

)}
.

Lemma 2.9. [28] (Kronecker lemma) Let {xn, n ≥ 1} and {bn, n ≥ 1} be sequences of real numbers with

0 < bn ↑ ∞. If the series
∞∑

n=1

xn

bn
converges, then

lim
n→∞

1
bn

n∑
i=1

xi = 0.
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3. Main results

Theorem 3.1. Assume that
1 < β < α, 1 ≤ s < 2,

1
s
=

1
α
+

1
β
,

and V is countably sub-additive. Let {Xi, i ≥ 1} be a sequence of m-WA random variables dominated
by

g (n) = O
(
nθ

)
(0 ≤ θ <

2
α
− 1)

in
(
Ω, H , Ê

)
. Suppose that

f (x) = x1/βL (x) ,

where L (x) > 0 (x > 0) is a monotonic nondecreasing slowly varying function, and f − (x) is the inverse
function of f (x). Further, there exist a random variable X and a constant C satisfying that

Ê
[
ψ (Xi)

]
≤ CÊ

[
ψ (X)

]
, ∀ i ≥ 1, 0 ≤ ψ ∈ Cl,Lip (R) (3.1)

and

Ê
[
f − (|X|)

]
≤ CV

[
f − (|X|)

]
< ∞. (3.2)

Let {ai, i ≥ 1} and {bi, i ≥ 1} be sequences of positive numbers with ai ↑, bi ↑ ∞, and the following
two conditions hold:

n∑
i=1

ai = O (bn) , (3.3)

an

bn
= O

(
n−1/s

)
. (3.4)

Then,

lim sup
n→∞

b−1
n (L (n))−1

n∑
i=1

ai

(
Xi − Ê (Xi)

)
≤ 0, a.s. V (3.5)

and

lim inf
n→∞

b−1
n (L (n))−1

n∑
i=1

ai (Xi − ε̂ (Xi)) ≥ 0, a.s. V. (3.6)

Furthermore, if
Ê (Xi) = ε̂ (Xi) ,

we have

lim
n→∞

b−1
n (L (n))−1

n∑
i=1

ai

(
Xi − Ê (Xi)

)
= 0, a.s. V. (3.7)
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Theorem 3.2. Let {Xi, i ≥ 1} be a sequence of m-WA random variables dominated by

g (n) = O
(
nθ

)
(0 ≤ θ < 1)

in
(
Ω, H , Ê

)
. Assume that

1 < γ ≤ γ + θ < 2,

Ê and V are countably sub-additive,
h (x) = x1/γL (x) ,

where L (x) > 0 (x > 0) is a monotonic nondecreasing slowly varying function, and h− (x) is the inverse
function of h (x). There exist a random variable X and a constant C satisfying (3.1). For any c > 0,

∞∑
n=1

nθ/γV
(
|X| > cn1/γL (n)

)
< ∞, (3.8)

and CV (h− (|X|)) exists. Suppose that {ai, i ≥ 1} and {bi, i ≥ 1} are sequences of positive numbers with
bi ↑ ∞ and

cn = bn/an ↑ ∞

fulfilling that
∞∑

n=i

b−2
n nθ (L (cn))−2

≪ b−2
i cθi (L (ci))−2

for sufficiently large i. Note that

T (n) = # {i, ci ≤ n} ≪ nγ, n ≥ 1. (3.9)

Then

lim sup
n→∞

b−1
n (L (cn))−1

n∑
i=1

ai

(
Xi − Ê (Xi)

)
≤ 0, a.s. V (3.10)

and

lim inf
n→∞

b−1
n (L (cn))−1

n∑
i=1

ai (Xi − ε̂ (Xi)) ≥ 0, a.s. V. (3.11)

Furthermore, if
Ê (Xi) = ε̂ (Xi) ,

we have

lim
n→∞

b−1
n (L (cn))−1

n∑
i=1

ai

(
Xi − Ê (Xi)

)
= 0, a.s. V. (3.12)

Taking L(x) = 1, an = 1, bn = ns for s = 1 in Theorem 3.1, we get the Kolmogorov-type strong law
of large numbers.

AIMS Mathematics Volume 9, Issue 11, 29773–29805.
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Corollary 3.1. Assume that the conditions of Theorem 3.1 hold and

Ê (Xi) = ε̂ (Xi) ,

then

lim
n→∞

n−1
n∑

i=1

(
Xi − Ê (Xi)

)
= 0, a.s. V.

Besides, taking L(x) = 1, an = 1, bn = ns for 1 < s < 2 in Theorem 3.1, we obtain the partial
Marcinkiewicz-type strong law of large numbers.

Corollary 3.2. Assume that the conditions of Theorem 3.1 hold and

Ê (Xi) = ε̂ (Xi) ,

then

lim
n→∞

n−s
n∑

i=1

(
Xi − Ê (Xi)

)
= 0, a.s. V.

Taking L(x) = 1, an = 1, bn = en in Theorem 3.2, we have

cn = en ↑ ∞.

By
ci = ei ≤ n,

we can get
i ≤ ln n ≪ n.

Thus,
T (n) ≪ n ≪ nγ

for 1 < γ < 2, which satisfies the condition of (3.9). By 0 ≤ θ < 1 and n ≪ en, we get

∞∑
n=i

b−2
n nθ =

∞∑
n=i

e−2nnθ ≪
∞∑

n=i

e−2nenθ

=

∞∑
n=i

e−(2−θ)n ≪ e−(2−θ)i

= e−2i · eiθ

= b−2
i cθi .

Therefore, the above conditions satisfy Theorem 3.2. So, we obtain Corollary 3.3.

Corollary 3.3. Assume that the conditions of Theorem 3.2 hold and

Ê (Xi) = ε̂ (Xi) ,

then

lim
n→∞

e−n
n∑

i=1

(
Xi − Ê (Xi)

)
= 0, a.s. V.
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Remark 3.1. Theorems 3.1 and 3.2 extend the results of Ma and Wu [21] from END random variables
to m-WA random variables under sublinear expectation space. The dominating coefficient of END
random variables is a constant K ≥ 1, but the dominating coefficients of m-WA random variables is a
positive sequence {g (n) , n ≥ 1}. Thus, {g (n) , n ≥ 1} has brought us the main technical difficulties of
the proofs.

Remark 3.2. Besides, in sublinear expectation space, Ma and Wu [21] studied strong law of large
numbers for weighted sums of END random variables under sublinear expectations with the condition

Ê
(
|X|β

)
≤ CV

(
|X|β

)
< ∞, β > 1

and
CV (|X|r) < ∞, 1 < r < 2.

Thus, we introduce the slowly varying function, making our results better than the results of Ma and
Wu [21] and our conditions weaker than those in [21]. In particular, taking θ = 0 and L(x) = 1 in
Theorem 3.1 and Theorem 3.2, we conclude that these results are almost identical to the results of Ma
and Wu [21].

Remark 3.3. From Corollaries 3.1 and 3.2, Theorem 3.1 consists of the Kolmogorov-type strong law
of large numbers and the partial Marcinkiewicz-type strong law of large numbers for m-WA random
variables, which is different from the result of Wu et al. [20]. Theorem 3.2 is the result of almost surely
convergence and Corollary 3.3 is the application of Theorem 3.2.

Remark 3.4. In Theorems 3.1 and 3.2, we assume thatV is countably sub-additive. IfV isn’t countably
sub-additive, we can define an outer capacity V∗ as in Zhang [7] by

V∗ (A) = inf

 ∞∑
n=1

V (An) : A ⊂
∞⋃

n=1

An

 , V∗ (A) = 1 − V∗ (Ac) , A ∈ F .

ThenV∗ (A) is countably sub-additive with

V∗ (A) ≤ V (A) .

Therefore, we can get the corresponding strong law of large numbers with respect toV∗.

4. The proof of theorems

Proof of Theorem 3.1. It is easily seen that

CV
(
f − (|X|)

)
< ∞

is equivalent to
CV

(
f − (|X|) c−β

)
< ∞

from Definition 2.3. So, for any c > 0, according to Lemma 2.7, we get

∞∑
n=1

V
(
|X| > cn1/βL (n)

)
< ∞. (4.1)
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We notice that
∞∑

n=1

V
(
|X| > cn1/βL (n)

)
=

∞∑
j=1

∑
2 j−1≤n<2 j

V
(
|X| > cn1/βL (n)

)
≥

∞∑
j=1

∑
2 j−1≤n<2 j

V
(
|X| > c2 j/βL

(
2 j

))
≥

∞∑
j=1

(
2 j − 2 j−1

)
V

(
|X| > c2 j/βL

(
2 j

))
≥ 2−1

∞∑
j=1

2 jV
(
|X| > c2 j/βL

(
2 j

))
,

which implies that

∞∑
j=1

2 jV
(
|X| > c2 j/βL

(
2 j

))
< ∞. (4.2)

For a sequence of m-WA random variables, to ensure that the truncated random variables are also a
sequence of m-WA random variables, we choose the function as follows:

la (x) = −aI (x < −a) + xI (|x| ≤ a) + aI (x > a)

for any a > 0. This truncated function la (x) belongs to Cb,Lip (R) and is nondecreasing. So, by
Lemma 2.1, for fixed n ≥ 1 and each 1 ≤ i ≤ n,

Yni := −n1/βL (n) I
(
Xi < −n1/βL (n)

)
+ XiI

(
|Xi| ≤ n1/βL (n)

)
+ n1/βL (n) I

(
Xi > n1/βL (n)

)
,

Zni := Xi − Yni =
(
Xi + n1/βL (n)

)
I
(
Xi < −n1/βL (n)

)
+

(
Xi − n1/βL (n)

)
I
(
Xi > n1/βL (n)

)
.

(4.3)

Then, {Yni, n ≥ 1, 1 ≤ i ≤ n} is also a sequence of m-WA random variables. It is easy to obtain that

b−1
n (L (n))−1

n∑
i=1

ai

(
Xi − Ê (Xi)

)
=b−1

n (L (n))−1
n∑

i=1

aiZni + b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
+ b−1

n (L (n))−1
n∑

i=1

ai

(
Ê (Yni) − Ê (Xi)

)
=J1 + J2 + J3.

In order to prove the Eq (3.5), it suffices to verify that

lim sup
n→∞

J1 ≤ 0 a.s. V, lim sup
n→∞

J2 = 0 a.s. V (4.4)

and

lim
n→∞

J3 = 0. (4.5)
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In classical probability space (Ω, F , P), we know that the equation

P (A) = E (IA)

was established for A ∈ F . However, in the sublinear expected space
(
Ω, H , Ê

)
, to ensure continuity,

we need to adjust the indicator function through the function in Cl,Lip (R). So, we define the function
as follows. For 0 < µ < 1, ḡ (x) is an even function and ḡ (x) ∈ Cl,Lip (R) fulfilling

0 ≤ ḡ (x) ≤ 1

for all x. ḡ (x) = 1 if |x| < µ; ḡ (x) = 0 if |x| > 1, and ḡ (x) is nonincreasing as x > 0. Then,

I (|x| ≤ µ) ≤ ḡ (|x|) ≤ I (|x| ≤ 1) ,
I (|x| > 1) ≤ 1 − ḡ (|x|) ≤ I (|x| > µ) .

(4.6)

By (3.1), (4.1), (4.3), and (4.6), we get

∞∑
n=1

V (Zni , 0) ≤
∞∑

n=1

V
(
|Xi| > n1/βL (n)

)
≤

∞∑
n=1

Ê

(
1 − ḡ

(
|Xi|

n1/βL (n)

))
≤ C

∞∑
n=1

Ê

(
1 − ḡ

(
|X|

n1/βL (n)

))
≤ C

∞∑
n=1

V
(
|X| > µn1/βL (n)

)
< ∞.

(4.7)

Then, by (4.7), Lemma 2.2, and V being countably sub-additive, we obtain

V (Zni , 0, i.o.) = 0.

Since (3.4), ai ↑, and L (x) is a nondecreasing function, we obtain

|J1| ≤ b−1
n (L (n))−1 max

1≤i≤n
ai

n∑
i=1

|Zni|

≤ b−1
n (L (n))−1 an

n∑
i=1

|Zni|

≤ cn−1/s (L (n))−1
n∑

i=1

|Zni| → 0, a.s. V.

Hence,
lim sup

n→∞
J1 ≤ 0 a.s. V
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has been proved, and we will turn to prove (4.5).

Because f (x) (x > 0) is a regularly varying function with an exponent of 1/β, f − (x) is a regularly
varying function with an exponent of β from Bingham et al. [29, Theorem 1.5.12]. Thus, by (3.2) and
Lemma 2.3 (3),

Ê
(
f − (|X|)

)
< ∞

implies

Ê |X|δ < ∞, ∀ δ ∈ (0, β) . (4.8)

We choose
η = 1/β > 0

in Lemma 2.6, then we have n1/βL (n)→ ∞ as n→ ∞. We take δ ∈ (1, β). By (3.1), (4.3), (4.6), (4.8),
Lemma 2.4, and 1 − δ < 0, and we have∣∣∣Ê (Yni) − Ê (Xi)

∣∣∣ ≤Ê |Yni − Xi|

≤Ê
[∣∣∣−n1/βL (n) − Xi

∣∣∣ I
(
Xi < −n1/βL (n)

)
+

∣∣∣n1/βL (n) − Xi

∣∣∣ I
(
Xi > n1/βL (n)

)]
≪Ê

[
|Xi|

(
1 − ḡ

(
|Xi|

n1/βL (n)

))]
≤CÊ

[
|X|

(
1 − ḡ

(
|X|

n1/βL (n)

))]
=CÊ

[
|X|δ |X|1−δ

(
1 − ḡ

(
|X|

n1/βL (n)

))]
≤Cµ1−δn(1−δ)/β (L (n))1−δ Ê |X|δ → 0, n→ ∞. (4.9)

According to bn ↑ ∞ and the fact that L (n) is nondecreasing, for fixed ai, we get

lim
n→∞

b−1
n (L (n))−1 ai = 0.

By (3.3),

sup
n≥1

bn
−1 (L (n))−1

n∑
i=1

ai ≤ (L (1))−1 sup
n≥1

bn
−1

n∑
i=1

ai ≤ c < ∞. (4.10)

Then, by (4.9), (4.10), and Lemma 2.5, the Eq (4.5) is proved.
Finally, we will turn to prove

lim sup
n→∞

J2 = 0 a.s. V.

We notice that {Yni, n ≥ 1, 1 ≤ i ≤ n} is a sequence of m-WA random variables, then by Lemma 2.1,{
ai

(
Yni − Ê (Yni)

)
, n ≥ 1, 1 ≤ i ≤ n

}
is still a sequence of m-WA random variables and

Ê
[
ai

(
Yni − Ê (Yni)

)]
= 0,

which satisfies the requirements of Lemma 2.8. For every ε > 0, we take

x = d = bnL (n) ε
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in Lemma 2.8. By using the Markov inequality, V being countably sub-additive, and Lemma 2.3 (1)
and (2), we get

V

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
> ε


≤ mV

[
max
1≤i≤n

ai

(
Yni − Ê (Yni)

)
>

bnL (n) · ε
m

]
+ mg (n) exp


1 − ln

1 +
ε2 · b2

n (L (n))2 /m2

n∑
i=1

a2
i Ê

∣∣∣Yni − Ê (Yni)
∣∣∣2



≤ m

n∑
i=1

V

[∣∣∣∣ai

(
Yni − Ê (Yni)

)∣∣∣∣ > bnL (n) · ε
m

]
+ mg (n) · e ·

1 +
ε2 · b2

n (L (n))2 /m2

n∑
i=1

a2
i Ê

∣∣∣Yni − Ê (Yni)
∣∣∣2

−1

≤ m
n∑

i=1

V

[∣∣∣∣ai

(
Yni − Ê (Yni)

)∣∣∣∣ > bnL (n) · ε
m

]
+ mg (n) · e ·

(
ε2b2

n (L (n))2

m2

)−1 n∑
i=1

a2
i Ê

∣∣∣Yni − Ê (Yni)
∣∣∣2

≤ m
(
εbnL (n)

m

)−α n∑
i=1

aαi Ê
∣∣∣Yni − Ê (Yni)

∣∣∣α + mg (n) · e ·
(
ε2b2

n (L (n))2

m2

)−1 n∑
i=1

a2
i Ê

∣∣∣Yni − Ê (Yni)
∣∣∣2

≪ (bnL (n))−α
n∑

i=1

aαi Ê
∣∣∣Yni − Ê (Yni)

∣∣∣α + g (n) (bnL (n))−2
n∑

i=1

a2
i Ê

∣∣∣Yni − Ê (Yni)
∣∣∣2

≪ (bnL (n))−α
n∑

i=1

aαi Ê |Yni|
α + g (n) (bnL (n))−2

n∑
i=1

a2
i Ê |Yni|

2 .

(4.11)

Thus, by (4.11) and g (n) = O
(
nθ

)
,

∞∑
n=1

V

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
> ε


≪

∞∑
n=1

(bnL (n))−α
n∑

i=1

aαi Ê |Yni|
α +

∞∑
n=1

nθ (bnL (n))−2
n∑

i=1

a2
i Ê |Yni|

2

= J21 + J22.

In order to prove J21 < ∞, we need to structure an even function, which is similar to (4.6). Let

ḡ j (x) ∈ Cl.Lip (R) , j ≥ 1

satisfying
0 ≤ ḡ j (x) ≤ 1

for all x ∈ R, and if

2( j−1)/βL
(
2 j−1

)
< |x| ≤ 2 j/βL

(
2 j

)
, ḡ j

(
x

2 j/βL (2 j)

)
= 1;
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29788

if
|x| ≤ µ2( j−1)/βL

(
2 j−1

)
or

|x| > (1 + µ) 2 j/βL
(
2 j

)
, ḡ j

(
x

2 j/βL (2 j)

)
= 0.

Thus, for every ρ > 0,

ḡ j

(
|X|

2 j/βl (2 j)

)
≤ I

(
µ2( j−1)/βL

(
2 j−1

)
< |X| ≤ (1 + µ) 2 j/βL

(
2 j

))
,

|X|ρ ḡ
(
|X|

2k/βL
(
2k)) ≤ 1 +

k∑
j=1

|X|ρ ḡ j

(
|X|

2 j/βL (2 j)

)
.

(4.12)

For all τ > 0, by (3.1), (4.3), (4.6),

Ê |Yni|
τ
≤ Ê

[
|Xi|

τ I
(
|Xi| ≤ n1/βL (n)

)
+ nτ/β (L (n))τ I

(
|Xi| > n1/βL (n)

)]
≤ Ê

[
|Xi|

τ ḡ
(
µ |Xi|

n1/βL (n)

)]
+ nτ/β (L (n))τ Ê

(
1 − ḡ

(
|Xi|

n1/βL (n)

))
≤ CÊ

[
|X|τ ḡ

(
µ |X|

n1/βL (n)

)]
+ Cnτ/β (L (n))τ Ê

(
1 − ḡ

(
|X|

n1/βL (n)

))
≤ CÊ

[
|X|τ ḡ

(
µ |X|

n1/βL (n)

)]
+ Cnτ/β (L (n))τV

(
|X| > µn1/βL (n)

)
.

(4.13)

Thus, for all α > 1, since (3.4), (4.1), (4.13), ai ↑, and

1
s
=

1
α
+

1
β
,

then,

J21 ≤

∞∑
n=1

b−αn (L (n))−α max
1≤i≤n

aαi
n∑

i=1

Ê |Yni|
α

≤

∞∑
n=1

b−αn aαn (L (n))−α
n∑

i=1

Ê |Yni|
α

≤

∞∑
n=1

n−α/s (L (n))−α
n∑

i=1

[
CÊ

[
|X|α ḡ

(
µ |X|

n1/βL (n)

)]
+ Cnα/β (L (n))αV

(
|X| > µn1/βL (n)

)]
=C

∞∑
n=1

n1−α/s (L (n))−α Ê
[
|X|α ḡ

(
µ |X|

n1/βL (n)

)]
+ C

∞∑
n=1

n1−α/snα/βV
(
|X| > µn1/βL (n)

)
=C

∞∑
n=1

n1−α/s (L (n))−α Ê
[
|X|α ḡ

(
µ |X|

n1/βL (n)

)]
+ C

∞∑
n=1

V
(
|X| > µn1/βL (n)

)
=J211 + c.

(4.14)
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In order to prove J21 < ∞, we need to show J211 < ∞. Because L (x) > 0 (x > 0) is a monotonic
nondecreasing function and α > β, we have

∞∑
k=1

2(1−α/β)k
(
L
(
2k

))−α
≤ L (2)−α

∞∑
k=1

2(1−α/β)k < ∞. (4.15)

Otherwise, taking
x = 2 j−1 and λ = 2 > 0

in Definition 2.8, we can get
L
(
2 j

)
≤ cL

(
2 j−1

)
and {

|X| > c2 jL
(
2 j−1

)}
⊂

{
|X| > c2 jL

(
2 j

)}
.

Thus, by (4.2), (4.12), (4.15), α > β, ḡ (x) ↓ for all x > 0,
1
s
=

1
α
+

1
β
,

we get

J211 =C
∞∑

n=1

n−α/β (L (n))−α Ê
[
|X|α ḡ

(
µ |X|

n1/βL (n)

)]
≤C

∞∑
k=1

∑
2k−1≤n<2k

2[−(k−1)α]/β
(
L
(
2k−1

))−α
Ê

[
|X|α ḡ

(
µ |X|

2k/βL
(
2k))]

≪

∞∑
k=1

2(1−α/β)k
(
L
(
2k−1

))−α
Ê

[
|X|α ḡ

(
µ |X|

2k/βL
(
2k))]

≤

∞∑
k=1

2(1−α/β)k
(
L
(
2k−1

))−α
Ê

1 + k∑
j=1

|X|α ḡ j

(
µ |X|

2 j/βL (2 j)

)
≤

∞∑
k=1

2(1−α/β)k
(
L
(
2k−1

))−α
+

∞∑
k=1

2(1−α/β)k
(
L
(
2k−1

))−α k∑
j=1

Ê

[
|X|α ḡ j

(
µ |X|

2 j/βL (2 j)

)]

≤

∞∑
j=1

Ê

[
|X|α ḡ j

(
µ |X|

2 j/βL (2 j)

)] ∞∑
k= j

2(1−α/β)k
(
L
(
2k

))−α
+ c

≪

∞∑
j=1

2(1−α/β) j
(
L
(
2 j

))−α
Ê

[
|X|α ḡ j

(
µ |X|

2 j/βL (2 j)

)]
+ c

≪

∞∑
j=1

2(1−α/β) j
(
L
(
2 j

))−α
· 2 jα/β

(
L
(
2 j

))α
V

(
|X| > 2( j−1)/βL

(
2 j−1

))
+ c

=

∞∑
j=1

2 jV
(
|X| > 2−1/β · 2 j/βL

(
2 j−1

))
+ c

≤

∞∑
j=1

2 jV
(
|X| > c2 j/βL

(
2 j

))
+ c

<∞.

(4.16)
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In the end, we need to prove J22 < ∞. We take

max {0, β (2 + θ − 2/α)} < δ < min {2, β}.

For all η > 0, by Lemma 2.6, we can get

cxη ≥ L (x) .

Since δ < β, we have

cn1−δ/β (L (n))−δ ≥ 1

when n is sufficiently large. According to (4.1) and Lemma 2.2, we obtain

nV
(
|X| > cn1/βL (n)

)
→ 0

as n→ ∞. By (4.6), (4.13), we have

n∑
i=1

Ê |Yni|
2
≤C

n∑
i=1

Ê

[
|X|2 ḡ

(
µ |X|

n1/βL (n)

)]
+ C

n∑
i=1

n2/β (L (n))2V
(
|X| > µn1/βL (n)

)
=CnÊ

[
|X|2 ḡ

(
µ |X|

n1/βL (n)

)]
+ Cn2/β+1 (L (n))2V

(
|X| > µn1/βL (n)

)
≪nÊ

[
|X|2 ḡ

(
µ |X|

n1/βL (n)

)]
+ n2/β (L (n))2

≤ (1/µ)2−δ
· n

[
n1/βL (n)

]2−δ
Ê |X|δ + n2/β (L (n))2

≪n2/β (L (n))2
[
n1−δ/β (L (n))−δ + 1

]
≪n1+(2−δ)/β (L (n))2−δ .

(4.17)

Since

β (2 + θ − 2/α) < δ,

we can get

θ − (2/α − 1 + δ/β) < −1.

Thus, by (3.4), (4.17), ai ↑,

1
s
=

1
α
+

1
β
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and L (x) > 0 (x > 0) being a monotonic nondecreasing function,

J22 ≤

∞∑
n=1

nθb−2
n (L (n))−2 max

1≤i≤n
a2

i

n∑
i=1

Ê |Yni|
2

≤

∞∑
n=1

nθb−2
n a2

n (L (n))−2
n∑

i=1

Ê |Yni|
2

≪

∞∑
n=1

nθ · n−2/s (L (n))−2
· n1+(2−δ)/β (L (n))2−δ

=

∞∑
n=1

nθ−(2/α−1+δ/β) (L (n))−δ

≤ (L (1))−δ
∞∑

n=1

nθ−(2/α−1+δ/β)

<∞.

(4.18)

By (4.16) and (4.18), we get

∞∑
n=1

V

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
> ε

 < ∞.
According to Lemma 2.2 and V being countably sub-additive, we know

V

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
> ε, i.o.

 = 0

and

V

 ∞⋃
t=1

∞⋂
n=t

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
≤ ε


 = 1.

It is obvious that ∞⋃
t=1

∞⋂
n=t

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
≤ ε


 ⊂

b−1
n (L (n))−1

n∑
i=1

ai

(
Yni − Ê (Yni)

)
→ 0, n→ ∞


= {J2 → 0, n→ ∞} .

The equation
lim sup

n→∞
J2 = 0 a.s. V

has been proved.
Replacing {Xi, i ≥ 1} by {−Xi, i ≥ 1} for each 1 ≤ i ≤ n in (3.5), by

ε̂ (Xi) := −Ê (−Xi) ,
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we have

0 ≥ lim sup
n→∞

b−1
n (L (n))−1

n∑
i=1

ai

(
−Xi − Ê (−Xi)

)
= lim sup

n→∞
b−1

n (L (n))−1
n∑

i=1

ai (−Xi + ε̂ (Xi))

= lim sup
n→∞

b−1
n (L (n))−1

n∑
i=1

ai (− (Xi − ε̂ (Xi))) ,

which implies (3.6). Therefore, by (3.5), (3.6), and

Ê (Xi) = ε̂ (Xi) ,

the Eq (3.7) is obtained.
The proof of Theorem 3.1 is completed. □

Proof of Theorem 3.2. We define for fixed n ≥ 1 and each 1 ≤ i ≤ n,

Z′ni := −ciL (ci) I (Xi < −ciL (ci)) + XiI (|Xi| ≤ ciL (ci)) + ciL (ci) I (Xi > ciL (ci)) . (4.19)

By Lemma 2.1, it is easy to see that
{
Z′ni, n ≥ 1, 1 ≤ i ≤ n

}
is still a sequence of m-WA random

variables. Besides, we notice that

b−1
n (L (cn))−1

n∑
i=1

ai

(
Xi − Ê (Xi)

)
=b−1

n (L (cn))−1
n∑

i=1

ai
(
Xi − Z′ni

)
+ b−1

n (L (cn))−1
n∑

i=1

ai

(
Z′ni − Ê

(
Z′ni

))
+ b−1

n (L (cn))−1
n∑

i=1

ai

(
Ê

(
Z′ni

)
− Ê (Xi)

)
=K1 + K2 + K3.

In order to prove (3.10), we only need to prove

lim sup
n→∞

K1 ≤ 0 a.s. V, lim sup
n→∞

K2 = 0 a.s. V (4.20)

and

lim
n→∞

K3 = 0. (4.21)

For any c > 0, by (3.8), we easily obtain

∞∑
n=1

V
(
|X| > cn1/γL (n)

)
< ∞.

Since Definition 2.3, we know
CV

(
h− (|X|)

)
< ∞

AIMS Mathematics Volume 9, Issue 11, 29773–29805.



29793

is equivalent to
CV

(
h− (|X|) c−γ

)
< ∞.

According to Lemma 2.7, we obtain
CV

(
h− (|X|)

)
< ∞.

By Definition 2.8, taking
x = n1/γ

and
λ = n1−1/γ > 0

for n ≥ 1, we get
L (n) ≤ cL

(
n1/γ

)
and {

|X| > cn1/rL (n)
}
⊃

{
|X| > cn1/rL

(
n1/γ

)}
.

By 0 ≤ θ < 1, we notice that

∞∑
n=1

nθ/γV
(
|X| > Cn1/γL (n)

)
≥

∞∑
n=1

nθ/γV
(
|X| > cn1/γL

(
n1/γ

))
≥

∞∑
k=1

∑
2kγ−1≤n<2kγ

(
2kγ−1

)θ/γ
V

(
|X| > c2kL

(
2k

))
≥

∞∑
k=1

(
2kγ − 2kγ−1

) (
2kγ−1

)θ/γ
V

(
|X| > c2kL

(
2k

))
≥2−1−θ/γ

∞∑
k=1

2k(γ+θ)V
(
|X| > c2kL

(
2k

))
≥2−1−θ/γ

∞∑
k=1

2kγV
(
|X| > c2kL

(
2k

))
,

which implies that

∞∑
k=1

2k(γ+θ)V
(
|X| > c2kL

(
2k

))
< ∞ (4.22)

and
∞∑

k=1

2kγV
(
|X| > c2kL

(
2k

))
< ∞. (4.23)

Besides, for every ci, i ≥ 1, there exists a k such that

2k−1 ≤ ci < 2k.

By (4.22), {
|X| > c2kL

(
2k−1

)}
⊂

{
|X| > c2kL

(
2k

)}
.
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L (x) > 0 (x > 0) is a monotonic nondecreasing function and 0 ≤ θ < 1, and we get

∞∑
k=1

2k(γ+θ)V
(
|X| > c2kL

(
2k

))
=

∞∑
k=1

2k(γ+θ)V
(
|X| > 2c2k−1L

(
2k

))
≥2γ

∞∑
k=1

2kθV
(
|X| > 2c2k−1L

(
2k

))
≥2γ

∞∑
k=1

2kθV
(
|X| > 2c2k−1L

(
2k−1

))
≥2γ

∞∑
i=1

cθiV (|X| > 2cciL (ci))

≥2γ
∞∑

i=1

V (|X| > 2cciL (ci)) ,

which implies that

∞∑
i=1

cθiV (|X| > cciL (ci)) < ∞ (4.24)

and
∞∑

i=1

V (|X| > cciL (ci)) < ∞. (4.25)

For 0 < µ < 1, let g̃ (x) be an even function and

g̃ (x) ∈ Cl,Lip (R)

satisfying
0 ≤ g̃ (x) ≤ 1

for all x.
g̃ (x) = 1

if |x| < µ;
g̃ (x) = 0

if |x| > 1, and g̃ (x) is nonincreasing as x > 0. Then,

I (|x| ≤ µ) ≤ g̃ (|x|) ≤ I (|x| ≤ 1) ,
I (|x| > 1) ≤ 1 − g̃ (|x|) ≤ I (|x| > µ) .

(4.26)

We also define an even function g̃ j (x) as follows. Let

g̃ j (x) ∈ Cl,Lip (R) , j ≥ 1

such that
0 ≤ g̃ j (x) ≤ 1
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29795

for all x and

g̃ j

(
x

2 jL (2 j)

)
= 1

if

2 j−1L
(
2 j−1

)
< |X| ≤ 2 jL

(
2 j

)
;

g̃ j

(
x

2 jL (2 j)

)
= 0

if

|X| < µ2 j−1L
(
2 j−1

)
or

|X| > (1 + µ) 2 jL
(
2 j

)
.

Then, for all ρ > 0,

g̃ j

(
|X|

2 jL (2 j)

)
≤ I

(
µ2 j−1L

(
2 j−1

)
< |X| ≤ (1 + µ) 2 jL

(
2 j

))
,

|X|ρ g̃
(
|X|

2kL
(
2k)) ≤ 1 +

k∑
j=1

|X|ρ g̃ j

(
|X|

2 jL (2 j)

) (4.27)

and

1 − g̃
(
|X|

2kL
(
2k)) ≤ ∞∑

j=k

g̃ j

(
|X|

2 jL (2 j)

)
. (4.28)

To start, we prove

lim sup
n→∞

K1 ≤ 0 a.s. V.

Let

T (1) = 1.

By (3.1), (3.9), (4.19), (4.23), (4.26), (4.27), and (4.28), g̃ (x) ↓ for all x > 0,

{
|X| > c2 jL

(
2 j−1

)}
⊂

{
|X| > c2 jL

(
2 j

)}
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and Ê being countably sub-additive, we have

∞∑
i=1

V
(
Xi , Z′ni

)
≤

∞∑
i=1

V (|Xi| > ciL (ci))

≤

∞∑
i=1

Ê

[
1 − g̃

(
|Xi|

ciL (ci)

)]
≤C

∞∑
i=1

Ê

[
1 − g̃

(
|X|

ciL (ci)

)]
≪

∞∑
k=1

∑
2k−1≤ci<2k

Ê

[
1 − g̃

(
|X|

2k−1L
(
2k−1))]

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)]
Ê

[
1 − g̃

(
|X|

2k−1L
(
2k−1))]

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] ∞∑
j=k−1

Ê

[
g̃ j

(
|X|

2 jL (2 j)

)]

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] ∞∑
j=k−1

V
(
|X| > µ2 j−1L

(
2 j−1

))
=

∞∑
j=1

V
(
|X| > µ2 j−1L

(
2 j−1

)) j+1∑
k=1

[
T

(
2k

)
− T

(
2k−1

)]
≤

∞∑
j=1

T
(
2 j+1

)
V

(
|X| > µ2 j−1L

(
2 j−1

))
≪

∞∑
j=1

2 jγV
(
|X| > µ2 j−1L

(
2 j−1

))
≤

∞∑
j=1

2 jγV
(
|X| > c2 jL

(
2 j

))
< ∞.

(4.29)

By (4.29), Lemma 2.2, and V being countably sub-additive, we have

V
(
Xi , Z′ni, i.o.

)
= 0.

By bn ↑ ∞,
cn = bn/an ↑ ∞

and L (x) > 0 (x > 0) being a monotonic nondecreasing function. We have

|K1| ≤b−1
n (L (cn))−1

n∑
i=1

ai

∣∣∣Xi − Z′ni

∣∣∣→ 0, a.s. V.

Second, we prove
lim sup

n→∞
K2 = 0 a.s. V.
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By Lemma 2.1,
{
ai

(
Z′ni − Ê

(
Z′ni

))
, n ≥ 1, 1 ≤ i ≤ n

}
is still a sequence of m-WA random variables. We

can easily obtain

Ê
[
ai

(
Z′ni − Ê

(
Z′ni

))]
= 0,

which satisfies the condition of Lemma 2.8. Then, for all ε > 0, we take

x = d = bnL (cn) ε

in Lemma 2.8. By the Markov inequality, Lemma 2.3 (1) (2),

g (n) = O
(
nθ

)
,

and V being countably sub-additive, we have

V

 n∑
i=1

ai

(
Z′ni − Ê

(
Z′ni

))
> bnL (cn) ε


≤ mV

[
max
1≤i≤n

ai

(
Z′ni − Ê

(
Z′ni

))
>

bnL (cn) ε
m

]
+ mg (n) exp


1 − ln

1 +
ε2b2

n (L (cn))2 /m2

n∑
i=1

a2
i Ê

∣∣∣Z′ni − Ê
(
Z′ni

)∣∣∣2



≤ m

n∑
i=1

V

[∣∣∣∣ai

(
Z′ni − Ê

(
Z′ni

))∣∣∣∣ > bnL (cn) ε
m

]
+ mg (n) · e ·

1 +
ε2b2

n (L (cn))2 /m2

n∑
i=1

a2
i Ê

∣∣∣Z′ni − Ê
(
Z′ni

)∣∣∣2

−1

≤ m
n∑

i=1

V

[∣∣∣∣ai

(
Z′ni − Ê

(
Z′ni

))∣∣∣∣ > bnL (cn) ε
m

]
+ mg (n) · e ·

(
ε2b2

n (L (cn))2

m2

)−1 n∑
i=1

a2
i Ê

∣∣∣Z′ni − Ê
(
Z′ni

)∣∣∣2
≤ m

(
bnL (cn) ε

m

)−2 n∑
i=1

a2
i Ê

∣∣∣Z′ni − Ê
(
Z′ni

)∣∣∣2 + mg (n) · e ·
(
ε2b2

n (L (cn))2

m2

)−1 n∑
i=1

a2
i Ê

∣∣∣Z′ni − Ê
(
Z′ni

)∣∣∣2
≤ m3ε−2b−2

n (L (cn))−2
n∑

i=1

a2
i Ê

∣∣∣Z′ni

∣∣∣2 + em3ε−2b−2
n (L (cn))−2 g (n)

n∑
i=1

a2
i Ê

∣∣∣Z′ni

∣∣∣2
≪nθb−2

n (L (cn))−2
n∑

i=1

a2
i Ê

∣∣∣Z′ni

∣∣∣2 .
(4.30)

Thus, by (4.30) and
∞∑

n=i

b−2
n nθ (L (cn))−2

≪ b−2
i cθi (L (ci))−2
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for sufficiently large i,

∞∑
n=1

V

b−1
n (L (cn))−1

n∑
i=1

ai

(
Z′ni − Ê

(
Z′ni

))
> ε

 ≪ ∞∑
n=1

nθb−2
n (L (cn))−2

n∑
i=1

a2
i Ê

∣∣∣Z′ni

∣∣∣2
=

∞∑
i=1

a2
i Ê

∣∣∣Z′ni

∣∣∣2 ∞∑
n=i

nθb−2
n (L (cn))−2

≪

∞∑
i=1

cθ−2
i (L (ci))−2 Ê

∣∣∣Z′ni

∣∣∣2 .
(4.31)

Otherwise, by (3.1), (4.19), (4.26), we get

Ê
∣∣∣Z′ni

∣∣∣2 ≤ Ê [
|Xi|

2 I (|Xi| ≤ ciL (ci)) + c2
i (L (ci))2 I (|Xi| > ciL (ci))

]
≤ Ê

[
|Xi|

2 g̃
(
µ |Xi|

ciL (ci)

)]
+ c2

i (L (ci))2 Ê

(
1 − g̃

(
|Xi|

ciL (ci)

))
≤ CÊ

[
|X|2 g̃

(
µ |X|

ciL (ci)

)]
+ Cc2

i (L (ci))2 Ê

[
1 − g̃

(
|X|

ciL (ci)

)]
≤ CÊ

[
|X|2 g̃

(
µ |X|

ciL (ci)

)]
+ Cc2

i (L (ci))2V (|X| > µciL (ci)) .

(4.32)

Since 0 ≤ θ < 1, we get
−2 ≤ θ − 2 < −1.

Thus, by (4.24), (4.27), (4.31), (4.32), g̃ (x) ↓ for all x > 0, L (x) > 0 (x > 0) being a monotonic
non-decreasing function,

L
(
2k

)
≤ cL

(
2k−1

)
and Ê being countably sub-additive, we have

∞∑
i=1

cθ−2
i (L (ci))−2 Ê

∣∣∣Z′ni

∣∣∣2
≤ C

∞∑
i=1

cθ−2
i (L (ci))−2 Ê

[
|X|2 g̃

(
µ |X|

ciL (ci)

)]
+ C

∞∑
i=1

cθiV (|X| > µciL (ci))

≪

∞∑
k=1

∑
2k−1≤ci<2k

cθ−2
i (L (ci))−2 Ê

[
|X|2 g̃

(
µ |X|

ciL (ci)

)]
+ c

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)θ−2 (
L
(
2k−1

))−2
Ê

[
|X|2 g̃

(
µ |X|

2kL
(
2k))] + c

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)θ−2 (
L
(
2k

))−2
Ê

1 + k∑
j=1

|X|2 g̃ j

(
µ |X|

2kL
(
2k))

 + c

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)θ−2 (
L
(
2k

))−2

AIMS Mathematics Volume 9, Issue 11, 29773–29805.
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+

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)θ−2 (
L
(
2k

))−2
k∑

j=1

Ê

[
|X|2 g̃ j

(
µ |X|

2kL
(
2k))] + c

= K21 + K22 + c.

By (3.9), L (x) > 0 being a monotonic nondecreasing function, and γ + θ < 2, we get

K21 ≤

∞∑
k=1

T
(
2k

) [(
2k−1

)θ−2 (
L
(
2k

))−2
−

(
2k

)θ−2 (
L
(
2k

))−2
]

≤

∞∑
k=1

T
(
2k

) (
2k−1

)θ−2 (
L
(
2k

))−2

≪

∞∑
k=1

2k(γ+θ−2)
(
L
(
2k

))−2

≤ (L (2))−2
∞∑

k=1

2k(γ+θ−2)

<∞.

(4.33)

Besides, by (3.9), (4.22), (4.27), γ + θ < 2 ,{
|X| > c2 jL

(
2 j−1

)}
⊂

{
|X| > c2 jL

(
2 j

)}
and L (x) > 0 being a monotonic nondecreasing function, we obtain

K22 ≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)θ−2 (
L
(
2k

))−2
k∑

j=1

22 j
(
L
(
2 j

))2
V

(
|X| > 2 j−1L

(
2 j−1

))
=

∞∑
j=1

22 j
(
L
(
2 j

))2
V

(
|X| > 2 j−1L

(
2 j−1

)) ∞∑
k= j

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)θ−2 (
L
(
2k

))−2

≤

∞∑
j=1

22 j
(
L
(
2 j

))2
V

(
|X| > 2 j−1L

(
2 j−1

)) ∞∑
k= j

T
(
2k

) [(
2k−1

)θ−2 (
L
(
2k

))−2
−

(
2k

)θ−2 (
L
(
2k

))−2
]

≤

∞∑
j=1

22 j
(
L
(
2 j

))2
V

(
|X| > 2 j−1L

(
2 j−1

)) ∞∑
k= j

T
(
2k

) (
2k−1

)θ−2 (
L
(
2k

))−2

≪

∞∑
j=1

22 j
(
L
(
2 j

))2
V

(
|X| > 2 j−1L

(
2 j−1

)) ∞∑
k= j

2k(γ+θ−2)
(
L
(
2k

))−2

≤

∞∑
j=1

2 j(γ+θ)V
(
|X| > 2 j−1L

(
2 j−1

))
≤

∞∑
j=1

2 j(γ+θ)V
(
|X| > c2 jL

(
2 j

))
<∞.

(4.34)
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Thus, by (4.33) and (4.34), we get

∞∑
n=1

V

b−1
n (L (cn))−1

n∑
i=1

ai

(
Z′ni − Ê

(
Z′ni

))
> ε

 < ∞,
which implies that

lim sup
n→∞

K2 = 0 a.s. V

by Lemma 2.2 and V being countably sub-additive.
Finally, we will turn to prove (4.21). By (3.1), (4.19), (4.26), and Lemma 2.4, we get∣∣∣Ê (

Z′ni
)
− Ê (Xi)

∣∣∣ ≤Ê ∣∣∣Z′ni − Xi

∣∣∣
≤Ê

[
(|Xi| + ciL (ci))

(
1 − g̃

(
|Xi|

ciL (ci)

))]
≤Ê

[
|Xi|

(
1 − g̃

(
|Xi|

ciL (ci)

))]
+ ciL (ci) Ê

[
1 − g̃

(
|Xi|

ciL (ci)

)]
≤CÊ

[
|X|

(
1 − g̃

(
|X|

ciL (ci)

))]
+ CciL (ci) Ê

[
1 − g̃

(
|X|

ciL (ci)

)]
.

(4.35)

Thus, by (4.25), (4.26), (4.35), and cn = bn/an, we have

∞∑
i=1

∣∣∣∣∣ ai

biL (ci)

[
Ê

(
Z′ni

)
− Ê (Xi)

]∣∣∣∣∣
≤

∞∑
i=1

c−1
i (L (ci))−1

∣∣∣Ê (
Z′ni

)
− Ê (Xi)

∣∣∣
≤ C

∞∑
i=1

c−1
i (L (ci))−1 Ê

[
|X|

(
1 − g̃

(
|X|

ciL (ci)

))]
+ C

∞∑
i=1

Ê

[
1 − g̃

(
|X|

ciL (ci)

)]
≤ C

∞∑
i=1

c−1
i (L (ci))−1 Ê

[
|X|

(
1 − g̃

(
|X|

ciL (ci)

))]
+ C

∞∑
i=1

V (|X| > µciL (ci))

= K31 + c.

(4.36)

By (4.23), (4.27), (4.28), g̃ (x) ↓ for all x > 0,

L
(
2k

)
≤ cL

(
2k−1

)
and Ê being countably sub-additive, we obtain

K31 ≪

∞∑
k=1

∑
2k−1≤ci<2k

(
2k−1

)−1 (
L
(
2k−1

))−1
Ê

[
|X|

(
1 − g̃

(
|X|

2k−1L
(
2k−1)))]

≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)−1 (
L
(
2k−1

))−1
∞∑

j=k−1

Ê

[
|X| g̃ j

(
|X|

2 jL (2 j)

)]
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≤

∞∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)−1 (
L
(
2k

))−1
∞∑

j=k−1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

))
≤

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) j+1∑
k=1

[
T

(
2k

)
− T

(
2k−1

)] (
2k−1

)−1 (
L
(
2k

))−1

≤

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) j+1∑
k=1

T
(
2k

) [(
2k−1

)−1 (
L
(
2k

))−1
−

(
2k

)−1 (
L
(
2k

))−1
]

=

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) j∑
k=1

T
(
2k

) [(
2k−1

)−1 (
L
(
2k

))−1
−

(
2k

)−1 (
L
(
2k

))−1
]

+

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) {
T

(
2 j+1

) [(
2 j

)−1 (
L
(
2 j+1

))−1
−

(
2 j+1

)−1 (
L
(
2 j+1

))−1
]}

=K311 + K312.

By (3.9), (4.23), {
|X| > c2 jL

(
2 j−1

)}
⊂

{
|X| > c2 jL

(
2 j

)}
and L (x) > 0 (x > 0) being a monotonic nondecreasing function, we have

K312 ≤

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

))
· T

(
2 j+1

) (
2 j

)−1 (
L
(
2 j+1

))−1

≪

∞∑
j=1

L
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

))
· 2( j+1)γ

(
L
(
2 j

))−1

≤

∞∑
j=1

2 jγV
(
|X| > µ2−1 · 2 jL

(
2 j−1

))
≤

∞∑
j=1

2 jγV
(
|X| > c2 jL

(
2 j

))
<∞.

(4.37)

Besides, taking

λ = 2 j−k > 0

for j ≥ k and x = 2k in Definition 2.8, we get

L
(
2 j

)
≤ cL

(
2k

)
.

According to (3.9), (4.23), γ > 1, L (x) > 0 (x > 0), and{
|X| > c2 jL

(
2 j−1

)}
⊂

{
|X| > c2 jL

(
2 j

)}
,
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we obtain

K311 ≤

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) j∑
k=1

T
(
2k

) (
2k−1

)−1 (
L
(
2k

))−1

≪

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) j∑
k=1

2k(γ−1)
(
L
(
2k

))−1

≤

∞∑
j=1

2 jL
(
2 j

)
V

(
|X| > µ2 j−1L

(
2 j−1

)) j∑
k=1

2k(γ−1)
(
L
(
2 j

))−1

≤

∞∑
j=1

2 jγV
(
|X| > µ2−1 · 2 jL

(
2 j−1

))
≤

∞∑
j=1

2 jγV
(
|X| > c2 jL

(
2 j

))
<∞.

(4.38)

By (4.36)–(4.38), we get

∞∑
i=1

∣∣∣∣∣ ai

biL (ci)

[
Ê

(
Z′ni

)
− Ê (Xi)

]∣∣∣∣∣ < ∞.
Using Lemma 2.9, we obtain (4.22). Thus, (3.10) has been proved.

Replacing {Xi, i ≥ 1} by {−Xi, i ≥ 1} for each 1 ≤ i ≤ n in (3.10), by

ε̂ (Xi) := −Ê (−Xi) ,

we have

0 ≥ lim sup
n→∞

b−1
n (L (cn))−1

n∑
i=1

ai

(
−Xi − Ê (−Xi)

)
= lim sup

n→∞
b−1

n (L (cn))−1
n∑

i=1

ai (−Xi + ε̂ (Xi))

= lim sup
n→∞

b−1
n (L (cn))−1

n∑
i=1

ai (− (Xi − ε̂ (Xi))) ,

which implies (3.11). Furthermore, by (3.10), (3.11), and

Ê (Xi) = ε̂ (Xi) ,

we can get (3.12) immediately.
The proof of Theorem 3.2 is completed. □
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5. Conclusions

In this article, by using the Fuk-Nagaev type inequality, Cr inequality, Jensen inequality, and so on
under the sublinear expectation space, we obtain general strong law of large numbers of m-WA
random variables on different conditions under sublinear expectation space. The key of solving this
problem makes full use of the Fuk-Nagaev type inequality. One of the results includes the
Kolmogorov-type strong law of large numbers and the partial Marcinkiewicz-type strong law of large
numbers for m-WA random variables under sublinear expectation space. Additionally, we obtain
almost surely convergence for weighted sums of m-WA random variables under sublinear expectation
space. However, the Kronecker Lemma is not applied for arrays of row-wise random variables. Thus,
we will try our best to choose other ways to prove almost surely convergence for arrays of row-wise
m-WA random variables under sublinear expectation space in the future.
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